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ABSTRACT Whole-genome sequencing of pathogens has recently been used to investigate disease outbreaks and is likely to play
a growing role in real-time epidemiological studies. Methods to analyze high-resolution genomic data in this context are still lacking,
and inferring transmission dynamics from such data typically requires many assumptions. While recent studies have proposed methods
to infer who infected whom based on genetic distance between isolates from different individuals, the link between epidemiological
relationship and genetic distance is still not well understood. In this study, we investigated the distribution of pairwise genetic distances
between samples taken from infected hosts during an outbreak. We proposed an analytically tractable approximation to this
distribution, which provides a framework to evaluate the likelihood of particular transmission routes. Our method accounts for the
transmission of a genetically diverse inoculum, a possibility overlooked in most analyses. We demonstrated that our approximation can
provide a robust estimation of the posterior probability of transmission routes in an outbreak and may be used to rule out transmission
events at a particular probability threshold. We applied our method to data collected during an outbreak of methicillin-resistant
Staphylococcus aureus, ruling out several potential transmission links. Our study sheds light on the accumulation of mutations in
a pathogen during an epidemic and provides tools to investigate transmission dynamics, avoiding the intensive computation necessary
in many existing methods.

PATHOGEN genomic data are rapidly becoming abundant,
and there is a demand for statistical methods to extract

meaningful conclusions from the wealth of information these
data provide. One of the most basic and frequently used—yet
imperfectly understood—comparative tools is the genetic dis-
tance between two samples [commonly defined as the number
of single-nucleotide polymorphisms (SNPs) between the iso-
lates]. In the context of epidemiological investigations, genetic
distance can be used as a discriminatory value to determine
whether infected individuals belong to the same outbreak or
cluster or to rule out potential transmission events.

Genetic distance is central to the inference of transmission
routes—intuitively, the greater the similarity is between sam-
ples taken from two different hosts, the more likely they are to

have been involved in a transmission event. While in some
cases it may suffice to identify the carrier of the genetically
closest pathogen isolate as the source of infection (Jombart
et al. 2011), this approach lacks any measure of uncertainty
and may result in a high false positive rate; it has been dem-
onstrated that estimation of a transmission network using ge-
netic distance data alone is associated with much uncertainty,
making the estimation of individual transmission routes impos-
sible (Worby et al. 2014). However, with a probabilistic inter-
pretation of genetic distances, given the relationship between
the hosts of pathogen samples, one can quantify the uncer-
tainty surrounding each potential transmission source and
establish general trends of transmission in the epidemic. Fur-
thermore, probabilistically weighted transmission routes may
also lead to improved estimates of heterogeneous transmission
rates from different subpopulations.

Many studies to date have developed methods to infer
routes of transmission based on genomic and epidemiolog-
ical data (Cottam et al. 2008; Jombart et al. 2011; Morelli
et al. 2012; Ypma et al. 2012, 2013; Didelot et al. 2014;
Jombart et al. 2014). Each method utilizes a likelihood com-
ponent that describes the probability that a set of mutations
occurs between two pathogen samples from different hosts,
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given their epidemiological relationship. These are often
based on strong assumptions (e.g., transmission bottleneck
size of 1 or mutation occurring only at the time of trans-
mission), and many are highly computationally intensive.

The distribution of pairwise genetic distances between
samples taken from epidemiologically linked carriers depends
on numerous factors, such as the mutation rate, the within-
host pathogen population dynamics, and the transmission
bottleneck size. It is of interest to understand how each of
these factors affects observed genetic distance.

In this study, we aimed to investigate the distribution of
pairwise genetic distances to better understand how di-
versity accumulates during a disease outbreak. In particular,
we developed an approximation to this distribution and in-
vestigated its use as a tool to assess the likelihood of transmission
routes. We used simulated data and real outbreak data, collected
during a hospital outbreak of methicillin-resistant Staphylococcus
aureus (MRSA), to demonstrate the ability of our method to rule
out several patient-to-patient transmission routes.

Methods

The distribution of genetic distance between two
samples taken during an outbreak

Consider a disease outbreak, consisting of n cases, where
case 1 is the origin, and cases 2; . . . ; n each have a source
of infection from within the population. Let tIj be the infec-
tion time of case j, and tI1 ¼ 0: Each case is observed, and we
initially assume that one pathogen specimen is taken for
sequencing at time tsj with genotype gj: Table 1 describes
notations used in this article.

We consider the unobserved transmission network,
which consists of infection routes and times. Let cj be the
vector of transmission ancestry for person j, such that the
first element is the transmission source of j, and each suc-
cessive element is the source of the preceding element. Since
the network is fully connected, the final element of this vector
for any given host will be the outbreak origin, and the vector
will have length equal to the number of hosts in the trans-
mission chain from the origin to j. Let sij ¼ ci \ cj be the
vector of ancestry common to both i and j, such that the first
element sð1Þij is the most recent common transmission source
of both i and j, and the last element is 1.

Now consider the genealogy of the sampled isolates. This
tree is not necessarily identical to, but must be consistent
with, the transmission tree (Ypma et al. 2013). The time of
coalescence for samples gi and gj; denoted mðgi; gjÞ; must oc-
cur prior to the divergence of the transmission tree branches to
which persons i and j belong and will belong within one of the
hosts in sij: The ancestries of the samples coexist in the same
host or chain of hosts for a period of time, before one lineage is
transmitted to another person and exists independently of the
other. Let dði; jÞ be the time of lineage divergence, the time at
which the lineages cease to exist within the same host (see
Figure 1).

Let cðgi; gjÞ denote the genetic distance between samples
gi and gj; measured by the number of SNPs. The mutations
could have arisen in two distinct periods—first, during the
time between observations tSi ; tSj and lineage divergence
dði; jÞ; and second, during the (earlier) time between lineage
divergence and coalescence mðgi; gjÞ: The number of SNPs
cðgi; gjÞ is then equal to the sum of two random variables,
cðgi; gjÞ ¼ X þ Y ; where X represents mutations occurring
between lineage divergence and observation, and Y repre-
sents mutations occurring prior to lineage divergence. For
the former, we can assume that the number of SNPs arising
from the time of lineage divergence dði; jÞ until observation
follows a Poisson distribution with mean mðtsi þ tsj 2 2dði; jÞÞ:
For the latter, with a known time of coalescence, mðgi; gjÞ;
the number of SNPs accumulating between coalescence and
divergence is again a Poisson-distributed random variable,

Y jmðgi; gjÞ�Poisð2mðdði; jÞ2mðgi; gjÞÞÞ: (1)

However, the time of coalescence for two samples is
generally unknown, although it must lie in the interval
0#mðgi; gjÞ, dði; jÞ: If the size of the transmitted inoculum
is equal to one, then tI

sð1Þij

#mðgi; gjÞ, dði; jÞ; in the scenario
depicted in Figure 1, coalescence would have to occur
within the host (rectangle) highlighted in a thick black line.

Most epidemic models describe nonlinear dynamics, and
estimating the rate of coalescence between two pathogen
samples during an outbreak is highly dependent on the
demographic model used (Koelle and Rasmussen 2012; Volz
2012). However, in this study, interest lies in the individual-
level rather than the population-wide dynamics. Under an
assumed or hypothesized set of transmission routes, the time
of lineage divergence dði; jÞ is known, and the rate of lineage
coalescence can be derived from the specification of a model
of within-host population dynamics and transmission.

Assuming a constant population size of N, the time to
coalescence for two randomly sampled lineages at time t,
mt; is exponentially distributed with rate 1=N: Under this
assumption, it can be shown that the number of SNPs sep-
arating two randomly sampled lineages at time t follows
a Geomðð1=NÞ=ð1=N þ 2mÞÞ distribution, equivalent to
Geomð1=ð1þ uÞÞ; where u ¼ 2Nm (Watterson 1975).

Table 1 Notation used in this article

Notation Definition

i/j Transmission route from person i to person j
t Ij Time of infection of person j
tsj Time of genome sampling from person j
sij Vector of transmission ancestry common to persons i and j
dði; jÞ Time of lineage divergence
m Mutation rate per genome per generation
cða; bÞ Genetic distance (no. SNPs) between genomes a and b
mða; bÞ Coalescence time of isolates a and b
mt Time between coalescence and observation time t
NðtÞ Effective pathogen population size at time t
NB Effective transmission bottleneck size

1396 C. J. Worby et al.



As such, by assuming a constant mutation rate and
effective population size prior to lineage divergence, we
have

X�Poisðmðtsi þ tsj 22dði; jÞÞÞ; (2)

and

Y�Geom
�

1
1þ 2Nm

�
: (3)

However, as the lineage is transmitted from one host to
another, the population experiences repeated bottlenecks,
violating the assumption of constant population size. We
hence considered an approximation to the true population
dynamics, using a discrete-time population model. The effec-
tive population size remains constant at size N, except during
transmission, at which time it spends one generation in a bot-
tleneck of size NB; before recovering to its previous level. The
expected time to coalescence under such a model is

EðmtÞ ¼
Xt
k¼0

k
�
12

1
N

�k2fðkÞ21�
12

1
NB

�fðkÞ� 1
NðkÞ

�
; (4)

where fðkÞ is the number of bottlenecks a lineage must pass
through between times 0 and k, and NðkÞ is the effective
population size at time k and is equal to either N or NB: We
note that NðkÞ represents the short-term effective popula-
tion size that takes into account nonrandom sampling
during the bottleneck and stochastic variation, while
N*
e ¼ 1=E½mdði;jÞ� is the long-term effective population size

that also considers the changes in short-term effective pop-
ulation sizes over time. We can then either assume that the
time of coalescence is fixed at mðgi; gjÞ ¼ dði; jÞ2 Eðmdði;jÞÞ
and that

cðgi; gjÞ�Poisðmðtsi þ tsj 2 2mðgi; gjÞÞÞ
¼ Poisðmðtsi þ tsj 2 2ðdði; jÞ2 Eðmdði;jÞÞÞÞ

(5)

[the sum of random variables (1) and (2)] or that the
effective population size N*

e prior to divergence is fixed at
1=E½mdði;jÞ� and that

cðgi; gjÞ�Geom

 
1

1þ 2E½mdði;jÞ�m

!

þ Poisðmðtsi þ tsj 2 2dði; jÞÞÞ (6)

[the sum of random variables (2) and (3)], which we refer
to as the geometric-Poisson approximation. Finally, we can
derive the posterior probability of any transmission route
(i/j), given the genetic distance between sampled isolates
gi and gj and associated parameters v ¼ fm; E½mdði;jÞ�g,

pði/jjcðgi; gjÞ;vÞ ¼
pðcðgi; gjÞji/j;vÞpði/jjvÞ

pðcðgi; gjÞjvÞ

¼
pðcðgi; gjÞji/j;vÞP

k2SðjÞpðcðgk; gjÞjk/j;vÞ
;

(7)

assuming equal prior probabilities of potential transmission
routes, where SðjÞ is the set of all potential infection sources
for individual j.

Simulation studies

We generated the empirical distribution of genetic distances
by simulating within-host dynamics on top of a transmission
process. We compared the resulting empirical distributions
with the geometric-Poisson approximation given in Equation

Figure 1 Two isolates sampled from infected
cases during an outbreak. Each infected case
is depicted by a rectangle, corresponding to
its infectious period. Arrows denote transmis-
sion events. Samples gi (red circle) and gj (blue
circle) are taken from persons i and j, respec-
tively. The colored lines indicate the ancestry of
each isolate back to its most recent common
ancestor at time mðgi ;gjÞ: Hosts shaded in gray
denote the shared ancestry sij ; while blue and
red denote the lineages of the genotypes gi and
gj ; respectively. The colored bars at the bottom
of the diagram show the distinct time periods in
which mutations may occur—between diver-
gence and observation (blue and red) and from
divergence to coalescence (purple), which is ex-
ponentially distributed, assuming a constant
population N.
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6, as well as the Poisson approximation in Equation 5. The
index case of the disease outbreak is infected with a clonal
population of bacteria, and this is allowed to grow under
a discrete-time neutral evolutionary process. At each gener-
ation, x � BinomðNðtÞ;NðtÞ=2NÞ cells die, and the remain-
ing NðtÞ2 x cells are replicated, where NðtÞ denotes the
census population size at time t. We impose the restriction
x,NðtÞ to prevent the population from going extinct. Each
replicated cell has a probability m of being a mutation. All
mutations are assumed to be neutral, and back mutations
are allowed. A transmission event involves a bottleneck: NB

cells are randomly sampled from the host and passed to the
susceptible individual. In reality, this inoculum is unlikely to
be a truly random sample from the pathogen population,
since a host is not a well-mixed vessel. However, NB can
be thought of as an effective bottleneck size.

Initially, we considered the simple example of a transmission
chain, in which each infected individual infects exactly one
new person. Transmission events occur at equidistant intervals,
and the time from infection to sampling is constant. For each
scenario under given parameters, we repeated the transmis-
sion chain 100 times and considered the average distribution
of pairwise distance across these simulations.

We also simulated more general susceptible–infectious–
removed (SIR) outbreaks in an initially susceptible popula-
tion, using the R package “seedy” version 0.1 (Worby 2014).
Genotypes were sampled randomly from the host at regular
intervals, and person-to-person mixing in the population
was assumed to be homogeneous. Outbreaks were simu-
lated with R0 ¼ 2: We investigated the effect of varying
the bottleneck size NB; the equilibrium effective population
size Neq; and the mutation rate m.

Data

We applied our approximations to a data set collected during
an outbreak of MRSA. Colonization of MRSA strain type
ST2371 was detected in a total of 15 newborn infants during
an outbreak in a special care baby unit (SCBU) in Cambridge,
United Kingdom. A single genome sampled from each of these
individuals was sequenced, along with 20 isolates collected
from a healthcare worker (HCW), who was found to be MRSA
positive several weeks after the 15 cases were observed. The
genetic similarity of the pathogen samples indicated potential
transmission, (i) from patient to patient, via a transiently
colonized HCW (transferring the bacteria from one patient to
another, with carriage cleared upon hand washing); (ii)
between persistently colonized HCW and patient; or (iii) from
external sources. This study was described by Harris et al.
(2013), and sequence data are available at the European Nu-
cleotide Archive (www.ebi.ac.uk/ena).

Results

Within-host diversity

We first considered the distribution of pairwise genetic
distances between isolates sampled from a single host. The

distance between two isolates sampled at the same time
point will be geometrically distributed according to the
geometric-Poisson approximation (6), since the Poisson
component is equal to zero. However, assuming infection
with a single genotype, the empirical distribution generated
from simulations can vary from this approximation (Figure
2A). This is a consequence of assuming a constant coales-
cent rate—under this simplification, it is assumed that the
time to coalescence is exponentially distributed, while in
reality, coalescence is much more likely to occur in the very
early stages of infection, while the total within-host patho-
gen population is still expanding. With less uncertainty sur-
rounding the coalescent time, pairwise genetic distance is
approximately Poisson distributed, as in Equation 5. As the
time since infection increases, the probability that coales-
cence occurred in the initial growth phase decreases, and
the constant coalescent rate assumption of the geometric-
Poisson approximation becomes more realistic.

For individuals infected with an inoculum containing
multiple genotypes, the coalescence time of sampled line-
ages may occur within a previous host. As such, the ini-
tial diversity within a newly infected host is higher, and
equilibrium levels of diversity are approached sooner than
for a clonally infected host. This leads to better agreement
between the empirical and geometric-Poisson distributions
(Figure 2C).

The expected and empirical mean diversities are con-
sistently similar, even when the empirical and expected
distributions differ (Figure 3). However, for observations
made soon after the time of infection, the approximate dis-
tribution may overestimate the frequency of genetically
identical isolates. In situations where the timing of coales-
cence is more certain, for example, shortly after a bottleneck
of size 1 (a “strict” bottleneck), a pure Poisson approxima-
tion (Equation 5) may be more appropriate (Figure 2B). We
used Akaike’s information criterion (AIC) to determine the
better approximation at various time points after a strict
bottleneck, finding the cutoff for the Poisson approxima-
tion to increase with population size Neq (Supporting
Information, Table S1).

Pairwise diversity along transmission chains

We next looked at the distribution of genetic distances
arising from each pair of individuals in the transmission
chain, simulated as described in Methods. Under most sce-
narios, the geometric-Poisson approximation correctly de-
scribed the increasing mean and variance of the distribution
as samples were taken farther down the transmission chain
(Figure 3), with little apparent bias to the empirical mean
(Figure S1). As the chain length increases, the genetic distri-
butions reach an equilibrium, as the expected diversity of
each transmission inoculum becomes constant.

Notably, there is considerable overlap between SNP
distributions, meaning that the likelihood of observing a genetic
distance between samples from two individuals will be similar
for a range of transmission network configurations. This has
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ramifications for identifying the source of infection, since the
posterior probability of any particular transmission route will
typically be low, and much uncertainty will be associated with
the estimated network.

Identifying direct transmission

The geometric-Poisson distribution can be used to calculate
the probability that an observed genetic distance arose from
a direct transmission event. In the case where the trans-
mission bottleneck is equal to one, the distribution of
distances arising from samples taken from a transmission
pair does not depend on the previous structure of the
transmission network, so a probability for direct trans-
mission can be derived independently of the outbreak
structure.

We simulated SIR outbreaks and calculated the posterior
probability of transmission for every pair of individuals given
observed genetic distances, as derived in Equation 7. We
found that the posterior probability of transmission routes
corresponded well with the empirical probability calculated
under repeated simulation (Figure 4). In File S1 and Figure
S2, we describe a simulated disease outbreak and demon-
strate the identification of potential transmission routes using
the maximum likelihood, as well as the ability to rule out
transmission routes at the 5% level.

To test the approximation as a tool for investigating
transmission networks, we repeatedly simulated SIR outbreaks
and assessed the likelihood of direct transmission between

each pair of individuals, using a single sampled genotype from
each host. Identification of the source of infection via maximum
likelihood was consistently more successful than selection of the
host with the genetically closest genotype. Furthermore, source
identification was more successful for higher mutation rates. A
heuristic approach, in which the infection route was selected if
a potential source was both the maximum-likelihood estimate
and the genetically closest host, was successful around one-third
of the time (Table 2).

With a bottleneck size .1, the time of coalescence of the
two sampled lineages may occur in previous hosts, and the
expected time of coalescence depends on timing of bottle-
necks in the bacterial population. Past population dynamics,
and therefore previous transmission history, would be re-
quired to assess individual transmission links. To avoid
conditioning on the remainder of the tree structure, we
calculated the likelihood under the assumption that pre-
vious bottlenecks occurred at intervals equal to the
expected serial interval. While we found that higher pos-
terior probabilities were often underestimated using this
approach (Figure S3), maximum-likelihood identification
still consistently outperformed selection of the genetically
closest host (Table S2).

We additionally compared our approach to the software
“outbreaker” (Jombart et al. 2014) and “seqTrack” (Jombart
et al. 2011) and found that it could identify more transmis-
sion routes correctly in many scenarios. However, differen-
ces in modeling assumptions mean the methods are not

Figure 2 The empirical (solid lines) and estimated (dashed lines) distribution of genetic distances for sampling within host at specified times after
infection. Both the geometric-Poisson approximation (A and C) and the simpler Poisson approximation (B and D) are shown. The infected host was
infected by an inoculum of size 1 (A and B) and size 5 (C and D). The inoculum was a random sample from a bacterial population having evolved over
a period of 5000 generations from an initial clonal population. Mutation rate is 0.002, and effective population size is 2000.
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directly comparable. More details can be found in File S1
and Table S3.

Investigating transmission routes during a hospital
MRSA outbreak

We used the MRSA data set described in Methods to inves-
tigate transmission routes in a real outbreak. We compared
observed genetic distances to the geometric-Poisson approx-
imation, to determine likely transmission routes. MRSA-positive
patient episodes and swab times are shown in Figure 5A.

We initially investigated potential patient-to-patient trans-
mission, ignoring the possibility that the HCW may have
infected patients. We assumed a bacterial generation time of
30 min (Chang-Li et al. 1988; Dengremont and Membré 1995;
Ender et al. 2004) and used the mutation rate of one SNP per
15 weeks (equivalent to 0.0002 per genome per generation)
quoted in the study by Harris et al. (2013). We assumed a strict
bottleneck. We found that, since the time from infection to
sampling was typically short, the within-host effective popula-
tion size made little difference to the approximated distribu-
tions. Five temporally consistent transmission routes could be
ruled out at the 5% level, leaving five plausible transmission
events (Figure 5C). Two of these form a cycle (between 11 and
12)—only one of these events could have occurred, but each

route is equally plausible. The lack of any other observed and
temporally consistent infection source within the ward suggests
transmission from an external source or environmental con-
tamination—however, since the infants in this study were non-
ambulatory, this possibility was considered less likely.

We next supposed that the HCW could have been the source
of infection for any of the patients in the SCBU. The observed
mean pairwise distance between the samples collected from the
HCW was 3.89 SNPs (Figure 5B), suggestive of a lengthy car-
riage time or a nonstrict bottleneck size. The time of HCW
infection was estimated to be 23 days before the first patient
case (Harris et al. 2013). We set the observed genetic distance
from patient to HCW as the nearest integer to the mean of the
genetic distances to each of the HCW’s 20 samples. We found
that all patients could plausibly have been infected by the
HCW; however, in three cases this was not the most likely
source of infection (Figure 5D). Assuming that infection must
have a source from within the SCBU (including the HCW), we
found that in addition to the six individuals with no other
temporally consistent source, three patients had a posterior
probability of .99% of acquiring infection from the HCW,
while two others had a .50% probability. We additionally re-
peated the analysis, using each of the HCW’s isolates individu-
ally (Figure S4). Furthermore, we ran the analysis using the

Figure 3 Genetic distance between
each pair of cases in a transmission
chain. The ði; jÞth plot represents the
empirical distribution of the genetic dis-
tance between samples taken from indi-
viduals i and j (red bars). The diagonal
represents the within-host diversity for
each of the 10 cases in the transmission
chain (blue bars). Overlaid on each plot
is the expected distribution (black line),
based the geometric-Poisson approxi-
mation. The expected mean is marked
with a dashed line, while the empirical
mean and standard error bar are marked
in red (blue for within host). The within-
host equilibrium pathogen population
was 10,000, with a bottleneck size of 5.
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Poisson approximation, finding little difference in transmission
route probabilities (Figure S5).

We finally investigated the possibility that the HCW was
infected by one of the patients on the ward. Assuming that the
HCWwas infected 2 days after the infection time of the potential
source, we could rule out five patients as a source of infection for
the HCW at the 5% level. If the HCWwas infected by any one of
the patients, the observed diversity within the HCW is greater
than would be expected to accumulate in the period from
infection to observation. At least 16% of the observed HCW
within-host pairwise distances would be rejected at the 5% level
under any patient–HCW transmission scenario (Table S4).

We found that, while most of our analyses were fairly
robust to the specification of the effective population size,
there was sensitivity to the choice of mutation rate and the
time of HCW infection. We investigate these sensitivities in
detail in File S1 and Table S5.

The methods we have described and implemented are for
pairwise distances and, as such, cannot account for dependen-
cies between several isolates. This is necessary when consid-
ering the transmission network as a whole, rather than just
a set of pairwise connections. In addition, it is necessary to
consider the conditional distribution of genetic distance to
account for multiple samples per host. The degree of de-
pendence varies considerably depending on the transmission
bottleneck size (Figure S6, Figure S7). In File S1, we describe
the conditional distribution for genetic distances.

Discussion

In this study, we have explored the distribution of the genetic
distances arising from samples taken from infected hosts

during an outbreak and investigated the impact of factors
such as mutation rate, transmission dynamics, and within-
host pathogen population dynamics on the expected value of
such distances. Under most circumstances, a geometric-
Poisson approximation is sufficient to describe genetic
distances between samples taken during an outbreak. This
allows the distribution to be approximated without knowing
the coalescence time of two lineages. With known parameters
of pathogen population dynamics, the likelihood of genetic
distances arising between a host and various potential trans-
mission sources may be compared, and certain links may be
excluded. The transmission bottleneck size can have a large
impact on the genetic distance distribution, and our methods
can account for this.

The ability to assign a genetic distance threshold to rule
out transmission events in a nonarbitrary fashion can be
important in establishing distinct subgroups of the transmission
tree, as well as identifying pathogen importation from outside
of the studied population. This is of much importance when
estimating transmission rates within a community, as incorrectly
identified importations can introduce bias. Previous studies
have used an arbitrary cutoff to determine potential trans-
mission (e.g., Jombart et al. 2014; Long et al. 2014).

We found that the geometric-Poisson approximation
deviated from the empirical distribution to the greatest
extent when sampling occurred shortly after infection with
a clonal inoculum.While the expected genetic distance exhibited
no apparent bias, and this deviation was minor for bottleneck
sizes.1, it should be noted that this scenario may potentially be
important in outbreaks of highly symptomatic pathogens, as
samples are more likely to be taken in the earlier stages of in-
fection, compared to asymptomatic, chronic infections. If a strict
bottleneck is considered likely shortly before sampling, using the
Poisson distribution (Equation 5) with fixed coalescent time is
recommended.

Identification of transmission sources using this method
is most successful with a high mutation rate. While higher
mutation rates (and longer intervals between infection and
onward transmission) can lead to more distinct distribu-
tions, potentially allowing one to rule out certain relation-
ships, such as direct transmission, it is clear that even under
extreme scenarios, uncertainty remains. We found that the
success rate of identifying the source of infection was up to
33% better than selection of the genetically closest host, but
still too low to identify transmission routes with confidence.
We demonstrated that our approach could identify trans-
mission routes more successfully than existing software pack-
ages, provided key values, such as mutation rate and infection
times, are known. It has been shown previously that identifi-
cation of transmission routes during an outbreak based on
genomic data is likely to be challenging due to high levels of
uncertainty (Worby et al. 2014), a finding also reflected in
recent investigations (Didelot et al. 2014). The methods pro-
vided in this article are likely to be most valuable in the iden-
tification of a group of potential sources with a high likelihood,
as well as the elimination of potential sources at a given probability

Figure 4 The empirical probability that a proposed transmission route is
correct for a range of posterior probabilities calculated under the geometric-
Poisson assumption. A total of 100 outbreaks were simulated and the
posterior probability of direct transmission was calculated for every pair of
infected individuals. Counts were collated into 10% probability bins and
for each bin, the proportion of true transmission routes was calculated.
Error bars depict the 95% exact binomial confidence interval.
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level (discriminating, for example, between imported cases
and within-population transmission events). Additional data
sources, such as spatial location, contact patterns, and infec-
tious periods, will increase the precision of estimates of in-
fection paths (Ypma et al. 2012, 2013; Jombart et al. 2014).

We demonstrated the application of our methods to
a data set collected during an MRSA hospital outbreak.
We could rule out 5 of the 11 temporally consistent patient-
to-patient transmission routes at the 5% level and found
evidence supporting the important role played by the
colonized HCW in the outbreak. However, our analysis was
limited by a number of important parameter values that are
uncertain or unknown. This work highlights the importance
of deriving estimates for the transmission bottleneck size and
gaining an improved understanding of within-host pathogen
population dynamics. With less parameter uncertainty, it
would be possible to draw more robust conclusions. Our
analysis considered only sequence data, but other data
sources could contribute valuable information to infection
routes. For instance, we assume an uninformative prior
distribution for infection sources, but contact patterns could
potentially be factored into this, if such information were
available.

While using our approximation to the genetic distance
distribution can be useful to assess pairwise individuals for
evidence of direct transmission, reconstruction of the full
transmission network requires us to consider the conditional
distribution of genetic distances and a framework to sample
over the entire structure. Accounting for dependencies be-
tween genetic distances would require inference of the set of
coalescent times. This approach has been described in
a recent study (Ypma et al. 2013), which used sequence data
directly, rather than genetic distance data. It may be possible
to implement the distribution approximation described here,
accounting for dependencies by conditioning on shared tree
branches.

The transmission bottleneck size is important in the
analysis of transmission dynamics, using genomic data. Most
studies to date assume a strict bottleneck for convenience, as
under this condition, the expected distance between two

samples does not depend on pathogen population dynamics
prior to the divergence of the lineages to different hosts.
Previous studies have suggested a diverse transmission
inoculum for influenza (Hughes et al. 2012; Murcia et al.
2012), while it is thought that the bottleneck size for bacterial
transmission could vary dramatically (Balloux 2010). Con-
ducting inference under the incorrect bottleneck size can gen-
erate misleading results. Our methods illustrate the degree to
which the bottleneck size can affect the expected genetic
distance between individuals and may potentially be used
to assess whether a strict bottleneck is a realistic assumption.

There are several assumptions made in this work. First,
we have assumed neutral evolution, such that no fitter
mutant can arise and dominate the pathogen population.
This may be a reasonable assumption in the short term, such
as during individual carriage and in small outbreaks, but
would have to be taken into account when considering
epidemics over a long period of time. However, transmission
route inference is most applicable to localized outbreaks
within a community or a hospital, and the emergence of
fitter variants may be of lesser importance. We have also
assumed that the within-host pathogen population remains
at equilibrium level and that this is identical for all infected
individuals, while in reality this may be unrealistic, espe-
cially during antimicrobial use. Within-host pathogen dy-
namics are still poorly understood, and the effective size
may fluctuate and vary considerably between hosts. We
have primarily considered long-term bacterial infections,
with a relatively stable within-host population, but alterna-
tive models could also be considered, provided the expected
time of coalescence can be estimated at any given time. With
appropriate sampling, methods exist to estimate the within-
host effective population size, as well as the mutation rate
(e.g., Wang 2001; Minin et al. 2008). With known transmis-
sion routes, our approximation can also be used to estimate
parameters of interest; however, these estimates are associ-
ated with some uncertainty (see File S1, Figure S8 and Fig-
ure S9). We assumed that the source of infection must come
from the pool of observed infectives at the time of infection
and furthermore that the time of infection is known. In some

Table 2 Performance of geometric-Poisson distribution

Performance
measure

Mutation rate (31024)

1 3 5

Proportion of true infection sources identified by maximum likelihood 0.27 0.32 0.33
Proportion of true infection sources identified by closest genotypea 0.19 0.27 0.29
Proportion of potential links ruled out at 5% level 0.10 0.21 0.24
Proportion of true infection sources ruled out at 5% level 0.04 0.07 0.07
Proportion of cases identified as source by both maximum likelihood
and genetic similarity found to be correct

0.27 0.33 0.35

SIR outbreaks with 30 initial susceptibles were simulated and a single genome sample was generated for each infective. Simulations with a final size
,20 were discarded. For each infective, the maximum-likelihood source was calculated, and the genetically closest hosts were selected. All
previously infected individuals were considered potential sources, regardless of removal times. Simulations for each scenario were repeated 100
times. Baseline parameters were infection rate 0.002, removal rate 0.001, and effective population size 5000.
a If the true source and other hosts are genetically equidistant, the true host is assumed to be identified with probability 1/(no. equidistant closest
hosts).
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cases, particularly for outbreaks in large, well-mixing com-
munities, it is unlikely that all infected cases will be identi-
fied and sampled. Nonetheless, evidence for an external
source of infection can be seen when all potential observed
sources are ruled out (for instance, cases 2 and 8 in the
MRSA outbreak when not considering the HCW). In many
cases, transmission times are unknown, although for many
infections this can be estimated from the time of symptom
onset or at least narrowed down by swabs for pathogen
presence. Although one can test the hypothesis that an in-
dividual was infected at a certain time, this is a source of
uncertainty, particularly for scenarios with a lengthy, asymp-
tomatic infection period and/or a low pathogen mutation
rate.

Genetic distances are an important and frequently used
feature of genome sequence data, and our work contributes
to a better understanding of how such distances arise during

an outbreak. While sequence data provide a wealth of
information regarding evolutionary history and relatedness
of genotypes, the phylogeny derived from such data by itself
may not be informative of transmission dynamics, and
methods to combine this structure with the transmission
tree are complex and computationally intensive (Ypma et al.
2013). Genetic distances offer a simple summary statistic of
complex multidimensional data and may be more appropri-
ate in comparative analyses of genomic samples. Genetic
distances can crudely be used to determine direct transmis-
sion, via selection of the genetically closest host, but our
simulations demonstrate that this approach may frequently
be misleading. The geometric-Poisson approximation offers
a less arbitrary method of quickly assessing the likelihood of
direct transmission without requiring computationally inten-
sive Monte Carlo sampling strategies. It may additionally
provide an important component in the development of a full

Figure 5 Data and transmission route inference for the MRSA outbreak in the SCBU. (A) Patient episodes are shown as horizontal bars, with colored
circles representing positive and negative swab results. (B) The observed pairwise genetic distances between the 20 sequenced isolates collected from
the HCW. (C) Inferred transmission routes are shown, excluding the possibility of HCW–patient transmission. Red dashed lines indicate routes excluded
at the 5% level. All temporally consistent transmission routes are shown. Posterior probability is 100% unless stated. (D) Inferred transmission routes,
including the HCW as a potential source. The HCW is marked as a blue square.
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transmission network reconstruction methodology based on
genetic distance data.
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1.	
  Estimation	
  of	
  parameters	
  

While	
  the	
  Geometric-­‐Poisson	
  distribution	
  appears	
  to	
  approximate	
  the	
  distance	
  distribution	
  under	
  simulation	
  well,	
  this	
  

is	
  under	
  the	
  assumption	
  that	
  several	
  key	
  parameters	
  of	
  interest	
  are	
  known	
  –	
  namely,	
  the	
  mutation	
  rate,	
  the	
  

equilibrium	
  effective	
  population	
  size	
  within-­‐host,	
  and	
  the	
  bottleneck	
  size.	
  With	
  a	
  known	
  transmission	
  structure	
  (for	
  

instance,	
  within	
  a	
  household	
  (COWLING	
  et	
  al.	
  2010)),	
  it	
  is	
  possible	
  to	
  estimate	
  some	
  of	
  these	
  quantities.	
  We	
  simulated	
  

an	
  outbreak	
  and	
  assumed	
  that	
  a	
  set	
  of	
  25	
  transmission	
  pairs	
  was	
  observed.	
  Figure	
  S8	
  shows	
  the	
  likelihood	
  of	
  these	
  

data	
  under	
  a	
  range	
  of	
  values	
  for	
  mutation	
  rate	
  and	
  effective	
  population	
  size.	
  The	
  estimate	
  of	
  the	
  effective	
  population	
  

size	
  is	
  uncertain,	
  since	
  the	
  data	
  are	
  less	
  informative	
  of	
  this	
  parameter;	
  in	
  the	
  most	
  extreme	
  case,	
  where	
  coalescence	
  

occurs	
  immediately	
  prior	
  to	
  the	
  time	
  of	
  lineage	
  divergence,	
  the	
  likelihood	
  function	
  depends	
  only	
  on	
  the	
  mutation	
  

rate.	
  

	
  	
  

The	
  bottleneck	
  size	
  can	
  additionally	
  be	
  estimated.	
  Observation	
  of	
  multiple	
  genotypes	
  shortly	
  after	
  a	
  bottleneck	
  event	
  

suggests	
  that	
  the	
  bottleneck	
  must	
  be	
  large	
  enough	
  to	
  allow	
  diversity	
  through;	
  Figure	
  S9	
  shows	
  the	
  likelihood	
  of	
  

observing	
  different	
  numbers	
  of	
  SNPs	
  within	
  host	
  shortly	
  after	
  transmission,	
  for	
  a	
  range	
  of	
  potential	
  bottleneck	
  sizes.	
  

Again,	
  such	
  estimates	
  are	
  associated	
  with	
  very	
  high	
  levels	
  of	
  uncertainty,	
  particularly	
  for	
  large	
  bottleneck	
  sizes.	
  

However,	
  it	
  may	
  be	
  possible	
  to	
  test	
  the	
  hypothesis	
  that	
  the	
  bottleneck	
  size	
  is	
  strict,	
  an	
  assumption	
  frequently	
  made	
  in	
  

transmission	
  network	
  reconstruction	
  methods.	
  

	
  

2.	
  Simulated	
  outbreak	
  

Figure	
  S2	
  shows	
  a	
  simulated	
  SIR	
  outbreak	
  with	
  25	
  infected	
  individuals,	
  18	
  of	
  which	
  have	
  a	
  sampled	
  genotype.	
  We	
  

considered	
  the	
  relative	
  likelihood	
  of	
  observing	
  a	
  genetic	
  distance	
  between	
  two	
  hosts,	
  given	
  direct	
  transmission	
  has	
  

occurred	
  (Figure	
  S2,	
  bottom	
  left).	
  The	
  maximum	
  likelihood	
  estimate	
  of	
  transmission	
  source	
  was	
  correct	
  in	
  eight	
  out	
  of	
  

17	
  transmission	
  events.	
  In	
  comparison,	
  selecting	
  the	
  genetically	
  closest	
  isolate	
  as	
  the	
  source	
  was	
  correct	
  in	
  seven	
  

cases,	
  although	
  for	
  some	
  of	
  these,	
  multiple	
  hosts	
  were	
  equally	
  close.	
  	
  

For	
  any	
  given	
  infected	
  host,	
  a	
  genetic	
  distance	
  threshold	
  may	
  be	
  specified,	
  which	
  may	
  be	
  used	
  to	
  rule	
  out	
  direct	
  

transmission	
  to	
  a	
  given	
  probability	
  level.	
  Consider	
  the	
  individual	
  labelled	
  ‘N’	
  in	
  figure	
  S2,	
  with	
  a	
  sample	
  at	
  time	
  1000.	
  

Under	
  the	
  geometric-­‐Poisson	
  approximation	
  with	
  strict	
  bottleneck,	
  the	
  probability	
  of	
  drawing	
  a	
  sample	
  differing	
  by	
  4	
  

SNPs	
  or	
  greater	
  at	
  time	
  1000	
  from	
  the	
  true	
  host	
  is	
  less	
  than	
  5%.	
  As	
  such,	
  six	
  of	
  the	
  eleven	
  previously	
  infected	
  

individuals	
  can	
  be	
  ruled	
  out	
  as	
  transmission	
  sources	
  at	
  this	
  level.	
  As	
  the	
  time	
  between	
  samples	
  and/or	
  the	
  bottleneck	
  

size	
  increase,	
  this	
  threshold	
  also	
  increases.	
  	
  

	
  

3.	
  Comparison	
  with	
  transmission	
  network	
  estimation	
  software	
  packages.	
  

‘Outbreaker’	
  is	
  an	
  R	
  package	
  for	
  the	
  investigation	
  of	
  individual-­‐level	
  transmission	
  dynamics	
  using	
  genomic	
  data	
  

(JOMBART	
  et	
  al.	
  2014),	
  while	
  ‘seqTrack’	
  is	
  an	
  earlier	
  and	
  simpler	
  method,	
  implemented	
  in	
  the	
  ‘adegenet’	
  package	
  

(JOMBART	
  et	
  al.	
  2011).	
  These	
  software	
  packages	
  are	
  arguably	
  the	
  most	
  accessible	
  tools	
  for	
  estimating	
  a	
  transmission	
  

network	
  available	
  at	
  present,	
  and	
  as	
  such,	
  we	
  wanted	
  to	
  compare	
  their	
  performance	
  against	
  our	
  method.	
  Given	
  a	
  

user-­‐specified	
  infectivity	
  distribution	
  and	
  one	
  genomic	
  sample	
  per	
  infected	
  host,	
  outbreaker	
  implements	
  an	
  MCMC	
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algorithm	
  which	
  estimates	
  the	
  posterior	
  edge	
  probabilities	
  of	
  the	
  network,	
  along	
  with	
  several	
  parameters	
  of	
  interest,	
  

including	
  the	
  mutation	
  rate.	
  Unlike	
  our	
  model,	
  this	
  approach	
  therefore	
  does	
  not	
  require	
  infection	
  times	
  and	
  mutation	
  

rate	
  to	
  be	
  known	
  (and	
  can	
  also	
  be	
  used	
  to	
  detect	
  importations	
  into	
  a	
  population),	
  however,	
  it	
  operates	
  on	
  a	
  less	
  

sophisticated	
  model	
  of	
  within-­‐host	
  dynamics	
  –	
  mutations	
  are	
  assumed	
  to	
  be	
  a	
  feature	
  of	
  transmission,	
  and	
  an	
  

infected	
  host	
  is	
  adequately	
  represented	
  by	
  a	
  single	
  sequenced	
  pathogen	
  isolate.	
  seqTrack	
  identifies	
  the	
  genetically	
  

closest	
  pathogen	
  sample	
  as	
  the	
  source,	
  using	
  the	
  specified	
  mutation	
  rate	
  to	
  break	
  ties.	
  This	
  approach	
  also	
  assumes	
  

that	
  each	
  host	
  is	
  represented	
  by	
  one	
  genomic	
  sample.	
  

We	
  simulated	
  outbreaks	
  under	
  various	
  assumptions,	
  and	
  attempted	
  to	
  identify	
  the	
  transmission	
  network	
  using	
  our	
  

likelihood	
  approach,	
  as	
  well	
  as	
  the	
  outbreaker	
  and	
  seqTrack	
  functions.	
  While	
  the	
  outbreaker	
  package	
  can	
  also	
  be	
  used	
  

to	
  simulate	
  outbreaks,	
  this	
  is	
  performed	
  under	
  the	
  assumptions	
  mentioned	
  previously,	
  so	
  we	
  instead	
  simulated	
  the	
  

within-­‐host	
  pathogen	
  dynamics	
  explicitly,	
  as	
  described	
  in	
  Methods.	
  We	
  used	
  the	
  number	
  of	
  transmission	
  routes	
  to	
  

compare	
  the	
  two	
  methods.	
  We	
  ran	
  outbreaker	
  with	
  no	
  spatial	
  model,	
  and	
  detection	
  of	
  importations	
  suppressed.	
  

Furthermore,	
  we	
  assumed	
  a	
  flat	
  infectivity	
  distribution.	
  We	
  emphasize	
  that	
  these	
  approaches	
  are	
  not	
  directly	
  

comparable,	
  since	
  outbreaker	
  and	
  seqTrack	
  accommodate	
  unknown	
  infection	
  times,	
  and	
  outbreaker	
  furthermore	
  

estimates	
  the	
  mutation	
  rate,	
  giving	
  our	
  approach	
  an	
  advantage	
  in	
  this	
  comparison.	
  Results	
  are	
  presented	
  in	
  Table	
  S2.	
  

	
  

4.	
  MRSA	
  outbreak	
  analysis	
  

While	
  the	
  analysis	
  provided	
  in	
  the	
  main	
  text	
  provides	
  estimates	
  of	
  transmission	
  routes	
  under	
  plausible	
  parameter	
  

values	
  found	
  in	
  the	
  literature,	
  there	
  is	
  a	
  great	
  deal	
  of	
  uncertainty	
  surrounding	
  true	
  within-­‐host	
  pathogen	
  population	
  

dynamics,	
  and	
  as	
  such,	
  we	
  repeated	
  the	
  analysis	
  under	
  a	
  range	
  of	
  assumptions.	
  The	
  mutation	
  rate	
  used	
  in	
  the	
  main	
  

analysis	
  was	
  given	
  in	
  the	
  paper	
  describing	
  this	
  dataset;	
  the	
  mutation	
  rate	
  of	
  MRSA	
  has	
  previously	
  been	
  estimated	
  to	
  

be	
  higher	
  ( 3×10−6 	
  per	
  nucleotide	
  per	
  year,	
  equivalent	
  to	
  5 ×10−4 	
  per	
  genome	
  per	
  generation	
  (HARRIS	
  et	
  al.	
  

2010;	
  YOUNG	
  et	
  al.	
  2012)),	
  so	
  we	
  repeated	
  the	
  analysis	
  with	
  this	
  value.	
  With	
  this	
  higher	
  mutation	
  rate,	
  a	
  larger	
  range	
  

of	
  genetic	
  distances	
  are	
  plausible,	
  and	
  as	
  such,	
  fewer	
  routes	
  were	
  excluded	
  at	
  the	
  5%	
  level.	
  The	
  HCW	
  was	
  a	
  plausible	
  

source	
  for	
  most	
  patients	
  on	
  the	
  ward,	
  however,	
  the	
  genetic	
  distance	
  from	
  patients	
  1	
  and	
  5	
  to	
  the	
  HCW	
  were	
  more	
  

similar	
  than	
  would	
  be	
  expected,	
  given	
  this	
  infection	
  route.	
  No	
  patient	
  to	
  HCW	
  transmission	
  route	
  could	
  be	
  excluded	
  

at	
  the	
  5%	
  level.	
  

	
  

Changing	
  the	
  effective	
  population	
  size	
  had	
  a	
  limited	
  effect	
  on	
  the	
  estimated	
  transmission	
  route	
  estimates.	
  Values	
  of	
  

2000	
  and	
  higher	
  produced	
  near	
  identical	
  posterior	
  probabilities.	
  Previous	
  studies	
  have	
  estimated	
  nasal	
  carriage	
  of	
  S.	
  

aureus	
  to	
  have	
  an	
  effective	
  population	
  size	
  in	
  the	
  range	
  of	
  50-­‐4000	
  (YOUNG	
  et	
  al.	
  2012;	
  GOLUBCHIK	
  et	
  al.	
  2013).	
  We	
  

experimented	
  with	
  an	
  effective	
  population	
  size	
  of	
  100,	
  finding	
  that	
  five	
  patient-­‐HCW	
  routes,	
  and	
  seven	
  HCW-­‐patient	
  

routes	
  could	
  be	
  excluded	
  at	
  the	
  5%	
  level.	
  

	
  

Varying	
  the	
  time	
  at	
  which	
  the	
  HCW	
  became	
  infected	
  had	
  an	
  impact	
  on	
  posterior	
  transmission	
  probabilities.	
  Moving	
  

this	
  value	
  forward	
  in	
  time	
  decreases	
  the	
  number	
  of	
  SNPs	
  expected	
  to	
  accumulate	
  by	
  the	
  time	
  of	
  observation.	
  If	
  the	
  

HCW	
  infection	
  time	
  was	
  164	
  days	
  after	
  the	
  first	
  case,	
  the	
  upper	
  bound	
  of	
  the	
  range	
  provided	
  by	
  (HARRIS	
  et	
  al.	
  2013),	
  

five	
  patients	
  remain	
  temporally	
  consistent	
  with	
  having	
  become	
  infected	
  by	
  the	
  HCW.	
  Two	
  of	
  these	
  transmission	
  

routes	
  can	
  be	
  excluded	
  at	
  the	
  5%	
  level.	
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We	
  repeated	
  our	
  analysis	
  using	
  the	
  pure	
  Poisson	
  model.	
  In	
  general,	
  this	
  distribution	
  has	
  a	
  shorter	
  right	
  tail	
  than	
  the	
  

geometric-­‐Poisson	
  distribution,	
  and	
  as	
  such,	
  can	
  lead	
  to	
  more	
  transmission	
  routes	
  being	
  rejected	
  at	
  a	
  given	
  

probability	
  level.	
  With	
  the	
  same	
  assumptions	
  as	
  in	
  the	
  main	
  text,	
  the	
  HCW-­‐patient	
  routes	
  were	
  typically	
  given	
  a	
  

higher	
  posterior	
  probability	
  under	
  the	
  Poisson	
  distribution,	
  however,	
  the	
  most	
  likely	
  source	
  of	
  infection	
  remained	
  the	
  

same	
  for	
  all	
  individuals	
  (Figure	
  S5).	
  	
  

	
  

	
  

	
  

5.	
  Conditional	
  distributions	
  

	
  

We	
  define	
  a	
  phylogenetic	
  subtree	
  to	
  be	
  the	
  unique	
  set	
  of	
  branch	
  segments	
  linking	
  two	
  isolates,	
  originating	
  at	
  the	
  time	
  

of	
  their	
  coalescence.	
  Then	
  the	
  genetic	
  distance	
  ψ (g1,g2 ) 	
  is	
  dependent	
  on	
  another	
  distance	
  ψ (g3,g4 ) 	
  by	
  the	
  
intersection	
  of	
  the	
  two	
  phylogenetic	
  subtrees.	
  The	
  conditional	
  distribution	
  of	
  one	
  genetic	
  distance	
  given	
  another	
  is	
  

	
  

ψ (g1,g2 ) |ψ (g3,g4 ) ~ Bin ψ (g3,g4 ), length of intersection
length of subtree(g3,g4 )

⎛
⎝⎜

⎞
⎠⎟

                                         + Pois{µ((length of subtree(g1,g2 ))− (length of intersection))}
	
  

(8)	
  

Figure	
  S7	
  shows	
  two	
  possible	
  configurations	
  of	
  the	
  phylogenetic	
  and	
  transmission	
  tree	
  with	
  three	
  infected	
  cases.	
  In	
  

both	
  settings,	
  ψ (g2,g3) 	
  depends	
  on	
  ψ (g1,g2 ) 	
  via	
  the	
  mutations	
  occurring	
  along	
  branch	
  b3 .	
  If	
  the	
  sequences	
  at	
  
the	
  internal	
  nodes	
  are	
  known,	
  or	
  can	
  be	
  inferred,	
  this	
  estimation	
  is	
  unnecessary,	
  as	
  the	
  true	
  number	
  of	
  mutations	
  

along	
  any	
  given	
  branch	
  segment	
  can	
  be	
  calculated.	
  However,	
  since	
  the	
  genealogy	
  is	
  not	
  typically	
  observed,	
  and	
  does	
  

not	
  necessarily	
  correspond	
  to	
  the	
  transmission	
  network,	
  even	
  under	
  a	
  strict	
  bottleneck	
  (PYBUS	
  and	
  RAMBAUT	
  2009;	
  

YPMA	
  et	
  al.	
  2013),	
  such	
  an	
  approximation	
  may	
  be	
  useful	
  for	
  inference	
  of	
  the	
  full	
  network,	
  and	
  to	
  account	
  for	
  multiple	
  

samples	
  per	
  host.	
  

	
  

Transmission	
  chains	
  of	
  length	
  3	
  were	
  simulated	
  to	
  investigate	
  conditional	
  distributions	
  of	
  genetic	
  distances.	
  Times	
  

from	
  infection	
  to	
  sampling	
  and	
  onward	
  transmission	
  were	
  identical	
  for	
  all	
  cases.	
  With	
  a	
  strict	
  bottleneck,	
  ψ (g2,g3) 	
  

varies	
  only	
  minimally	
  with	
  ψ (g1,g2 ) ,	
  but	
  ψ (g1,g3) 	
  shows	
  a	
  clear	
  dependency.	
  Both	
  distances	
  increase	
  with	
  

greater	
  values	
  of	
  ψ (g1,g2 ) 	
  under	
  larger	
  bottlenecks	
  (Figure	
  S6).	
  With	
  a	
  strict	
  bottleneck,	
  the	
  scenario	
  in	
  Figure	
  S7B	
  

is	
  impossible,	
  and	
  as	
  such,	
  the	
  intersection	
  of	
  subtrees	
   (g1,g2 ) 	
  and	
   (g2,g3) 	
  is	
  relatively	
  small.	
  With	
  an	
  increasing	
  

bottleneck	
  size,	
  the	
  probability	
  of	
  scenario	
  B,	
  and	
  therefore	
  the	
  potential	
  length	
  of	
  subtree	
  overlap,	
  increases.	
  

	
  

	
  

	
  

	
  



C.	
  J.	
  Worby	
  et	
  al.	
   5SI	
  

	
  

	
  

References	
  

COWLING,	
  B.	
  J.,	
  K.	
  H.	
  CHAN,	
  V.	
  J.	
  FANG,	
  L.	
  L.	
  H.	
  LAU,	
  H.	
  C.	
  SO	
  et	
  al.,	
  2010	
  Comparative	
  

Epidemiology	
  of	
  Pandemic	
  and	
  Seasonal	
  Influenza	
  A	
  in	
  Households.	
  New	
  

England	
  Journal	
  of	
  Medicine	
  362:	
  2175-­‐2184.	
  

GOLUBCHIK,	
  T.,	
  E.	
  M.	
  BATTY,	
  R.	
  R.	
  MILLER,	
  H.	
  FARR,	
  B.	
  C.	
  YOUNG	
  et	
  al.,	
  2013	
  Within-­‐Host	
  

Evolution	
  of	
  Staphylococcus	
  aureus	
  during	
  Asymptomatic	
  Carriage.	
  PLoS	
  One	
  

8:	
  e61319.	
  

HARRIS,	
  S.	
  R.,	
  E.	
  J.	
  P.	
  CARTWRIGHT,	
  M.	
  E.	
  TÖRÖK,	
  M.	
  T.	
  G.	
  HOLDEN,	
  N.	
  M.	
  BROWN	
  et	
  al.,	
  2013	
  

Whole-­‐genome	
  sequencing	
  for	
  analysis	
  of	
  an	
  outbreak	
  of	
  meticillin-­‐resistant	
  

Staphylococcus	
  aureus:	
  a	
  descriptive	
  study.	
  Lancet	
  Infectious	
  Diseases	
  13:	
  

130-­‐136.	
  

HARRIS,	
  S.	
  R.,	
  E.	
  J.	
  FEIL,	
  M.	
  T.	
  G.	
  HOLDEN,	
  M.	
  A.	
  QUAIL,	
  E.	
  K.	
  NICKERSON	
  et	
  al.,	
  2010	
  

Evolution	
  of	
  MRSA	
  during	
  hospital	
  transmission	
  and	
  intercontinental	
  spread.	
  

Science	
  327:	
  469-­‐474.	
  

JOMBART,	
  T.,	
  A.	
  CORI,	
  X.	
  DIDELOT,	
  S.	
  CAUCHEMEZ,	
  C.	
  FRASER	
  et	
  al.,	
  2014	
  Bayesian	
  

Reconstruction	
  of	
  Disease	
  Outbreaks	
  by	
  Combining	
  Epidemiologic	
  and	
  

Genomic	
  Data.	
  PLoS	
  Computational	
  Biology	
  10:	
  e1003457.	
  

JOMBART,	
  T.,	
  R.	
  M.	
  EGGO,	
  P.	
  J.	
  DODD	
  and	
  F.	
  BALLOUX,	
  2011	
  Reconstructing	
  disease	
  

outbreaks	
  from	
  genetic	
  data:	
  a	
  graph	
  approach.	
  Heredity	
  106:	
  383-­‐390.	
  

PYBUS,	
  O.	
  G.,	
  and	
  A.	
  RAMBAUT,	
  2009	
  Evolutionary	
  analysis	
  of	
  the	
  dynamics	
  of	
  viral	
  

infectious	
  disease.	
  Nature	
  Reviews	
  Genetics	
  10:	
  540-­‐550.	
  

YOUNG,	
  B.	
  C.,	
  T.	
  GOLUBCHIK,	
  E.	
  M.	
  BATTY,	
  R.	
  FUNG,	
  H.	
  LARNER-­‐SVENSSON	
  et	
  al.,	
  2012	
  

Evolutionary	
  dynamics	
  of	
  Staphylococcus	
  aureus	
  during	
  progression	
  from	
  

carriage	
  to	
  disease.	
  PNAS	
  109:	
  4550-­‐4555.	
  

YPMA,	
  R.	
  J.	
  F.,	
  W.	
  M.	
  VAN	
  BALLEGOOIJEN	
  and	
  J.	
  WALLINGA,	
  2013	
  Relating	
  phylogenetic	
  

trees	
  to	
  transmission	
  trees	
  of	
  infectious	
  disease	
  outbreaks.	
  Genetics	
  195:	
  

1055-­‐1062.	
  

	
  
	
  



C.	
  J.	
  Worby	
  et	
  al.	
  6SI	
  

SI	
  Figures	
  

1
ï���

���

���

ï���

���

���

2
ï���

���

���

ï���

���

���

3
ï���

���

���

ï���

���

���

�
ï���

���

���

ï���

���

���

5
ï���

���

���

ï���

���

���

6
ï���

���

���

ï���

���

���

7
ï���

���

���

ï���

���

���

8
ï���

���

���

ï���

���

���

9
ï���

���

���

1 5 ��
ï���

���

���

1 5 �� 1 5 �� 1 5 �� 1 5 �� 1 5 �� 1 5 �� 1 5 �� 1 5 ��

��
Bottleneck size

U
nd

er
es

tim
at

e�
�1
 �
��
�

U
nd

er
es

tim
at

e�
�1
 �
��
��

25 25 25 2525 25 25 2525

1 5 �� 1 5 �� 1 5 �� 1 5 �� 1 5 �� 1 5 �� 1 5 �� 1 5 �� 1 5 ��25 25 25 2525 25 25 2525

 
Figure S1. Differences between empirical and estimated pairwise genetic distances using the 

Geometric-Poisson approximation. The (i, j) th plot shows the difference between the empirical 

and simulated mean distance between samples taken from individuals i  and j . Each plot shows 

the underestimate for various levels of bottleneck size and mutation rate (light, medium and dark 

points denote 1x10-4, 3x10-4, and 5x10-4 respectively). Plots above the diagonal show 

underestimates for equilibrium population size 10000, while below the diagonal, Neq=1000. 

 



C.	
  J.	
  Worby	
  et	
  al.	
   7SI	
  

0 500 1000 1500

Time

A

B

C

D

E

F

G

H

J

K

L

M

N

P

Q

R

S

T

U

V

W

X

Y

Z

Likelihood

Source

R
e
c
ip

ie
n

t

A

B

C

D

E

G

H

J

K

L

M

N

P

R

S

V

W

Y

B C D E G H J K L M N P R S V W YA

Genetic distance

Source

R
e

c
ip

ie
n

t
7

8 3

8 7 8

5 4 5 3

6 5 6 4 1

5 4 5 3 0 1

7 2 3 7 4 5 4

6 1 2 6 3 4 3 1

7 6 7 5 2 3 2 6 5

7 6 7 5 2 3 2 6 5 0

7 6 7 5 2 3 2 6 5 0 0

7 2 3 7 4 5 4 2 1 6 6 6

6 5 6 4 1 2 1 5 4 3 3 3 5

6 1 2 6 3 4 3 1 0 5 5 5 1 4

7 6 7 3 2 3 2 6 5 4 4 4 6 3 5

7 2 3 7 4 5 4 2 1 6 6 6 2 5 1 6

6 1 2 6 3 4 3 1 0 5 5 5 1 4 0 5 1

A

B

C

D

E

G

H

J

K

L

M

N

P

R

S

V

W

Y

B C D E G H J K L M N P R S V W YA

Genetic Distance (No. SNPs)

0 1 2 3 4 5 6 7 8 9

 
Figure S2. A simulated outbreak. 24 individuals are infected in a simulated SIR outbreak, of 

which 18 have sampled genotypes. Each individual has an infectious period shown as a gray bar, 

with genotypes shown as colored circles, the color denoting the genetic distance from the first 

sample (top). One randomly sampled genome for each individual is used to assess the likelihood 

of direct transmission from each other sampled individual. The pairwise genetic distances are 

shown (bottom right), with black boxes denoting the true source of infection, and gray boxes 

denoting presence at the time of infection. The relative likelihood of direct transmission using the 

geometric-Poisson approximation is shown for each pair (bottom left, green and red indicating 

high and low relative likelihood respectively). Crosses indicate the maximum likelihood estimate, 

while circles indicate the genetically closest isolate to each sample.  
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Figure S3. The empirical probability that a proposed transmission route correct for a range of 

posterior probabilities calculated under the geometric-Poisson assumption. A total of 100 

outbreaks were simulated with a bottleneck size of 5; transmission events prior to the host were 

assumed to occur at intervals equal to the mean generation interval. The posterior probability of 

direct transmission was calculated for every pair of infected individuals. Counts were collated into 

10% probability bins and for each, the proportion of true transmission routes calculated. Error 

bars depict the 95% exact binomial confidence interval. 
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Figure S4. Transmission network in the SCBU, using each HCW isolate individually. HCW is 

shown as a blue square, potential transmission routes are shown as arrows. Red dashed arrows 

denote transmission routes rejected at the 5% level using the geometric-Poisson approximation. 

For each of the 20 HCW isolates, posterior transmission probabilities were calculated individually, 

and the mean and range of values are indicated on the plot. 
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Figure S5. Transmission network in the SCBU, using the pure Poisson approximation. HCW is 

shown as a blue square, potential transmission routes are shown as arrows. Red dashed arrows 

denote transmission routes rejected at the 5% level using the Poisson approximation. 
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Figure S6. Simulated conditional distributions of genetic distances arising from a transmission 

chain of length 3. Each row shows plots for ψ (g1,g3)  and ψ (g2,g3)  given various levels of 

ψ (g1,g2 )  (denoted by different colors). Bottleneck size varies by row. Equilibrium size was set to 

10000, and mutation rate µ = 3×10−4 . 
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Figure S7. Two possible phylogenetic configurations in a transmission chain of length 3. (A) 

Lineages g2  and g3  coalesce within host 2. (B) Lineages g2  and g3  coalesce within host 1, 

prior to the coalescence of g1  and g2 . This configuration is possible only with a bottleneck of 

size > 1. 
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Figure S8. Likelihood of observing 28 pairwise genetic distances between known transmission 

pairs, given a range of values for the mutation rate and the effective population size. The dashed 

lines indicate parameter values under which the data were simulated, and the geometric-Poisson 

maximum likelihood value is marked. Maximum likelihood value calculated using the Nelder-Mead 

method in the ‘optim’ function in R. 
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Figure S9. Likelihood curves for various within-host genetic distance observations, given a range 

of transmission bottleneck sizes. The effective population size and mutation rate are assumed to 

be known. The likelihood is calculated assuming samples are taken 50 generations after a 

transmission event; the maximum likelihood estimate of bottleneck size for each genetic distance 

is marked as a filled circle. 
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Table	
  S1.	
  The	
  differences	
  between	
  approximated	
  and	
  empirical	
  distributions	
  for	
  within-­‐host	
  genetic	
  distances.	
  For	
  a	
  

range	
  of	
  µNeq 	
  and	
  times	
  since	
  clonal	
  infection,	
  Akaike’s	
  Information	
  Criterion	
  (AIC)	
  is	
  given	
  for	
  both	
  the	
  geometric-­‐

Poisson	
  (GP)	
  and	
  the	
  Poisson	
  (P)	
  approximation.	
  250	
  simulated	
  pathogen	
  populations	
  were	
  generated,	
  and	
  for	
  each,	
  

1000	
  pairwise	
  distances	
  were	
  recorded	
  at	
  each	
  of	
  the	
  sample	
  times.	
  Cells	
  are	
  shaded	
  according	
  to	
  the	
  lower	
  AIC	
  value	
  

–	
  red	
  for	
  Poisson,	
  green	
  for	
  geometric-­‐Poisson.	
  The	
  mutation	
  rate	
  was	
  0.001	
  per	
  genome	
  per	
  generation.	
  

	
   Effective	
  population	
  size,	
  Neq 	
  

500	
   1000	
   2500	
   5000	
   7500	
   10000	
  

Ti
m
e	
  
sin

ce
	
  c
lo
na

l	
  i
nf
ec
tio

n	
  

50	
   GP:	
  75341	
  

P:	
  	
  	
  	
  75216	
  

GP:	
  80764	
  

P:	
  	
  	
  	
  80334	
  

GP:	
  80729	
  

P:	
  	
  	
  	
  80462	
  

GP:	
  80734	
  

P:	
  	
  	
  	
  80431	
  

GP:	
  78318	
  

P:	
  	
  	
  	
  78008	
  

GP:	
  84445	
  

P:	
  	
  	
  	
  84162	
  

100	
   GP:	
  115043	
  

P:	
  	
  	
  	
  114067	
  

GP:	
  128371	
  

P:	
  	
  	
  	
  126955	
  

GP:	
  131869	
  

P:	
  	
  	
  	
  130751	
  

GP:	
  133561	
  

P:	
  	
  	
  	
  132260	
  

GP:	
  129586	
  

P:	
  	
  	
  	
  128358	
  

GP:	
  133905	
  

P:	
  	
  	
  	
  132656	
  

500	
   GP:	
  258951	
  

P:	
  	
  	
  	
  257189	
  

GP:	
  297052	
  

P:	
  	
  	
  	
  291320	
  

GP:	
  323116	
  

P:	
  	
  	
  	
  310162	
  

GP:	
  343677	
  

P:	
  	
  	
  	
  324330	
  

GP:	
  336449	
  

P:	
  	
  	
  	
  319142	
  

GP:	
  340266	
  

P:	
  	
  	
  	
  322343	
  

1000	
   GP:	
  324557	
  

P:	
  	
  	
  	
  336776	
  

GP:	
  384288	
  

P:	
  	
  	
  	
  386824	
  

GP:	
  442356	
  

P:	
  	
  	
  	
  421016	
  

GP:	
  455690	
  

P:	
  	
  	
  	
  421886	
  

GP:	
  459908	
  

P:	
  	
  	
  	
  422279	
  

GP:	
  464791	
  

P:	
  	
  	
  	
  424528	
  

2500	
   GP:	
  340205	
  

P:	
  	
  	
  	
  360382	
  

GP:	
  455889	
  

P:	
  	
  	
  	
  499865	
  

GP:	
  559643	
  

P:	
  	
  	
  	
  591170	
  

GP:	
  616431	
  

P:	
  	
  	
  	
  602032	
  

GP:	
  640539	
  

P:	
  	
  	
  	
  601454	
  

GP:	
  648459	
  

P:	
  	
  	
  	
  583515	
  

5000	
   GP:	
  355353	
  

P:	
  	
  	
  	
  384607	
  

GP:	
  470566	
  

P:	
  	
  	
  	
  555942	
  

GP:	
  629747	
  

P:	
  	
  	
  	
  772276	
  

GP:	
  730920	
  

P:	
  	
  	
  	
  844597	
  

GP:	
  758704	
  

P:	
  	
  	
  	
  821443	
  

GP:	
  781885	
  

P:	
  	
  	
  	
  804054	
  

7500	
   GP:	
  351289	
  

P:	
  	
  	
  	
  384044	
  

GP:	
  489139	
  

P:	
  	
  	
  	
  599342	
  

GP:	
  656489	
  

P:	
  	
  	
  	
  870263	
  

GP:	
  755024	
  

P:	
  	
  	
  	
  994202	
  

GP:	
  785749	
  

P:	
  	
  	
  	
  986565	
  

GP:	
  801616	
  

P:	
  	
  	
  	
  947202	
  

10000	
   GP:	
  349955	
  

P:	
  	
  	
  	
  380901	
  

GP:	
  477976	
  

P:	
  	
  	
  	
  567623	
  

GP:	
  655821	
  

P:	
  	
  	
  	
  898879	
  

GP:	
  708001	
  

P:	
  	
  	
  	
  1001501	
  

GP:	
  708912	
  

P:	
  	
  	
  	
  984256	
  

GP:	
  692577	
  

P:	
  	
  	
  	
  942683	
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Table	
  S2.	
  Proportion	
  of	
  true	
  transmission	
  routes	
  identified	
  by	
  both	
  maximum	
  likelihood	
  (ML)	
  and	
  genetic	
  similarity.	
  

SIR	
  outbreaks	
  with	
  30	
  initial	
  susceptibles	
  were	
  simulated	
  and	
  a	
  single	
  genome	
  sample	
  was	
  generated	
  for	
  each	
  

infective.	
  For	
  scenarios	
  with	
  bottleneck	
  size	
  >1,	
  it	
  was	
  assumed	
  that	
  transmission	
  events	
  prior	
  to	
  the	
  infection	
  of	
  the	
  

source	
  occurred	
  at	
  intervals	
  equal	
  to	
  the	
  mean	
  generation	
  interval.	
  Simulations	
  with	
  a	
  final	
  size	
  <20	
  were	
  discarded.	
  

For	
  each	
  infective,	
  the	
  maximum	
  likelihood	
  source	
  was	
  calculated	
  under	
  the	
  geometric-­‐Poisson	
  approximation,	
  and	
  

the	
  genetically	
  closest	
  hosts	
  selected.	
  Simulations	
  for	
  each	
  scenario	
  were	
  repeated	
  100	
  times.	
  Baseline	
  parameters:	
  

infection	
  rate	
  0.002,	
  removal	
  rate	
  0.001,	
  effective	
  population	
  size	
  5000.	
  

	
  

Mutation	
  rate	
  (×10−4 )	
   1	
   3	
   5	
  

Bottleneck	
  size	
   1	
   5	
   25	
   1	
   5	
   25	
   1	
   5	
   25	
  

Prop.	
  routes	
  identified	
  by	
  ML	
   0.27	
   0.21	
   0.21	
   0.32	
   0.23	
   0.22	
   0.33	
   0.24	
   0.21	
  

Prop.	
  routes	
  identified	
  by	
  

genetic	
  similarity	
  
0.19	
   0.17	
   0.15	
   0.27	
   0.20	
   0.18	
   0.29	
   0.22	
   0.19	
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Table	
  S3.	
  Proportion	
  of	
  correct	
  transmission	
  routes	
  identified	
  using	
  the	
  geometric	
  Poisson	
  likelihood,	
  as	
  well	
  as	
  with	
  

the	
  ‘outbreaker’	
  and	
  ‘seqTrack’	
  functions.	
  A	
  total	
  of	
  25	
  outbreaks	
  with	
  30	
  susceptible	
  individuals	
  were	
  simulated	
  for	
  

each	
  scenario,	
  with	
  outbreaks	
  terminating	
  with	
  fewer	
  than	
  20	
  infections	
  excluded.	
  R0	
  was	
  set	
  to	
  be	
  2,	
  with	
  a	
  within-­‐

population	
  size	
  5000.	
  In	
  outbreaker,	
  no	
  spatial	
  model	
  was	
  defined,	
  importation	
  identification	
  was	
  suppressed,	
  and	
  

the	
  infectivity	
  distribution	
  was	
  specified	
  to	
  be	
  uniform.	
  In	
  seqTrack,	
  the	
  mutation	
  rate	
  was	
  provided.	
  
a	
  If	
  the	
  true	
  source	
  and	
  other	
  hosts	
  are	
  genetically	
  equidistant,	
  the	
  true	
  host	
  is	
  assumed	
  to	
  be	
  identified	
  

with	
  probability	
  1/(#	
  equidistant	
  closest	
  hosts).	
  

	
  

Parameters	
   Network	
  identification	
  method	
  

Mutation	
  rate	
   Inoculum	
  size	
   ML	
  estimate	
   outbreaker	
   seqTrack	
   Closest	
  genotypea	
  

0.002	
   1	
   0.28	
   0.20	
   0.14	
   0.21	
  

0.002	
   5	
   0.26	
   0.19	
   0.13	
   0.17	
  

0.002	
   10	
   0.24	
   0.19	
   0.14	
   0.16	
  

0.005	
   1	
   0.28	
   0.20	
   0.13	
   0.22	
  

0.005	
   5	
   0.22	
   0.18	
   0.12	
   0.18	
  

0.005	
   10	
   0.21	
   0.21	
   0.13	
   0.17	
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Table	
  S4.	
  Proportion	
  of	
  observed	
  within-­‐host	
  pairwise	
  distances	
  rejected	
  at	
  the	
  5%	
  level,	
  under	
  the	
  assumption	
  that	
  

HCW	
  infection	
  occurred	
  2	
  days	
  after	
  the	
  infection	
  time	
  of	
  the	
  patient.	
  Proportions	
  were	
  calculated	
  under	
  both	
  the	
  

geometric-­‐Poisson	
  and	
  the	
  pure	
  Poisson	
  approximations.	
  

	
  

Source	
  of	
  HCW	
  

infection	
  

Proportion	
  of	
  within-­‐host	
  pairwise	
  distances	
  

rejected	
  at	
  5%	
  level	
  

Geometric-­‐Poisson	
   Poisson	
  

Patients	
  1-­‐6	
   0.16	
   0.48	
  

Patients	
  7-­‐14	
   0.25	
   0.48	
  

Patients	
  15	
   0.35	
   0.48	
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Table	
  S5.	
  Transmission	
  routes	
  excluded	
  at	
  the	
  5%	
  level	
  under	
  a	
  range	
  of	
  scenarios.	
  

Mutation	
  

rate	
  

Eff.	
  Pop.	
  

Size	
  

HCW	
  infection	
  

time	
  (relative	
  to	
  

first	
  case)	
  

HCW	
  ruled	
  out	
  as	
  

patient	
  source	
  

Patients	
  ruled	
  out	
  

as	
  HCW	
  source	
  

0.0002	
   3000	
   -­‐23	
   NA	
   8,9,10,13,14	
  

0.0005	
   3000	
   -­‐23	
   NA	
   NA	
  

0.0002	
   10000	
   -­‐23	
   NA	
   8,9,10,13,14	
  

0.0002	
   100	
   -­‐23	
   NA	
   8,9,10,13,14	
  

0.0002	
   3000	
   164	
   1-­‐10,13,14	
   –	
  	
  

0.0002	
   3000	
   -­‐251	
   NA	
   –	
  

	
  

	
  

	
  

	
  

	
  

	
  

	
  


