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ABSTRACT Whole-genome sequencing of pathogens has recently been used to investigate disease outbreaks and is likely to play
a growing role in real-time epidemiological studies. Methods to analyze high-resolution genomic data in this context are still lacking,
and inferring transmission dynamics from such data typically requires many assumptions. While recent studies have proposed methods
to infer who infected whom based on genetic distance between isolates from different individuals, the link between epidemiological
relationship and genetic distance is still not well understood. In this study, we investigated the distribution of pairwise genetic distances
between samples taken from infected hosts during an outbreak. We proposed an analytically tractable approximation to this
distribution, which provides a framework to evaluate the likelihood of particular transmission routes. Our method accounts for the
transmission of a genetically diverse inoculum, a possibility overlooked in most analyses. We demonstrated that our approximation can
provide a robust estimation of the posterior probability of transmission routes in an outbreak and may be used to rule out transmission
events at a particular probability threshold. We applied our method to data collected during an outbreak of methicillin-resistant
Staphylococcus aureus, ruling out several potential transmission links. Our study sheds light on the accumulation of mutations in
a pathogen during an epidemic and provides tools to investigate transmission dynamics, avoiding the intensive computation necessary
in many existing methods.

PATHOGEN genomic data are rapidly becoming abundant,
and there is a demand for statistical methods to extract

meaningful conclusions from the wealth of information these
data provide. One of the most basic and frequently used—yet
imperfectly understood—comparative tools is the genetic dis-
tance between two samples [commonly defined as the number
of single-nucleotide polymorphisms (SNPs) between the iso-
lates]. In the context of epidemiological investigations, genetic
distance can be used as a discriminatory value to determine
whether infected individuals belong to the same outbreak or
cluster or to rule out potential transmission events.

Genetic distance is central to the inference of transmission
routes—intuitively, the greater the similarity is between sam-
ples taken from two different hosts, the more likely they are to

have been involved in a transmission event. While in some
cases it may suffice to identify the carrier of the genetically
closest pathogen isolate as the source of infection (Jombart
et al. 2011), this approach lacks any measure of uncertainty
and may result in a high false positive rate; it has been dem-
onstrated that estimation of a transmission network using ge-
netic distance data alone is associated with much uncertainty,
making the estimation of individual transmission routes impos-
sible (Worby et al. 2014). However, with a probabilistic inter-
pretation of genetic distances, given the relationship between
the hosts of pathogen samples, one can quantify the uncer-
tainty surrounding each potential transmission source and
establish general trends of transmission in the epidemic. Fur-
thermore, probabilistically weighted transmission routes may
also lead to improved estimates of heterogeneous transmission
rates from different subpopulations.

Many studies to date have developed methods to infer
routes of transmission based on genomic and epidemiolog-
ical data (Cottam et al. 2008; Jombart et al. 2011; Morelli
et al. 2012; Ypma et al. 2012, 2013; Didelot et al. 2014;
Jombart et al. 2014). Each method utilizes a likelihood com-
ponent that describes the probability that a set of mutations
occurs between two pathogen samples from different hosts,
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given their epidemiological relationship. These are often
based on strong assumptions (e.g., transmission bottleneck
size of 1 or mutation occurring only at the time of trans-
mission), and many are highly computationally intensive.

The distribution of pairwise genetic distances between
samples taken from epidemiologically linked carriers depends
on numerous factors, such as the mutation rate, the within-
host pathogen population dynamics, and the transmission
bottleneck size. It is of interest to understand how each of
these factors affects observed genetic distance.

In this study, we aimed to investigate the distribution of
pairwise genetic distances to better understand how di-
versity accumulates during a disease outbreak. In particular,
we developed an approximation to this distribution and in-
vestigated its use as a tool to assess the likelihood of transmission
routes. We used simulated data and real outbreak data, collected
during a hospital outbreak of methicillin-resistant Staphylococcus
aureus (MRSA), to demonstrate the ability of our method to rule
out several patient-to-patient transmission routes.

Methods

The distribution of genetic distance between two
samples taken during an outbreak

Consider a disease outbreak, consisting of n cases, where
case 1 is the origin, and cases 2; . . . ; n each have a source
of infection from within the population. Let tIj be the infec-
tion time of case j, and tI1 ¼ 0: Each case is observed, and we
initially assume that one pathogen specimen is taken for
sequencing at time tsj with genotype gj: Table 1 describes
notations used in this article.

We consider the unobserved transmission network,
which consists of infection routes and times. Let cj be the
vector of transmission ancestry for person j, such that the
first element is the transmission source of j, and each suc-
cessive element is the source of the preceding element. Since
the network is fully connected, the final element of this vector
for any given host will be the outbreak origin, and the vector
will have length equal to the number of hosts in the trans-
mission chain from the origin to j. Let sij ¼ ci \ cj be the
vector of ancestry common to both i and j, such that the first
element sð1Þij is the most recent common transmission source
of both i and j, and the last element is 1.

Now consider the genealogy of the sampled isolates. This
tree is not necessarily identical to, but must be consistent
with, the transmission tree (Ypma et al. 2013). The time of
coalescence for samples gi and gj; denoted mðgi; gjÞ; must oc-
cur prior to the divergence of the transmission tree branches to
which persons i and j belong and will belong within one of the
hosts in sij: The ancestries of the samples coexist in the same
host or chain of hosts for a period of time, before one lineage is
transmitted to another person and exists independently of the
other. Let dði; jÞ be the time of lineage divergence, the time at
which the lineages cease to exist within the same host (see
Figure 1).

Let cðgi; gjÞ denote the genetic distance between samples
gi and gj; measured by the number of SNPs. The mutations
could have arisen in two distinct periods—first, during the
time between observations tSi ; tSj and lineage divergence
dði; jÞ; and second, during the (earlier) time between lineage
divergence and coalescence mðgi; gjÞ: The number of SNPs
cðgi; gjÞ is then equal to the sum of two random variables,
cðgi; gjÞ ¼ X þ Y ; where X represents mutations occurring
between lineage divergence and observation, and Y repre-
sents mutations occurring prior to lineage divergence. For
the former, we can assume that the number of SNPs arising
from the time of lineage divergence dði; jÞ until observation
follows a Poisson distribution with mean mðtsi þ tsj 2 2dði; jÞÞ:
For the latter, with a known time of coalescence, mðgi; gjÞ;
the number of SNPs accumulating between coalescence and
divergence is again a Poisson-distributed random variable,

Y jmðgi; gjÞ�Poisð2mðdði; jÞ2mðgi; gjÞÞÞ: (1)

However, the time of coalescence for two samples is
generally unknown, although it must lie in the interval
0#mðgi; gjÞ, dði; jÞ: If the size of the transmitted inoculum
is equal to one, then tI

sð1Þij

#mðgi; gjÞ, dði; jÞ; in the scenario
depicted in Figure 1, coalescence would have to occur
within the host (rectangle) highlighted in a thick black line.

Most epidemic models describe nonlinear dynamics, and
estimating the rate of coalescence between two pathogen
samples during an outbreak is highly dependent on the
demographic model used (Koelle and Rasmussen 2012; Volz
2012). However, in this study, interest lies in the individual-
level rather than the population-wide dynamics. Under an
assumed or hypothesized set of transmission routes, the time
of lineage divergence dði; jÞ is known, and the rate of lineage
coalescence can be derived from the specification of a model
of within-host population dynamics and transmission.

Assuming a constant population size of N, the time to
coalescence for two randomly sampled lineages at time t,
mt; is exponentially distributed with rate 1=N: Under this
assumption, it can be shown that the number of SNPs sep-
arating two randomly sampled lineages at time t follows
a Geomðð1=NÞ=ð1=N þ 2mÞÞ distribution, equivalent to
Geomð1=ð1þ uÞÞ; where u ¼ 2Nm (Watterson 1975).

Table 1 Notation used in this article

Notation Definition

i/j Transmission route from person i to person j
t Ij Time of infection of person j
tsj Time of genome sampling from person j
sij Vector of transmission ancestry common to persons i and j
dði; jÞ Time of lineage divergence
m Mutation rate per genome per generation
cða; bÞ Genetic distance (no. SNPs) between genomes a and b
mða; bÞ Coalescence time of isolates a and b
mt Time between coalescence and observation time t
NðtÞ Effective pathogen population size at time t
NB Effective transmission bottleneck size
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As such, by assuming a constant mutation rate and
effective population size prior to lineage divergence, we
have

X�Poisðmðtsi þ tsj 22dði; jÞÞÞ; (2)

and

Y�Geom
�

1
1þ 2Nm

�
: (3)

However, as the lineage is transmitted from one host to
another, the population experiences repeated bottlenecks,
violating the assumption of constant population size. We
hence considered an approximation to the true population
dynamics, using a discrete-time population model. The effec-
tive population size remains constant at size N, except during
transmission, at which time it spends one generation in a bot-
tleneck of size NB; before recovering to its previous level. The
expected time to coalescence under such a model is

EðmtÞ ¼
Xt
k¼0

k
�
12

1
N

�k2fðkÞ21�
12

1
NB

�fðkÞ� 1
NðkÞ

�
; (4)

where fðkÞ is the number of bottlenecks a lineage must pass
through between times 0 and k, and NðkÞ is the effective
population size at time k and is equal to either N or NB: We
note that NðkÞ represents the short-term effective popula-
tion size that takes into account nonrandom sampling
during the bottleneck and stochastic variation, while
N*
e ¼ 1=E½mdði;jÞ� is the long-term effective population size

that also considers the changes in short-term effective pop-
ulation sizes over time. We can then either assume that the
time of coalescence is fixed at mðgi; gjÞ ¼ dði; jÞ2 Eðmdði;jÞÞ
and that

cðgi; gjÞ�Poisðmðtsi þ tsj 2 2mðgi; gjÞÞÞ
¼ Poisðmðtsi þ tsj 2 2ðdði; jÞ2 Eðmdði;jÞÞÞÞ

(5)

[the sum of random variables (1) and (2)] or that the
effective population size N*

e prior to divergence is fixed at
1=E½mdði;jÞ� and that

cðgi; gjÞ�Geom

 
1

1þ 2E½mdði;jÞ�m

!

þ Poisðmðtsi þ tsj 2 2dði; jÞÞÞ (6)

[the sum of random variables (2) and (3)], which we refer
to as the geometric-Poisson approximation. Finally, we can
derive the posterior probability of any transmission route
(i/j), given the genetic distance between sampled isolates
gi and gj and associated parameters v ¼ fm; E½mdði;jÞ�g,

pði/jjcðgi; gjÞ;vÞ ¼
pðcðgi; gjÞji/j;vÞpði/jjvÞ

pðcðgi; gjÞjvÞ

¼
pðcðgi; gjÞji/j;vÞP

k2SðjÞpðcðgk; gjÞjk/j;vÞ
;

(7)

assuming equal prior probabilities of potential transmission
routes, where SðjÞ is the set of all potential infection sources
for individual j.

Simulation studies

We generated the empirical distribution of genetic distances
by simulating within-host dynamics on top of a transmission
process. We compared the resulting empirical distributions
with the geometric-Poisson approximation given in Equation

Figure 1 Two isolates sampled from infected
cases during an outbreak. Each infected case
is depicted by a rectangle, corresponding to
its infectious period. Arrows denote transmis-
sion events. Samples gi (red circle) and gj (blue
circle) are taken from persons i and j, respec-
tively. The colored lines indicate the ancestry of
each isolate back to its most recent common
ancestor at time mðgi ;gjÞ: Hosts shaded in gray
denote the shared ancestry sij ; while blue and
red denote the lineages of the genotypes gi and
gj ; respectively. The colored bars at the bottom
of the diagram show the distinct time periods in
which mutations may occur—between diver-
gence and observation (blue and red) and from
divergence to coalescence (purple), which is ex-
ponentially distributed, assuming a constant
population N.
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6, as well as the Poisson approximation in Equation 5. The
index case of the disease outbreak is infected with a clonal
population of bacteria, and this is allowed to grow under
a discrete-time neutral evolutionary process. At each gener-
ation, x � BinomðNðtÞ;NðtÞ=2NÞ cells die, and the remain-
ing NðtÞ2 x cells are replicated, where NðtÞ denotes the
census population size at time t. We impose the restriction
x,NðtÞ to prevent the population from going extinct. Each
replicated cell has a probability m of being a mutation. All
mutations are assumed to be neutral, and back mutations
are allowed. A transmission event involves a bottleneck: NB

cells are randomly sampled from the host and passed to the
susceptible individual. In reality, this inoculum is unlikely to
be a truly random sample from the pathogen population,
since a host is not a well-mixed vessel. However, NB can
be thought of as an effective bottleneck size.

Initially, we considered the simple example of a transmission
chain, in which each infected individual infects exactly one
new person. Transmission events occur at equidistant intervals,
and the time from infection to sampling is constant. For each
scenario under given parameters, we repeated the transmis-
sion chain 100 times and considered the average distribution
of pairwise distance across these simulations.

We also simulated more general susceptible–infectious–
removed (SIR) outbreaks in an initially susceptible popula-
tion, using the R package “seedy” version 0.1 (Worby 2014).
Genotypes were sampled randomly from the host at regular
intervals, and person-to-person mixing in the population
was assumed to be homogeneous. Outbreaks were simu-
lated with R0 ¼ 2: We investigated the effect of varying
the bottleneck size NB; the equilibrium effective population
size Neq; and the mutation rate m.

Data

We applied our approximations to a data set collected during
an outbreak of MRSA. Colonization of MRSA strain type
ST2371 was detected in a total of 15 newborn infants during
an outbreak in a special care baby unit (SCBU) in Cambridge,
United Kingdom. A single genome sampled from each of these
individuals was sequenced, along with 20 isolates collected
from a healthcare worker (HCW), who was found to be MRSA
positive several weeks after the 15 cases were observed. The
genetic similarity of the pathogen samples indicated potential
transmission, (i) from patient to patient, via a transiently
colonized HCW (transferring the bacteria from one patient to
another, with carriage cleared upon hand washing); (ii)
between persistently colonized HCW and patient; or (iii) from
external sources. This study was described by Harris et al.
(2013), and sequence data are available at the European Nu-
cleotide Archive (www.ebi.ac.uk/ena).

Results

Within-host diversity

We first considered the distribution of pairwise genetic
distances between isolates sampled from a single host. The

distance between two isolates sampled at the same time
point will be geometrically distributed according to the
geometric-Poisson approximation (6), since the Poisson
component is equal to zero. However, assuming infection
with a single genotype, the empirical distribution generated
from simulations can vary from this approximation (Figure
2A). This is a consequence of assuming a constant coales-
cent rate—under this simplification, it is assumed that the
time to coalescence is exponentially distributed, while in
reality, coalescence is much more likely to occur in the very
early stages of infection, while the total within-host patho-
gen population is still expanding. With less uncertainty sur-
rounding the coalescent time, pairwise genetic distance is
approximately Poisson distributed, as in Equation 5. As the
time since infection increases, the probability that coales-
cence occurred in the initial growth phase decreases, and
the constant coalescent rate assumption of the geometric-
Poisson approximation becomes more realistic.

For individuals infected with an inoculum containing
multiple genotypes, the coalescence time of sampled line-
ages may occur within a previous host. As such, the ini-
tial diversity within a newly infected host is higher, and
equilibrium levels of diversity are approached sooner than
for a clonally infected host. This leads to better agreement
between the empirical and geometric-Poisson distributions
(Figure 2C).

The expected and empirical mean diversities are con-
sistently similar, even when the empirical and expected
distributions differ (Figure 3). However, for observations
made soon after the time of infection, the approximate dis-
tribution may overestimate the frequency of genetically
identical isolates. In situations where the timing of coales-
cence is more certain, for example, shortly after a bottleneck
of size 1 (a “strict” bottleneck), a pure Poisson approxima-
tion (Equation 5) may be more appropriate (Figure 2B). We
used Akaike’s information criterion (AIC) to determine the
better approximation at various time points after a strict
bottleneck, finding the cutoff for the Poisson approxima-
tion to increase with population size Neq (Supporting
Information, Table S1).

Pairwise diversity along transmission chains

We next looked at the distribution of genetic distances
arising from each pair of individuals in the transmission
chain, simulated as described in Methods. Under most sce-
narios, the geometric-Poisson approximation correctly de-
scribed the increasing mean and variance of the distribution
as samples were taken farther down the transmission chain
(Figure 3), with little apparent bias to the empirical mean
(Figure S1). As the chain length increases, the genetic distri-
butions reach an equilibrium, as the expected diversity of
each transmission inoculum becomes constant.

Notably, there is considerable overlap between SNP
distributions, meaning that the likelihood of observing a genetic
distance between samples from two individuals will be similar
for a range of transmission network configurations. This has
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ramifications for identifying the source of infection, since the
posterior probability of any particular transmission route will
typically be low, and much uncertainty will be associated with
the estimated network.

Identifying direct transmission

The geometric-Poisson distribution can be used to calculate
the probability that an observed genetic distance arose from
a direct transmission event. In the case where the trans-
mission bottleneck is equal to one, the distribution of
distances arising from samples taken from a transmission
pair does not depend on the previous structure of the
transmission network, so a probability for direct trans-
mission can be derived independently of the outbreak
structure.

We simulated SIR outbreaks and calculated the posterior
probability of transmission for every pair of individuals given
observed genetic distances, as derived in Equation 7. We
found that the posterior probability of transmission routes
corresponded well with the empirical probability calculated
under repeated simulation (Figure 4). In File S1 and Figure
S2, we describe a simulated disease outbreak and demon-
strate the identification of potential transmission routes using
the maximum likelihood, as well as the ability to rule out
transmission routes at the 5% level.

To test the approximation as a tool for investigating
transmission networks, we repeatedly simulated SIR outbreaks
and assessed the likelihood of direct transmission between

each pair of individuals, using a single sampled genotype from
each host. Identification of the source of infection via maximum
likelihood was consistently more successful than selection of the
host with the genetically closest genotype. Furthermore, source
identification was more successful for higher mutation rates. A
heuristic approach, in which the infection route was selected if
a potential source was both the maximum-likelihood estimate
and the genetically closest host, was successful around one-third
of the time (Table 2).

With a bottleneck size .1, the time of coalescence of the
two sampled lineages may occur in previous hosts, and the
expected time of coalescence depends on timing of bottle-
necks in the bacterial population. Past population dynamics,
and therefore previous transmission history, would be re-
quired to assess individual transmission links. To avoid
conditioning on the remainder of the tree structure, we
calculated the likelihood under the assumption that pre-
vious bottlenecks occurred at intervals equal to the
expected serial interval. While we found that higher pos-
terior probabilities were often underestimated using this
approach (Figure S3), maximum-likelihood identification
still consistently outperformed selection of the genetically
closest host (Table S2).

We additionally compared our approach to the software
“outbreaker” (Jombart et al. 2014) and “seqTrack” (Jombart
et al. 2011) and found that it could identify more transmis-
sion routes correctly in many scenarios. However, differen-
ces in modeling assumptions mean the methods are not

Figure 2 The empirical (solid lines) and estimated (dashed lines) distribution of genetic distances for sampling within host at specified times after
infection. Both the geometric-Poisson approximation (A and C) and the simpler Poisson approximation (B and D) are shown. The infected host was
infected by an inoculum of size 1 (A and B) and size 5 (C and D). The inoculum was a random sample from a bacterial population having evolved over
a period of 5000 generations from an initial clonal population. Mutation rate is 0.002, and effective population size is 2000.
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directly comparable. More details can be found in File S1
and Table S3.

Investigating transmission routes during a hospital
MRSA outbreak

We used the MRSA data set described in Methods to inves-
tigate transmission routes in a real outbreak. We compared
observed genetic distances to the geometric-Poisson approx-
imation, to determine likely transmission routes. MRSA-positive
patient episodes and swab times are shown in Figure 5A.

We initially investigated potential patient-to-patient trans-
mission, ignoring the possibility that the HCW may have
infected patients. We assumed a bacterial generation time of
30 min (Chang-Li et al. 1988; Dengremont and Membré 1995;
Ender et al. 2004) and used the mutation rate of one SNP per
15 weeks (equivalent to 0.0002 per genome per generation)
quoted in the study by Harris et al. (2013). We assumed a strict
bottleneck. We found that, since the time from infection to
sampling was typically short, the within-host effective popula-
tion size made little difference to the approximated distribu-
tions. Five temporally consistent transmission routes could be
ruled out at the 5% level, leaving five plausible transmission
events (Figure 5C). Two of these form a cycle (between 11 and
12)—only one of these events could have occurred, but each

route is equally plausible. The lack of any other observed and
temporally consistent infection source within the ward suggests
transmission from an external source or environmental con-
tamination—however, since the infants in this study were non-
ambulatory, this possibility was considered less likely.

We next supposed that the HCW could have been the source
of infection for any of the patients in the SCBU. The observed
mean pairwise distance between the samples collected from the
HCW was 3.89 SNPs (Figure 5B), suggestive of a lengthy car-
riage time or a nonstrict bottleneck size. The time of HCW
infection was estimated to be 23 days before the first patient
case (Harris et al. 2013). We set the observed genetic distance
from patient to HCW as the nearest integer to the mean of the
genetic distances to each of the HCW’s 20 samples. We found
that all patients could plausibly have been infected by the
HCW; however, in three cases this was not the most likely
source of infection (Figure 5D). Assuming that infection must
have a source from within the SCBU (including the HCW), we
found that in addition to the six individuals with no other
temporally consistent source, three patients had a posterior
probability of .99% of acquiring infection from the HCW,
while two others had a .50% probability. We additionally re-
peated the analysis, using each of the HCW’s isolates individu-
ally (Figure S4). Furthermore, we ran the analysis using the

Figure 3 Genetic distance between
each pair of cases in a transmission
chain. The ði; jÞth plot represents the
empirical distribution of the genetic dis-
tance between samples taken from indi-
viduals i and j (red bars). The diagonal
represents the within-host diversity for
each of the 10 cases in the transmission
chain (blue bars). Overlaid on each plot
is the expected distribution (black line),
based the geometric-Poisson approxi-
mation. The expected mean is marked
with a dashed line, while the empirical
mean and standard error bar are marked
in red (blue for within host). The within-
host equilibrium pathogen population
was 10,000, with a bottleneck size of 5.
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Poisson approximation, finding little difference in transmission
route probabilities (Figure S5).

We finally investigated the possibility that the HCW was
infected by one of the patients on the ward. Assuming that the
HCWwas infected 2 days after the infection time of the potential
source, we could rule out five patients as a source of infection for
the HCW at the 5% level. If the HCWwas infected by any one of
the patients, the observed diversity within the HCW is greater
than would be expected to accumulate in the period from
infection to observation. At least 16% of the observed HCW
within-host pairwise distances would be rejected at the 5% level
under any patient–HCW transmission scenario (Table S4).

We found that, while most of our analyses were fairly
robust to the specification of the effective population size,
there was sensitivity to the choice of mutation rate and the
time of HCW infection. We investigate these sensitivities in
detail in File S1 and Table S5.

The methods we have described and implemented are for
pairwise distances and, as such, cannot account for dependen-
cies between several isolates. This is necessary when consid-
ering the transmission network as a whole, rather than just
a set of pairwise connections. In addition, it is necessary to
consider the conditional distribution of genetic distance to
account for multiple samples per host. The degree of de-
pendence varies considerably depending on the transmission
bottleneck size (Figure S6, Figure S7). In File S1, we describe
the conditional distribution for genetic distances.

Discussion

In this study, we have explored the distribution of the genetic
distances arising from samples taken from infected hosts

during an outbreak and investigated the impact of factors
such as mutation rate, transmission dynamics, and within-
host pathogen population dynamics on the expected value of
such distances. Under most circumstances, a geometric-
Poisson approximation is sufficient to describe genetic
distances between samples taken during an outbreak. This
allows the distribution to be approximated without knowing
the coalescence time of two lineages. With known parameters
of pathogen population dynamics, the likelihood of genetic
distances arising between a host and various potential trans-
mission sources may be compared, and certain links may be
excluded. The transmission bottleneck size can have a large
impact on the genetic distance distribution, and our methods
can account for this.

The ability to assign a genetic distance threshold to rule
out transmission events in a nonarbitrary fashion can be
important in establishing distinct subgroups of the transmission
tree, as well as identifying pathogen importation from outside
of the studied population. This is of much importance when
estimating transmission rates within a community, as incorrectly
identified importations can introduce bias. Previous studies
have used an arbitrary cutoff to determine potential trans-
mission (e.g., Jombart et al. 2014; Long et al. 2014).

We found that the geometric-Poisson approximation
deviated from the empirical distribution to the greatest
extent when sampling occurred shortly after infection with
a clonal inoculum.While the expected genetic distance exhibited
no apparent bias, and this deviation was minor for bottleneck
sizes.1, it should be noted that this scenario may potentially be
important in outbreaks of highly symptomatic pathogens, as
samples are more likely to be taken in the earlier stages of in-
fection, compared to asymptomatic, chronic infections. If a strict
bottleneck is considered likely shortly before sampling, using the
Poisson distribution (Equation 5) with fixed coalescent time is
recommended.

Identification of transmission sources using this method
is most successful with a high mutation rate. While higher
mutation rates (and longer intervals between infection and
onward transmission) can lead to more distinct distribu-
tions, potentially allowing one to rule out certain relation-
ships, such as direct transmission, it is clear that even under
extreme scenarios, uncertainty remains. We found that the
success rate of identifying the source of infection was up to
33% better than selection of the genetically closest host, but
still too low to identify transmission routes with confidence.
We demonstrated that our approach could identify trans-
mission routes more successfully than existing software pack-
ages, provided key values, such as mutation rate and infection
times, are known. It has been shown previously that identifi-
cation of transmission routes during an outbreak based on
genomic data is likely to be challenging due to high levels of
uncertainty (Worby et al. 2014), a finding also reflected in
recent investigations (Didelot et al. 2014). The methods pro-
vided in this article are likely to be most valuable in the iden-
tification of a group of potential sources with a high likelihood,
as well as the elimination of potential sources at a given probability

Figure 4 The empirical probability that a proposed transmission route is
correct for a range of posterior probabilities calculated under the geometric-
Poisson assumption. A total of 100 outbreaks were simulated and the
posterior probability of direct transmission was calculated for every pair of
infected individuals. Counts were collated into 10% probability bins and
for each bin, the proportion of true transmission routes was calculated.
Error bars depict the 95% exact binomial confidence interval.
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level (discriminating, for example, between imported cases
and within-population transmission events). Additional data
sources, such as spatial location, contact patterns, and infec-
tious periods, will increase the precision of estimates of in-
fection paths (Ypma et al. 2012, 2013; Jombart et al. 2014).

We demonstrated the application of our methods to
a data set collected during an MRSA hospital outbreak.
We could rule out 5 of the 11 temporally consistent patient-
to-patient transmission routes at the 5% level and found
evidence supporting the important role played by the
colonized HCW in the outbreak. However, our analysis was
limited by a number of important parameter values that are
uncertain or unknown. This work highlights the importance
of deriving estimates for the transmission bottleneck size and
gaining an improved understanding of within-host pathogen
population dynamics. With less parameter uncertainty, it
would be possible to draw more robust conclusions. Our
analysis considered only sequence data, but other data
sources could contribute valuable information to infection
routes. For instance, we assume an uninformative prior
distribution for infection sources, but contact patterns could
potentially be factored into this, if such information were
available.

While using our approximation to the genetic distance
distribution can be useful to assess pairwise individuals for
evidence of direct transmission, reconstruction of the full
transmission network requires us to consider the conditional
distribution of genetic distances and a framework to sample
over the entire structure. Accounting for dependencies be-
tween genetic distances would require inference of the set of
coalescent times. This approach has been described in
a recent study (Ypma et al. 2013), which used sequence data
directly, rather than genetic distance data. It may be possible
to implement the distribution approximation described here,
accounting for dependencies by conditioning on shared tree
branches.

The transmission bottleneck size is important in the
analysis of transmission dynamics, using genomic data. Most
studies to date assume a strict bottleneck for convenience, as
under this condition, the expected distance between two

samples does not depend on pathogen population dynamics
prior to the divergence of the lineages to different hosts.
Previous studies have suggested a diverse transmission
inoculum for influenza (Hughes et al. 2012; Murcia et al.
2012), while it is thought that the bottleneck size for bacterial
transmission could vary dramatically (Balloux 2010). Con-
ducting inference under the incorrect bottleneck size can gen-
erate misleading results. Our methods illustrate the degree to
which the bottleneck size can affect the expected genetic
distance between individuals and may potentially be used
to assess whether a strict bottleneck is a realistic assumption.

There are several assumptions made in this work. First,
we have assumed neutral evolution, such that no fitter
mutant can arise and dominate the pathogen population.
This may be a reasonable assumption in the short term, such
as during individual carriage and in small outbreaks, but
would have to be taken into account when considering
epidemics over a long period of time. However, transmission
route inference is most applicable to localized outbreaks
within a community or a hospital, and the emergence of
fitter variants may be of lesser importance. We have also
assumed that the within-host pathogen population remains
at equilibrium level and that this is identical for all infected
individuals, while in reality this may be unrealistic, espe-
cially during antimicrobial use. Within-host pathogen dy-
namics are still poorly understood, and the effective size
may fluctuate and vary considerably between hosts. We
have primarily considered long-term bacterial infections,
with a relatively stable within-host population, but alterna-
tive models could also be considered, provided the expected
time of coalescence can be estimated at any given time. With
appropriate sampling, methods exist to estimate the within-
host effective population size, as well as the mutation rate
(e.g., Wang 2001; Minin et al. 2008). With known transmis-
sion routes, our approximation can also be used to estimate
parameters of interest; however, these estimates are associ-
ated with some uncertainty (see File S1, Figure S8 and Fig-
ure S9). We assumed that the source of infection must come
from the pool of observed infectives at the time of infection
and furthermore that the time of infection is known. In some

Table 2 Performance of geometric-Poisson distribution

Performance
measure

Mutation rate (31024)

1 3 5

Proportion of true infection sources identified by maximum likelihood 0.27 0.32 0.33
Proportion of true infection sources identified by closest genotypea 0.19 0.27 0.29
Proportion of potential links ruled out at 5% level 0.10 0.21 0.24
Proportion of true infection sources ruled out at 5% level 0.04 0.07 0.07
Proportion of cases identified as source by both maximum likelihood
and genetic similarity found to be correct

0.27 0.33 0.35

SIR outbreaks with 30 initial susceptibles were simulated and a single genome sample was generated for each infective. Simulations with a final size
,20 were discarded. For each infective, the maximum-likelihood source was calculated, and the genetically closest hosts were selected. All
previously infected individuals were considered potential sources, regardless of removal times. Simulations for each scenario were repeated 100
times. Baseline parameters were infection rate 0.002, removal rate 0.001, and effective population size 5000.
a If the true source and other hosts are genetically equidistant, the true host is assumed to be identified with probability 1/(no. equidistant closest
hosts).
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cases, particularly for outbreaks in large, well-mixing com-
munities, it is unlikely that all infected cases will be identi-
fied and sampled. Nonetheless, evidence for an external
source of infection can be seen when all potential observed
sources are ruled out (for instance, cases 2 and 8 in the
MRSA outbreak when not considering the HCW). In many
cases, transmission times are unknown, although for many
infections this can be estimated from the time of symptom
onset or at least narrowed down by swabs for pathogen
presence. Although one can test the hypothesis that an in-
dividual was infected at a certain time, this is a source of
uncertainty, particularly for scenarios with a lengthy, asymp-
tomatic infection period and/or a low pathogen mutation
rate.

Genetic distances are an important and frequently used
feature of genome sequence data, and our work contributes
to a better understanding of how such distances arise during

an outbreak. While sequence data provide a wealth of
information regarding evolutionary history and relatedness
of genotypes, the phylogeny derived from such data by itself
may not be informative of transmission dynamics, and
methods to combine this structure with the transmission
tree are complex and computationally intensive (Ypma et al.
2013). Genetic distances offer a simple summary statistic of
complex multidimensional data and may be more appropri-
ate in comparative analyses of genomic samples. Genetic
distances can crudely be used to determine direct transmis-
sion, via selection of the genetically closest host, but our
simulations demonstrate that this approach may frequently
be misleading. The geometric-Poisson approximation offers
a less arbitrary method of quickly assessing the likelihood of
direct transmission without requiring computationally inten-
sive Monte Carlo sampling strategies. It may additionally
provide an important component in the development of a full

Figure 5 Data and transmission route inference for the MRSA outbreak in the SCBU. (A) Patient episodes are shown as horizontal bars, with colored
circles representing positive and negative swab results. (B) The observed pairwise genetic distances between the 20 sequenced isolates collected from
the HCW. (C) Inferred transmission routes are shown, excluding the possibility of HCW–patient transmission. Red dashed lines indicate routes excluded
at the 5% level. All temporally consistent transmission routes are shown. Posterior probability is 100% unless stated. (D) Inferred transmission routes,
including the HCW as a potential source. The HCW is marked as a blue square.
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transmission network reconstruction methodology based on
genetic distance data.
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File	  S1	  

	  

1.	  Estimation	  of	  parameters	  

While	  the	  Geometric-‐Poisson	  distribution	  appears	  to	  approximate	  the	  distance	  distribution	  under	  simulation	  well,	  this	  

is	  under	  the	  assumption	  that	  several	  key	  parameters	  of	  interest	  are	  known	  –	  namely,	  the	  mutation	  rate,	  the	  

equilibrium	  effective	  population	  size	  within-‐host,	  and	  the	  bottleneck	  size.	  With	  a	  known	  transmission	  structure	  (for	  

instance,	  within	  a	  household	  (COWLING	  et	  al.	  2010)),	  it	  is	  possible	  to	  estimate	  some	  of	  these	  quantities.	  We	  simulated	  

an	  outbreak	  and	  assumed	  that	  a	  set	  of	  25	  transmission	  pairs	  was	  observed.	  Figure	  S8	  shows	  the	  likelihood	  of	  these	  

data	  under	  a	  range	  of	  values	  for	  mutation	  rate	  and	  effective	  population	  size.	  The	  estimate	  of	  the	  effective	  population	  

size	  is	  uncertain,	  since	  the	  data	  are	  less	  informative	  of	  this	  parameter;	  in	  the	  most	  extreme	  case,	  where	  coalescence	  

occurs	  immediately	  prior	  to	  the	  time	  of	  lineage	  divergence,	  the	  likelihood	  function	  depends	  only	  on	  the	  mutation	  

rate.	  

	  	  

The	  bottleneck	  size	  can	  additionally	  be	  estimated.	  Observation	  of	  multiple	  genotypes	  shortly	  after	  a	  bottleneck	  event	  

suggests	  that	  the	  bottleneck	  must	  be	  large	  enough	  to	  allow	  diversity	  through;	  Figure	  S9	  shows	  the	  likelihood	  of	  

observing	  different	  numbers	  of	  SNPs	  within	  host	  shortly	  after	  transmission,	  for	  a	  range	  of	  potential	  bottleneck	  sizes.	  

Again,	  such	  estimates	  are	  associated	  with	  very	  high	  levels	  of	  uncertainty,	  particularly	  for	  large	  bottleneck	  sizes.	  

However,	  it	  may	  be	  possible	  to	  test	  the	  hypothesis	  that	  the	  bottleneck	  size	  is	  strict,	  an	  assumption	  frequently	  made	  in	  

transmission	  network	  reconstruction	  methods.	  

	  

2.	  Simulated	  outbreak	  

Figure	  S2	  shows	  a	  simulated	  SIR	  outbreak	  with	  25	  infected	  individuals,	  18	  of	  which	  have	  a	  sampled	  genotype.	  We	  

considered	  the	  relative	  likelihood	  of	  observing	  a	  genetic	  distance	  between	  two	  hosts,	  given	  direct	  transmission	  has	  

occurred	  (Figure	  S2,	  bottom	  left).	  The	  maximum	  likelihood	  estimate	  of	  transmission	  source	  was	  correct	  in	  eight	  out	  of	  

17	  transmission	  events.	  In	  comparison,	  selecting	  the	  genetically	  closest	  isolate	  as	  the	  source	  was	  correct	  in	  seven	  

cases,	  although	  for	  some	  of	  these,	  multiple	  hosts	  were	  equally	  close.	  	  

For	  any	  given	  infected	  host,	  a	  genetic	  distance	  threshold	  may	  be	  specified,	  which	  may	  be	  used	  to	  rule	  out	  direct	  

transmission	  to	  a	  given	  probability	  level.	  Consider	  the	  individual	  labelled	  ‘N’	  in	  figure	  S2,	  with	  a	  sample	  at	  time	  1000.	  

Under	  the	  geometric-‐Poisson	  approximation	  with	  strict	  bottleneck,	  the	  probability	  of	  drawing	  a	  sample	  differing	  by	  4	  

SNPs	  or	  greater	  at	  time	  1000	  from	  the	  true	  host	  is	  less	  than	  5%.	  As	  such,	  six	  of	  the	  eleven	  previously	  infected	  

individuals	  can	  be	  ruled	  out	  as	  transmission	  sources	  at	  this	  level.	  As	  the	  time	  between	  samples	  and/or	  the	  bottleneck	  

size	  increase,	  this	  threshold	  also	  increases.	  	  

	  

3.	  Comparison	  with	  transmission	  network	  estimation	  software	  packages.	  

‘Outbreaker’	  is	  an	  R	  package	  for	  the	  investigation	  of	  individual-‐level	  transmission	  dynamics	  using	  genomic	  data	  

(JOMBART	  et	  al.	  2014),	  while	  ‘seqTrack’	  is	  an	  earlier	  and	  simpler	  method,	  implemented	  in	  the	  ‘adegenet’	  package	  

(JOMBART	  et	  al.	  2011).	  These	  software	  packages	  are	  arguably	  the	  most	  accessible	  tools	  for	  estimating	  a	  transmission	  

network	  available	  at	  present,	  and	  as	  such,	  we	  wanted	  to	  compare	  their	  performance	  against	  our	  method.	  Given	  a	  

user-‐specified	  infectivity	  distribution	  and	  one	  genomic	  sample	  per	  infected	  host,	  outbreaker	  implements	  an	  MCMC	  
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algorithm	  which	  estimates	  the	  posterior	  edge	  probabilities	  of	  the	  network,	  along	  with	  several	  parameters	  of	  interest,	  

including	  the	  mutation	  rate.	  Unlike	  our	  model,	  this	  approach	  therefore	  does	  not	  require	  infection	  times	  and	  mutation	  

rate	  to	  be	  known	  (and	  can	  also	  be	  used	  to	  detect	  importations	  into	  a	  population),	  however,	  it	  operates	  on	  a	  less	  

sophisticated	  model	  of	  within-‐host	  dynamics	  –	  mutations	  are	  assumed	  to	  be	  a	  feature	  of	  transmission,	  and	  an	  

infected	  host	  is	  adequately	  represented	  by	  a	  single	  sequenced	  pathogen	  isolate.	  seqTrack	  identifies	  the	  genetically	  

closest	  pathogen	  sample	  as	  the	  source,	  using	  the	  specified	  mutation	  rate	  to	  break	  ties.	  This	  approach	  also	  assumes	  

that	  each	  host	  is	  represented	  by	  one	  genomic	  sample.	  

We	  simulated	  outbreaks	  under	  various	  assumptions,	  and	  attempted	  to	  identify	  the	  transmission	  network	  using	  our	  

likelihood	  approach,	  as	  well	  as	  the	  outbreaker	  and	  seqTrack	  functions.	  While	  the	  outbreaker	  package	  can	  also	  be	  used	  

to	  simulate	  outbreaks,	  this	  is	  performed	  under	  the	  assumptions	  mentioned	  previously,	  so	  we	  instead	  simulated	  the	  

within-‐host	  pathogen	  dynamics	  explicitly,	  as	  described	  in	  Methods.	  We	  used	  the	  number	  of	  transmission	  routes	  to	  

compare	  the	  two	  methods.	  We	  ran	  outbreaker	  with	  no	  spatial	  model,	  and	  detection	  of	  importations	  suppressed.	  

Furthermore,	  we	  assumed	  a	  flat	  infectivity	  distribution.	  We	  emphasize	  that	  these	  approaches	  are	  not	  directly	  

comparable,	  since	  outbreaker	  and	  seqTrack	  accommodate	  unknown	  infection	  times,	  and	  outbreaker	  furthermore	  

estimates	  the	  mutation	  rate,	  giving	  our	  approach	  an	  advantage	  in	  this	  comparison.	  Results	  are	  presented	  in	  Table	  S2.	  

	  

4.	  MRSA	  outbreak	  analysis	  

While	  the	  analysis	  provided	  in	  the	  main	  text	  provides	  estimates	  of	  transmission	  routes	  under	  plausible	  parameter	  

values	  found	  in	  the	  literature,	  there	  is	  a	  great	  deal	  of	  uncertainty	  surrounding	  true	  within-‐host	  pathogen	  population	  

dynamics,	  and	  as	  such,	  we	  repeated	  the	  analysis	  under	  a	  range	  of	  assumptions.	  The	  mutation	  rate	  used	  in	  the	  main	  

analysis	  was	  given	  in	  the	  paper	  describing	  this	  dataset;	  the	  mutation	  rate	  of	  MRSA	  has	  previously	  been	  estimated	  to	  

be	  higher	  ( 3×10−6 	  per	  nucleotide	  per	  year,	  equivalent	  to	  5 ×10−4 	  per	  genome	  per	  generation	  (HARRIS	  et	  al.	  

2010;	  YOUNG	  et	  al.	  2012)),	  so	  we	  repeated	  the	  analysis	  with	  this	  value.	  With	  this	  higher	  mutation	  rate,	  a	  larger	  range	  

of	  genetic	  distances	  are	  plausible,	  and	  as	  such,	  fewer	  routes	  were	  excluded	  at	  the	  5%	  level.	  The	  HCW	  was	  a	  plausible	  

source	  for	  most	  patients	  on	  the	  ward,	  however,	  the	  genetic	  distance	  from	  patients	  1	  and	  5	  to	  the	  HCW	  were	  more	  

similar	  than	  would	  be	  expected,	  given	  this	  infection	  route.	  No	  patient	  to	  HCW	  transmission	  route	  could	  be	  excluded	  

at	  the	  5%	  level.	  

	  

Changing	  the	  effective	  population	  size	  had	  a	  limited	  effect	  on	  the	  estimated	  transmission	  route	  estimates.	  Values	  of	  

2000	  and	  higher	  produced	  near	  identical	  posterior	  probabilities.	  Previous	  studies	  have	  estimated	  nasal	  carriage	  of	  S.	  

aureus	  to	  have	  an	  effective	  population	  size	  in	  the	  range	  of	  50-‐4000	  (YOUNG	  et	  al.	  2012;	  GOLUBCHIK	  et	  al.	  2013).	  We	  

experimented	  with	  an	  effective	  population	  size	  of	  100,	  finding	  that	  five	  patient-‐HCW	  routes,	  and	  seven	  HCW-‐patient	  

routes	  could	  be	  excluded	  at	  the	  5%	  level.	  

	  

Varying	  the	  time	  at	  which	  the	  HCW	  became	  infected	  had	  an	  impact	  on	  posterior	  transmission	  probabilities.	  Moving	  

this	  value	  forward	  in	  time	  decreases	  the	  number	  of	  SNPs	  expected	  to	  accumulate	  by	  the	  time	  of	  observation.	  If	  the	  

HCW	  infection	  time	  was	  164	  days	  after	  the	  first	  case,	  the	  upper	  bound	  of	  the	  range	  provided	  by	  (HARRIS	  et	  al.	  2013),	  

five	  patients	  remain	  temporally	  consistent	  with	  having	  become	  infected	  by	  the	  HCW.	  Two	  of	  these	  transmission	  

routes	  can	  be	  excluded	  at	  the	  5%	  level.	  
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We	  repeated	  our	  analysis	  using	  the	  pure	  Poisson	  model.	  In	  general,	  this	  distribution	  has	  a	  shorter	  right	  tail	  than	  the	  

geometric-‐Poisson	  distribution,	  and	  as	  such,	  can	  lead	  to	  more	  transmission	  routes	  being	  rejected	  at	  a	  given	  

probability	  level.	  With	  the	  same	  assumptions	  as	  in	  the	  main	  text,	  the	  HCW-‐patient	  routes	  were	  typically	  given	  a	  

higher	  posterior	  probability	  under	  the	  Poisson	  distribution,	  however,	  the	  most	  likely	  source	  of	  infection	  remained	  the	  

same	  for	  all	  individuals	  (Figure	  S5).	  	  

	  

	  

	  

5.	  Conditional	  distributions	  

	  

We	  define	  a	  phylogenetic	  subtree	  to	  be	  the	  unique	  set	  of	  branch	  segments	  linking	  two	  isolates,	  originating	  at	  the	  time	  

of	  their	  coalescence.	  Then	  the	  genetic	  distance	  ψ (g1,g2 ) 	  is	  dependent	  on	  another	  distance	  ψ (g3,g4 ) 	  by	  the	  
intersection	  of	  the	  two	  phylogenetic	  subtrees.	  The	  conditional	  distribution	  of	  one	  genetic	  distance	  given	  another	  is	  

	  

ψ (g1,g2 ) |ψ (g3,g4 ) ~ Bin ψ (g3,g4 ), length of intersection
length of subtree(g3,g4 )

⎛
⎝⎜

⎞
⎠⎟

                                         + Pois{µ((length of subtree(g1,g2 ))− (length of intersection))}
	  

(8)	  

Figure	  S7	  shows	  two	  possible	  configurations	  of	  the	  phylogenetic	  and	  transmission	  tree	  with	  three	  infected	  cases.	  In	  

both	  settings,	  ψ (g2,g3) 	  depends	  on	  ψ (g1,g2 ) 	  via	  the	  mutations	  occurring	  along	  branch	  b3 .	  If	  the	  sequences	  at	  
the	  internal	  nodes	  are	  known,	  or	  can	  be	  inferred,	  this	  estimation	  is	  unnecessary,	  as	  the	  true	  number	  of	  mutations	  

along	  any	  given	  branch	  segment	  can	  be	  calculated.	  However,	  since	  the	  genealogy	  is	  not	  typically	  observed,	  and	  does	  

not	  necessarily	  correspond	  to	  the	  transmission	  network,	  even	  under	  a	  strict	  bottleneck	  (PYBUS	  and	  RAMBAUT	  2009;	  

YPMA	  et	  al.	  2013),	  such	  an	  approximation	  may	  be	  useful	  for	  inference	  of	  the	  full	  network,	  and	  to	  account	  for	  multiple	  

samples	  per	  host.	  

	  

Transmission	  chains	  of	  length	  3	  were	  simulated	  to	  investigate	  conditional	  distributions	  of	  genetic	  distances.	  Times	  

from	  infection	  to	  sampling	  and	  onward	  transmission	  were	  identical	  for	  all	  cases.	  With	  a	  strict	  bottleneck,	  ψ (g2,g3) 	  

varies	  only	  minimally	  with	  ψ (g1,g2 ) ,	  but	  ψ (g1,g3) 	  shows	  a	  clear	  dependency.	  Both	  distances	  increase	  with	  

greater	  values	  of	  ψ (g1,g2 ) 	  under	  larger	  bottlenecks	  (Figure	  S6).	  With	  a	  strict	  bottleneck,	  the	  scenario	  in	  Figure	  S7B	  

is	  impossible,	  and	  as	  such,	  the	  intersection	  of	  subtrees	   (g1,g2 ) 	  and	   (g2,g3) 	  is	  relatively	  small.	  With	  an	  increasing	  

bottleneck	  size,	  the	  probability	  of	  scenario	  B,	  and	  therefore	  the	  potential	  length	  of	  subtree	  overlap,	  increases.	  
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Figure S1. Differences between empirical and estimated pairwise genetic distances using the 

Geometric-Poisson approximation. The (i, j) th plot shows the difference between the empirical 

and simulated mean distance between samples taken from individuals i  and j . Each plot shows 

the underestimate for various levels of bottleneck size and mutation rate (light, medium and dark 

points denote 1x10-4, 3x10-4, and 5x10-4 respectively). Plots above the diagonal show 

underestimates for equilibrium population size 10000, while below the diagonal, Neq=1000. 
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Figure S2. A simulated outbreak. 24 individuals are infected in a simulated SIR outbreak, of 

which 18 have sampled genotypes. Each individual has an infectious period shown as a gray bar, 

with genotypes shown as colored circles, the color denoting the genetic distance from the first 

sample (top). One randomly sampled genome for each individual is used to assess the likelihood 

of direct transmission from each other sampled individual. The pairwise genetic distances are 

shown (bottom right), with black boxes denoting the true source of infection, and gray boxes 

denoting presence at the time of infection. The relative likelihood of direct transmission using the 

geometric-Poisson approximation is shown for each pair (bottom left, green and red indicating 

high and low relative likelihood respectively). Crosses indicate the maximum likelihood estimate, 

while circles indicate the genetically closest isolate to each sample.  
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Figure S3. The empirical probability that a proposed transmission route correct for a range of 

posterior probabilities calculated under the geometric-Poisson assumption. A total of 100 

outbreaks were simulated with a bottleneck size of 5; transmission events prior to the host were 

assumed to occur at intervals equal to the mean generation interval. The posterior probability of 

direct transmission was calculated for every pair of infected individuals. Counts were collated into 

10% probability bins and for each, the proportion of true transmission routes calculated. Error 

bars depict the 95% exact binomial confidence interval. 
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Figure S4. Transmission network in the SCBU, using each HCW isolate individually. HCW is 

shown as a blue square, potential transmission routes are shown as arrows. Red dashed arrows 

denote transmission routes rejected at the 5% level using the geometric-Poisson approximation. 

For each of the 20 HCW isolates, posterior transmission probabilities were calculated individually, 

and the mean and range of values are indicated on the plot. 
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Figure S5. Transmission network in the SCBU, using the pure Poisson approximation. HCW is 

shown as a blue square, potential transmission routes are shown as arrows. Red dashed arrows 

denote transmission routes rejected at the 5% level using the Poisson approximation. 
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Figure S6. Simulated conditional distributions of genetic distances arising from a transmission 

chain of length 3. Each row shows plots for ψ (g1,g3)  and ψ (g2,g3)  given various levels of 

ψ (g1,g2 )  (denoted by different colors). Bottleneck size varies by row. Equilibrium size was set to 

10000, and mutation rate µ = 3×10−4 . 
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Figure S7. Two possible phylogenetic configurations in a transmission chain of length 3. (A) 

Lineages g2  and g3  coalesce within host 2. (B) Lineages g2  and g3  coalesce within host 1, 

prior to the coalescence of g1  and g2 . This configuration is possible only with a bottleneck of 

size > 1. 
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Figure S8. Likelihood of observing 28 pairwise genetic distances between known transmission 

pairs, given a range of values for the mutation rate and the effective population size. The dashed 

lines indicate parameter values under which the data were simulated, and the geometric-Poisson 

maximum likelihood value is marked. Maximum likelihood value calculated using the Nelder-Mead 

method in the ‘optim’ function in R. 

 

 

 

 

 



C.	  J.	  Worby	  et	  al.	  14SI	  

0 20 40 60 80 100

−7
−6

−5
−4

−3
−2

−1
0

Bottleneck size

Lo
g 

lik
el

ih
oo

d

●

●

●

●

●

No. SNPs
0
1
2
3
4
5

 
Figure S9. Likelihood curves for various within-host genetic distance observations, given a range 

of transmission bottleneck sizes. The effective population size and mutation rate are assumed to 

be known. The likelihood is calculated assuming samples are taken 50 generations after a 

transmission event; the maximum likelihood estimate of bottleneck size for each genetic distance 

is marked as a filled circle. 
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SI	  Tables	  

	  

Table	  S1.	  The	  differences	  between	  approximated	  and	  empirical	  distributions	  for	  within-‐host	  genetic	  distances.	  For	  a	  

range	  of	  µNeq 	  and	  times	  since	  clonal	  infection,	  Akaike’s	  Information	  Criterion	  (AIC)	  is	  given	  for	  both	  the	  geometric-‐

Poisson	  (GP)	  and	  the	  Poisson	  (P)	  approximation.	  250	  simulated	  pathogen	  populations	  were	  generated,	  and	  for	  each,	  

1000	  pairwise	  distances	  were	  recorded	  at	  each	  of	  the	  sample	  times.	  Cells	  are	  shaded	  according	  to	  the	  lower	  AIC	  value	  

–	  red	  for	  Poisson,	  green	  for	  geometric-‐Poisson.	  The	  mutation	  rate	  was	  0.001	  per	  genome	  per	  generation.	  

	   Effective	  population	  size,	  Neq 	  

500	   1000	   2500	   5000	   7500	   10000	  

Ti
m
e	  
sin

ce
	  c
lo
na

l	  i
nf
ec
tio

n	  

50	   GP:	  75341	  

P:	  	  	  	  75216	  

GP:	  80764	  

P:	  	  	  	  80334	  

GP:	  80729	  

P:	  	  	  	  80462	  

GP:	  80734	  

P:	  	  	  	  80431	  

GP:	  78318	  

P:	  	  	  	  78008	  

GP:	  84445	  

P:	  	  	  	  84162	  

100	   GP:	  115043	  

P:	  	  	  	  114067	  

GP:	  128371	  

P:	  	  	  	  126955	  

GP:	  131869	  

P:	  	  	  	  130751	  

GP:	  133561	  

P:	  	  	  	  132260	  

GP:	  129586	  

P:	  	  	  	  128358	  

GP:	  133905	  

P:	  	  	  	  132656	  

500	   GP:	  258951	  

P:	  	  	  	  257189	  

GP:	  297052	  

P:	  	  	  	  291320	  

GP:	  323116	  

P:	  	  	  	  310162	  

GP:	  343677	  

P:	  	  	  	  324330	  

GP:	  336449	  

P:	  	  	  	  319142	  

GP:	  340266	  

P:	  	  	  	  322343	  

1000	   GP:	  324557	  

P:	  	  	  	  336776	  

GP:	  384288	  

P:	  	  	  	  386824	  

GP:	  442356	  

P:	  	  	  	  421016	  

GP:	  455690	  

P:	  	  	  	  421886	  

GP:	  459908	  

P:	  	  	  	  422279	  

GP:	  464791	  

P:	  	  	  	  424528	  

2500	   GP:	  340205	  

P:	  	  	  	  360382	  

GP:	  455889	  

P:	  	  	  	  499865	  

GP:	  559643	  

P:	  	  	  	  591170	  

GP:	  616431	  

P:	  	  	  	  602032	  

GP:	  640539	  

P:	  	  	  	  601454	  

GP:	  648459	  

P:	  	  	  	  583515	  

5000	   GP:	  355353	  

P:	  	  	  	  384607	  

GP:	  470566	  

P:	  	  	  	  555942	  

GP:	  629747	  

P:	  	  	  	  772276	  

GP:	  730920	  

P:	  	  	  	  844597	  

GP:	  758704	  

P:	  	  	  	  821443	  

GP:	  781885	  

P:	  	  	  	  804054	  

7500	   GP:	  351289	  

P:	  	  	  	  384044	  

GP:	  489139	  

P:	  	  	  	  599342	  

GP:	  656489	  

P:	  	  	  	  870263	  

GP:	  755024	  

P:	  	  	  	  994202	  

GP:	  785749	  

P:	  	  	  	  986565	  

GP:	  801616	  

P:	  	  	  	  947202	  

10000	   GP:	  349955	  

P:	  	  	  	  380901	  

GP:	  477976	  

P:	  	  	  	  567623	  

GP:	  655821	  

P:	  	  	  	  898879	  

GP:	  708001	  

P:	  	  	  	  1001501	  

GP:	  708912	  

P:	  	  	  	  984256	  

GP:	  692577	  

P:	  	  	  	  942683	  
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Table	  S2.	  Proportion	  of	  true	  transmission	  routes	  identified	  by	  both	  maximum	  likelihood	  (ML)	  and	  genetic	  similarity.	  

SIR	  outbreaks	  with	  30	  initial	  susceptibles	  were	  simulated	  and	  a	  single	  genome	  sample	  was	  generated	  for	  each	  

infective.	  For	  scenarios	  with	  bottleneck	  size	  >1,	  it	  was	  assumed	  that	  transmission	  events	  prior	  to	  the	  infection	  of	  the	  

source	  occurred	  at	  intervals	  equal	  to	  the	  mean	  generation	  interval.	  Simulations	  with	  a	  final	  size	  <20	  were	  discarded.	  

For	  each	  infective,	  the	  maximum	  likelihood	  source	  was	  calculated	  under	  the	  geometric-‐Poisson	  approximation,	  and	  

the	  genetically	  closest	  hosts	  selected.	  Simulations	  for	  each	  scenario	  were	  repeated	  100	  times.	  Baseline	  parameters:	  

infection	  rate	  0.002,	  removal	  rate	  0.001,	  effective	  population	  size	  5000.	  

	  

Mutation	  rate	  (×10−4 )	   1	   3	   5	  

Bottleneck	  size	   1	   5	   25	   1	   5	   25	   1	   5	   25	  

Prop.	  routes	  identified	  by	  ML	   0.27	   0.21	   0.21	   0.32	   0.23	   0.22	   0.33	   0.24	   0.21	  

Prop.	  routes	  identified	  by	  

genetic	  similarity	  
0.19	   0.17	   0.15	   0.27	   0.20	   0.18	   0.29	   0.22	   0.19	  
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Table	  S3.	  Proportion	  of	  correct	  transmission	  routes	  identified	  using	  the	  geometric	  Poisson	  likelihood,	  as	  well	  as	  with	  

the	  ‘outbreaker’	  and	  ‘seqTrack’	  functions.	  A	  total	  of	  25	  outbreaks	  with	  30	  susceptible	  individuals	  were	  simulated	  for	  

each	  scenario,	  with	  outbreaks	  terminating	  with	  fewer	  than	  20	  infections	  excluded.	  R0	  was	  set	  to	  be	  2,	  with	  a	  within-‐

population	  size	  5000.	  In	  outbreaker,	  no	  spatial	  model	  was	  defined,	  importation	  identification	  was	  suppressed,	  and	  

the	  infectivity	  distribution	  was	  specified	  to	  be	  uniform.	  In	  seqTrack,	  the	  mutation	  rate	  was	  provided.	  
a	  If	  the	  true	  source	  and	  other	  hosts	  are	  genetically	  equidistant,	  the	  true	  host	  is	  assumed	  to	  be	  identified	  

with	  probability	  1/(#	  equidistant	  closest	  hosts).	  

	  

Parameters	   Network	  identification	  method	  

Mutation	  rate	   Inoculum	  size	   ML	  estimate	   outbreaker	   seqTrack	   Closest	  genotypea	  

0.002	   1	   0.28	   0.20	   0.14	   0.21	  

0.002	   5	   0.26	   0.19	   0.13	   0.17	  

0.002	   10	   0.24	   0.19	   0.14	   0.16	  

0.005	   1	   0.28	   0.20	   0.13	   0.22	  

0.005	   5	   0.22	   0.18	   0.12	   0.18	  

0.005	   10	   0.21	   0.21	   0.13	   0.17	  
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Table	  S4.	  Proportion	  of	  observed	  within-‐host	  pairwise	  distances	  rejected	  at	  the	  5%	  level,	  under	  the	  assumption	  that	  

HCW	  infection	  occurred	  2	  days	  after	  the	  infection	  time	  of	  the	  patient.	  Proportions	  were	  calculated	  under	  both	  the	  

geometric-‐Poisson	  and	  the	  pure	  Poisson	  approximations.	  

	  

Source	  of	  HCW	  

infection	  

Proportion	  of	  within-‐host	  pairwise	  distances	  

rejected	  at	  5%	  level	  

Geometric-‐Poisson	   Poisson	  

Patients	  1-‐6	   0.16	   0.48	  

Patients	  7-‐14	   0.25	   0.48	  

Patients	  15	   0.35	   0.48	  
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Table	  S5.	  Transmission	  routes	  excluded	  at	  the	  5%	  level	  under	  a	  range	  of	  scenarios.	  

Mutation	  

rate	  

Eff.	  Pop.	  

Size	  

HCW	  infection	  

time	  (relative	  to	  

first	  case)	  

HCW	  ruled	  out	  as	  

patient	  source	  

Patients	  ruled	  out	  

as	  HCW	  source	  

0.0002	   3000	   -‐23	   NA	   8,9,10,13,14	  

0.0005	   3000	   -‐23	   NA	   NA	  

0.0002	   10000	   -‐23	   NA	   8,9,10,13,14	  

0.0002	   100	   -‐23	   NA	   8,9,10,13,14	  

0.0002	   3000	   164	   1-‐10,13,14	   –	  	  

0.0002	   3000	   -‐251	   NA	   –	  

	  

	  

	  

	  

	  

	  

	  


