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ABSTRACT Some species exhibit very high levels of DNA sequence variability; there is also evidence for the existence of heritable
epigenetic variants that experience state changes at a much higher rate than sequence variants. In both cases, the resulting high
diversity levels within a population (hyperdiversity) mean that standard population genetics methods are not trustworthy. We analyze
a population genetics model that incorporates purifying selection, reversible mutations, and genetic drift, assuming a stationary
population size. We derive analytical results for both population parameters and sample statistics and discuss their implications for
studies of natural genetic and epigenetic variation. In particular, we find that (1) many more intermediate-frequency variants are
expected than under standard models, even with moderately strong purifying selection, and (2) rates of evolution under purifying
selection may be close to, or even exceed, neutral rates. These findings are related to empirical studies of sequence and epigenetic
variation.

THE infinite sites model, originally proposed by Fisher
(1922, 1930) and developed in detail by Kimura (1971),

has been the workhorse of molecular population genetics for
four decades. Its core assumption is that any nucleotide site
segregates for at most two variants and that the mutation
rate scaled by effective population size (Ne) is so low that
new mutations arise only at sites that are fixed within the
population (see also Charlesworth and Charlesworth 2010,
p. 207). This assumption facilitates calculations of the the-
oretical values of some key observable quantities, such as
the expected level of pairwise nucleotide site diversity or the
expected number of segregating sites in a sample (Kimura
1971; Watterson 1975; Ewens 2004). In the framework of
coalescent theory, this implies a linear relation between the
genealogical distance between two sequences and the neu-
tral sequence divergence between them, greatly simplifying
methods of inference and statistical testing (Hudson 1990;
Wakeley 2008).

There has recently been some discussion of how to go
beyond the infinite sites assumption of a low scaled mutation
rate, which breaks down for species with very large effective
population sizes, including some species of virus and bacteria,
and even eukaryotes such as the sea squirt and outbreeding
nematode worms, resulting in “hyperdiversity” of DNA se-
quence variability within a population (Cutter et al. 2013).
It is important to note, however, that this problem can arise
even when the scaled mutation rate is relatively low, since
then the proportion of neutral nucleotide sites that are cur-
rently segregating in a population (which depends on the
scaled mutation rate) can be substantial when the population
size is sufficiently large. For example, with a neutral mutation
rate of u per site in a population of N breeding adults, the ex-
pected fraction of sites that are segregating in a randomly
mating population is fs = u [ln(2N) + 0.6775], where u =
4Neu (Ewens 2004, p. 298). Thus, with u= 0.01, a reasonable
value for many species (Leffler et al. 2012), we have fs = 0.15
even when N has the implausibly low value of 1 million. This
implies that �15% of new mutations are expected to arise at
sites that are already segregating, suggesting a significant de-
parture from the assumptions of the infinite sites model. (An
alternative way of looking at this is to determine the expected
number of new mutations that occur at a site while a preex-
isting mutation is segregating, which is of a similar magnitude
to fs—see Appendix, Equation A1.)
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In addition, it has been known for nearly 20 years that
sufficiently high scaled mutation rates at some or all sites in a
sequence can lead to substantial departures from the infinite
sites expectations for statistics such as Tajima’s D, which are
commonly used to detect deviations from neutral equilibrium
caused by population size changes or selection (Bertorelle and
Slatkin 1995; Aris-Brosou and Excoffier 1996; Tajima 1996;
Yang 1996; Mizawa and Tajima 1997). This is because the
occurrence of mutations at sites that are already segregating
increases the pairwise diversity among sequences, but does
not increase the number of segregating sites (Bertorelle and
Slatkin 1995). The analysis of data on DNA sequence variation
in hyperdiverse species thus requires methods that deal with
this problem, and a number of population genetics models
that contribute to this have already been developed (Desai
and Plotkin 2008; Jenkins and Song 2011; Cutter et al.
2012; Jenkins et al. 2014; Sargsyan 2014).

Finally, analyses of the inheritance of epigenetic markers,
such as methylated cytosines, have suggested that these can
sometimes be transmitted across several sexual generations,
but with rates of origination or reversion that are several
orders of magnitude higher than the mutation rates of DNA
sequences (Johannes et al. 2009; Becker et al. 2011; Schmitz
et al. 2011; Lauria et al. 2014). In view of the current in-
terest in the possible functional and evolutionary signifi-
cance of epigenetic variation (Richards 2006; Schmitz and
Ecker 2012; Grossniklaus et al. 2013; Klironomos et al. 2013),
it seems important to develop models that can shed light on
their population genetics, to understand the evolutionary
forces acting on them.

The purpose of this article is to develop a relatively sim-
ple analytical framework for examining the consequences of
high scaled mutation rates, in the framework of the classical
random mating, finite population size model with forward
and backward mutations in the presence of selection and
genetic drift (Wright 1931, 1937). The approach is similar in
spirit to the biallelic model used by Desai and Plotkin
(2008), but with a focus on sample statistics that summarize
properties of the site frequency spectrum, as well as on the
expected rate of substitutions along a lineage. As has been
found in previous coalescent-based treatments with neutral-
ity (Bertorelle and Slatkin 1995; Aris-Brosou and Excoffier
1996; Cutter et al. 2012), the results derived below show
that very large departures from the infinite sites model occur
when the scaled mutation rate is sufficiently high, even
when fairly strong purifying selection is acting, resulting in
features of the data such as a large excess of intermediate-
frequency variants. In addition, the signal of purifying selec-
tion on substitutions along a lineage can be obscured or
even converted into a signal of positive selection. The find-
ings have significant implications for the interpretation of
the results of studies of both epigenetic variability and
DNA sequence variability in species with large effective pop-
ulation sizes. Readers who are interested primarily in the
main biological conclusions may wish to skip over the details
of the derivations.

Analysis of the Model of Purifying Selection, Drift,
and Mutation

Basic assumptions

We assume a randomly mating, diploid, discrete generation
population with N breeding adults, and effective population
size Ne. Over a long sequence of m nucleotide sites, each site
has two alternative types, A1 and A2, with mutation rates u
and v from A2 to A1 and vice versa. (With diploidy, this means
that only three genotypes are present at a site: A1A1, A1A2

and A2A2.) A1 and A2 might correspond to AT versus GC base
pairs, unpreferred versus preferred synonymous codons, or
selectively favored versus disfavored nonsynonymous var-
iants. If epigenetic variation is being considered, then A1

and A2 could be regarded as the methylated or unmethylated
states of a nucleotide site or a differentially methylated region
(or vice-versa). This approach, while undoubtedly oversimpli-
fied, avoids the problem of modeling mutation among all four
basepairs, which is difficult to deal with except by making the
unrealistic assumption of equal mutation rates in all direc-
tions (Ewens 2004).

If selection is acting, we assume semidominance, with A2

having a selective advantage s over A1 when homozygous
and with the fitness of A1A2 being exactly intermediate, al-
though our general conclusions are probably not strongly de-
pendent on this assumption. There is complete independence
among sites (i.e., recombination is sufficiently frequent that
linkage disequilibrium is negligible), and all evolutionary forces
are weak, so that the standard results of diffusion approxima-
tions can be employed.

When the population is at statistical equilibrium, the
probability distribution of variant frequencies over sites remains
stationary and the mean numbers of sites in each possible state
are constant over time, despite continual changes at individual
sites (Charlesworth and Charlesworth 2010, pp. 270–272). At
any given time, some sites are fixed for the A1 type, some are
fixed for A2, and others segregate for both. Let the equilibrium
proportion of sites that are fixed for A1 and A2 be f1f and f2f,
respectively. The proportion of sites that are segregating is
fs = 1 – f1f – f2f.

Results for some important population parameters

These assumptions allow the use of Wright’s stationary dis-
tribution formula (Wright 1931, 1937) to describe the prob-
ability density of the frequency q of A2 at a site,

fðqÞ ¼ C expðgqÞpa21qb21; (1)

where p = 1 – q, a = 4Neu, b = 4Nev, g = 2Nes, and the
constant C is such that the integral of f(q) between q= 0 and
q = 1 is equal to 1. It is convenient to write u in terms of the
mutational bias parameter, k; i.e., u = kv, so that a = kb.

Properties of the distribution

An explicit expression for C can be obtained by noting that
the integral of the other terms on the right-hand side with
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respect to q is equal to the product of G(a) G(b)/ G(a + b)
and the confluent hypergeometric function 1F1(a, b, z)
(Abramowitz and Stegun 1965, p. 503), with parameters
a = b, b = a + b, z = g, where

1F1ða; b; zÞ ¼
XN
i¼0

zi

i!
ðaÞi
ðbÞi

(2)

and ðxÞ0 ¼ 1;   ðxÞi ¼ xð1þ xÞð2þ xÞ:::  ði2 1þ xÞ for i$ 1
(Pochhammer’s symbol).

This can be seen by expanding the exponential term in
Equation 1 in powers of gq and integrating over the range
0 to 1 (Kimura et al. 1963).

Integrating Equation 1, we have

C ¼ Gðaþ bÞ
GðaÞGðbÞ

1

1F1ðb;aþ b; gÞ: (3)

Furthermore, the jth moment of q around zero, obtained
from the integral of qjf(q) between 0 and 1, is given by

MjðqÞ ¼ 1F1ðbþ j;aþ bþ j; gÞðbÞj
1F1ðb;aþ b; gÞ ðaþ bÞj

: (4)

In particular, the mean frequency of A2 is

q ¼ 1
ð1þ kÞ  

1F1ðbþ 1;   aþ bþ 1; gÞ
1F1ðb;aþ b; gÞ (5a)

and the mean frequency of A1 is

p ¼ k

ð1þ kÞ
1F1ðb;aþ bþ 1; gÞ

1F1ðb;aþ b; gÞ : (5b)

Approximations for small b: Approximations to these
expressions for the case when b ,, 1 and k is of order 1 are
derived in the Appendix. Equations A3a and A3b imply that

q ¼ 1
½1þ k expð2 gÞ� þ OðbÞ: (6)

The left-hand side of Equation 6 is equivalent to the
fraction of sites that carry A2 in a random sequence sampled
from the population; if A1 and A2 correspond to unpreferred
and preferred codons, respectively, this measures the fre-
quency of preferred codons, Fop (McVean and Charlesworth
1999). With epigenetic variation, if A1 and A2 correspond to
methylated and unmethylated states, respectively, q mea-
sures the fraction of unmethylated sites or regions in a ran-
dom genome.

The leading term on the right-hand side of Equation 6 is
identical to the Li–Bulmer equation commonly used in anal-
yses of selection on codon usage (Li 1987; Bulmer 1991).
This result is, however, often derived by assuming that nearly

all sites are fixed and calculating the rate of flux between sites
fixed for A1 and A2; q is then taken to be the frequency of sites
that are fixed for A2, with 1 – q representing the frequency of
sites fixed for A2 (Bulmer 1991). This raises the question of
how good an approximation we obtain by neglecting the term
of order b, when the infinite sites assumption is violated, so
that a significant fraction of sites are in fact segregating for A1

and A2.
First, we note that it is immediately obvious from

Equation 1 and Equations 5a and 5b that q with g = 0 is
equal to 1/(1 + k), so that Equation 6 for this case is exact,
as has long been known (Wright 1931). We can also obtain
a first-order approximation to Equations A3a and A3b when
g 6¼ 0 by expanding in powers of b, which will be accurate
when b is sufficiently small. Neglecting second-order and
higher terms in b, as is also done in Equations 8a–8c, we
obtain

q � 12bkg expð2 gÞ
½1þ k expð2 gÞ� ; (7a)

where

g ¼
�
g þ kexpð2 gÞPN

i¼1
�
gi
�
i!
�
aiþ1 þ

PN
i¼2

�
gi
�
i!
��
aiþ12 aiÞ

�
½1þ kexpð2 gÞ�

(7b)

and ai is the harmonic series 1 + 1/2 + 1/3 + . . . + 1/
(i –1), with i $ 2.

As shown after Equation A3b of the Appendix, the leading
term in Equation 6 should provide a good approximation
when bk #0.1.

Approximations for large g: For examining what happens
when g becomes very large, it is useful to note that the
Taylor’s series expansion of Equation 5b for small b yields
the expression

p � k expð2 gÞ
1þ k expð2 gÞ

(
1þ b

"XN
i¼1

gi

i!

þ k expð2 gÞ
1þ k expð2 gÞ

XN
i¼1

giþ1lnðiÞ
ðiþ 1Þ!

#)
: (8a)

For large g, this gives

p �  
k expð2 gÞ

1þ k expð2 gÞ
�
1þ b expðgÞ

g

�
; (8b)

i.e.,

p � bk

g

�
1þ Oðg21Þ�: (8c)

The first term on the right-hand site of Equation 8c is
equivalent to the asymptotic expression for p with large g

given by Kimura et al. (1963). This implies that, for sufficiently

Population Genetics of Hyperdiversity 1589



large g compared with b, the mean frequency of the disfa-
vored variant is equal to its equilibrium frequency under
mutation–selection balance with s .. u in an infinite pop-
ulation, where p = 2u/s = 2vk/s (Haldane 1927), as
expected intuitively. Numerical studies show that Equation
8b performs well for g . 1 if b,, 1, when it can give a good
approximation when neither the leading term in Equation 6
nor the Kimura et al. (1963) large g approximation is accu-
rate (results not shown). Equation 8b implies that the leading
term in Equation 6 is accurate when g ,, –ln(b).

Frequencies of fixed sites: Second, the approximate fre-
quencies of sites that are fixed for A1 and A2, f1f and f2f, can
be found from the integrals of f(q) between 0 and 1/(2N)
and 1– 1/(2N) and 1, respectively (Ewens 2004, p. 178). For
large N, such that gN–1 ,, 1, when q is close to zero we
have f(q) = C[qb–1 + O(gN–1) + O(bN–1)], and so

f1f �
Z 1=ð2NÞ

0
fðqÞdq

¼ C½b21ð2NÞ2b þ OðgN21Þ þ OðbN21Þ� (9a)

f2f �
R 1
121=ð2NÞ fðqÞdq

¼ C expðgÞ½ðbkÞ21ð2NÞ2bk þ OðgN21Þ þ OðbN21Þ�;
(9b)

where the terms in O(gN–1) and O(bN–1) can be neglected
when N is sufficiently large (cf. Kimura 1981). Approxima-
tions for these expressions for small b can readily be ob-
tained (see Appendix).

Nucleotide site diversity: Third, the expected pairwise
nucleotide site diversity, p, can be obtained from the expec-
tation of 2pq, given by 2E{q – q2}. From Equation 4, we have

E
	
q2



¼ bðbþ 1Þ

ðaþ bÞðaþ bþ 1Þ
1F1ðbþ 2;  aþ bþ 2; gÞ

1F1ðb;aþ b; gÞ :

(10a)

The expectation of E{q – q2} is given by subtracting Equa-
tion 10a from Equation 5b. Using Equation 2 and simplify-
ing, we obtain

This is equal to one-half of the expected pairwise diversity
per site, p. Using the same approach as for Equations 7 and
8, keeping only terms of order b we obtain

p � 2bk
g

½12 expð2 gÞ�
½1þ k expð2 gÞ�: (11)

As expected, this is identical to equation 15 of McVean and
Charlesworth (1999) for the infinite sites model at statistical
equilibrium, where new mutations arise only at sites that are
fixed either for A1 or for A2. When g .. b, this term con-
verges on the deterministic value under mutation–selection
balance, 2bk/g, which corresponds to the diversity expected
at deterministic mutation–selection balance with p = 2u/s
(see above).

In the case of neutrality, Equation 10b reduces to the
following expression (Charlesworth and Charlesworth 2010,
p. 237):

p ¼ 2bk
ð1þ kÞ½bð1þ kÞ þ 1�: (12)

As expected intuitively, the neutral diversity is always less
than for the infinite sites model with a given value of b and
k, where Equation 11 with g = 0 gives p = 2bk/(1 + k),
because some new mutations arise at sites that are already
polymorphic; p approaches 2k/(1 + k)2 for large b, which is
the value for an infinite population at equilibrium under
reversible mutation between A1 and A2.

Rate of substitution along a lineage

Analytic results: The rate of substitution of new mutations
along a lineage can be modeled as follows. Conditioning on
a frequency q of the A2 variant at a site in a given genera-
tion, there is an expected number of 2Nvkq mutations per
site from A2 to A1 and 2Nvp from A1 to A2. The correspond-
ing probability that A1 becomes fixed, conditional on p, is
Q1(p) = [exp(gp) – 1]/[exp(g) – 1] (Kimura 1962). Condi-
tioning on this fixation event, the probability that it is a new
A1 mutation that has been fixed is 1/(2Np). The expected
number of new A1 mutations that become fixed is thus equal
to vkp–1qQ1(p). Similarly, the conditional probability that A2

eventually becomes fixed is Q2(q) = [1 – exp(–gq)]/[1 – exp
(–g)]; the net expected number of new A2 mutations that
become fixed is vpq–1Q2(q). (At first sight, it would seem
that this procedure cannot be applied to mutations arising

in the fixed classes and that these should be treated sepa-
rately, but the argument given in the Appendix shows that it
provides an accurate approximation for this situation as well.)

Efpqg ¼ a
�ðaþ bþ 1Þ þPN

i¼1
�
gi
�
i!
��ðbþ 1Þi

�ðaþ bþ 1Þi 2 ðbþ 1Þiþ1
�ðaþ bþ 1Þiþ1��

1þ kþ g þPN
i¼2

�
giðbþ 1Þi21

�
i! ðaþ bþ 1Þi21

�� : (10b)
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Integrating over all values of q, the net rate at which
new mutations enter the population and become fixed is
thus

l ¼ v
Z 1

0
½kp21qQ1ðpÞ þ pq21Q2ðqÞ�fðqÞdq: (13)

The terms involving functions of p and q in the integrand are

p21qQ1ðpÞfðqÞ ¼ C½expðgpÞ2 1�
½expðgÞ21� expðgqÞpa22qb (14a)

pq21Q2ðqÞfðqÞ ¼ C½12 expð2 gqÞ�
½12 expð2 gÞ� expðgqÞpaqb22: (14b)

The corresponding integrals are

I1 ¼  expðgÞ2 1F1ðbþ 1;aþ b; gÞ
 1F1ðb;aþ b; gÞ

	 

b

ða21Þ½expðgÞ2 1�
(14c)

and

I2 ¼  1F1ðb21;aþ b; gÞ2 1
 1F1ðb;aþ b; gÞ

	 

a

ðb2 1Þ½12 expð2 gÞ�:

(14d)

Note that 1F1(b – 1, a + b, g) – 1 has a factor of b – 1, so that
the term in b – 1 in the denominator of Equation 14d cancels. At
first sight, Equation 14c appears to have a singularity at a = 1.
However, by using the relation 1F1(a, b, z) = 1F1(b – a, b, z)
exp(z), we find that 1F1(b + 1, a + b, g) = 1F1(a – 1, a +
b, g)exp(g), so that the numerator of Equation 14c
contains a factor of a – 1, which cancels the term in the
denominator.

The net rate of substitution is given by

l ¼ vðkI1 þ I2Þ: (15)

As g approaches zero, Equations 14 and 15 imply that l
tends to 2vk/(1 + k); this is independent of the population
size and is identical to the infinite sites expression with
neutrality at statistical equilibrium under reverse mutation
(Charlesworth and Charlesworth 2010, p. 274), as expected
from the fact that the equilibrium neutral substitution rate is
equal to the net mutation rate for any class of mutational
model (Kimura 1968).

When a and b are sufficiently small, the main contribu-
tions to l come from the two fixed classes, so that the initial
frequencies of the new mutations can be equated to 1/(2N),
when O(b2) terms in I1 and I2 are neglected. Using the
above result that the frequencies of the fixed classes are
equal to the infinite sites values multiplied by a factor 1 –

O(b), the infinite sites expression for the case of selection is
recovered, neglecting higher-order terms in b (equation
6.11 of Charlesworth and Charlesworth 2010, p. 275).
Again, this implies that, as expected, the infinite sites model

provides a good approximation for the rate of substitution
with sufficiently small b.

Scaling relative to the neutral rate: There are two different
ways in which we can determine the ratio of the value of l
with g . 0 to that for a neutral standard, thereby removing
the dependence on the mutation rate term in Equation 15.
First, l with selection can be compared to its value at sta-
tistical equilibrium with the same value of a and b. This
would be appropriate for comparing rates of evolution at
putatively neutral sites in a given genomic region with those
at sites that are potentially under purifying selection, with-
out making any corrections for differences in base composi-
tion; this is often done when comparing nonsynonymous
and synonymous rates of substitution across different genes
by statistics such as KA/KS. Second, l with selection can be
compared with the neutral rate conditioned on the same
mean frequencies of A1 and A2 along the sequence as for
the selected sites; this corresponds to methods that compare
probabilities of substitution between the same pairs of nucleo-
tides in contexts when these are putatively selected vs. puta-
tively neutral (Halligan et al. 2004; Eory et al. 2010).

Numerical results for the population parameters

Numerical results generated from the above formulas are
presented in Figure 1 and Figure 2. Figure 1 illustrates the
dependence of the following variables on the scaled muta-
tion rate (b) and the scaled intensity of selection (g), as-
suming a mutational bias (k) of 2 toward the deleterious
variant at a site: the mean frequency per site of the delete-
rious variant A1 (p), the expected diversity (p), the expected
proportion of sites that segregate for variants (fs), and the
above two measures of the rate of substitution relative to
neutral expectation. Figure 2 illustrates the dependence of p
and p on b at a finer scale, for different values of k and g.
For clarity, the infinite sites values for p and the relative
rates of substitution are not shown; with selection, the infi-
nite sites values for these parameters are close to their values
when b = 0.002.

With neutrality, the exact value of p is always equal to the
infinite sites value and is independent of b for a given value
of k. With selection and low b (0.002 or 0.02), it can be seen
that agreement with the infinite sites predictions is fairly
good for both these values despite the fact that the propor-
tion of sites that are segregating can be quite substantial
with b= 0.02; the second-order approximation of Equations
7a and 7b gives very close agreement even for b = 0.2 with
weak selection, but diverges for b . 0.2 when g . 0.5
(results not shown), whereas the value of p departs quite
seriously from the infinite sites values at b = 0.2 when g .
5. A similar pattern of departure from the infinite sites value
holds for p, except when selection is strong (g = 5 or 50),
when agreement is still good at b = 2; this is because the
exact diversity and the infinite sites value both approach the
deterministic value under mutation–selection balance when
1,, g and b,, g (see Equation 11). Somewhat surprisingly,
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the infinite sites and exact values of the proportion of sites
that are segregating always agree well.

Perhaps the most interesting result to emerge is that,
with k . 1, the rate of substitution relative to neutral ex-
pectation can exceed one when there is moderate selection
and mutational bias toward the deleterious variants. This
has long been known to apply to the infinite sites model
when the “uncorrected” relative rate is used and when there is
mutational bias (Eyre-Walker 1992; McVean and Charlesworth
1999), which can cause serious problems for phylogenetic
inferences concerning selective constraints (Lawrie et al.
2011). As shown in the Appendix, the “corrected” relative
rate is always expected to be less than one under the infinite
sites assumption (see Equation A8). But with sufficiently
high b, the corrected relative rate can exceed one, even
for g = 5, and can be only just below one for lesser values
of b. The reason for this seemingly paradoxical result is
presumably the fact that nearly all sites are segregating if

b is high; when p is sufficiently high because mutation and
drift are overcoming selection, there is a substantial chance
that a new mutation to the favorable variant A2 can arise at
a segregating site, which has a higher chance of fixation
than a neutral variant and hence contributes to an elevated
substitution rate. With sufficiently strong mutational bias, p
can be ..1/2, so that the contribution from the enhanced
fixation probability of favorable mutations outweighs
the lower contribution from the fixation of deleterious
mutations.

As was previously shown by McVean and Charlesworth
(1999) for the infinite sites model, the equilibrium diversity
with selection can also considerably exceed the neutral equi-
librium value with the same mutational parameters, when
there is a mutational bias toward deleterious alleles (see
also Kondrashov et al. 2006). For example, in Figure 1, with
g = 5 and b = 2, p = 0.43 but is 0.38 for the neutral case;
with b = 20 and g = 50 the values are 0.49 and 0.44,

Figure 1 The vertical bars are the values (in percentages) of the mean frequency of A1, p (red), p from Equation 10b (blue), p as given by the infinite
sites model (black), the proportion of segregating sites from Equation 9 (white), the proportion of segregating sites under the infinite sites model (pink),
the uncorrected rate of substitution relative to neutrality (light blue), and the corrected rate of substitution relative to neutrality (green).
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respectively. In this case, there is no meaningful way of
correcting for differences in base composition between the
neutral and selected sites when there are substantial depar-
tures from the infinite sites assumption, since the diversity in
the neutral case is not related to the mean allele frequency
in a simple way.

Properties of a Sample from a Population

Analytic results

This raises the question of the extent to which the properties
of a sample of alleles from a population are affected by
deviations from the infinite sites assumption. With the above
model, the probability that a sample of n alleles segregates
for k A2 variants at a site and n – k copies of A1 can be

obtained from the corresponding binomial distribution with
parameter q, integrated over f(q), takes the form

pðkÞ ¼
�
n
k

�
C
Z 1

0
expðgqÞ ð12qÞaþn2k21qbþk21dq;

(16a)

where C is given by Equation 3 (McVean and Charlesworth
1999; Desai and Plotkin 2008).

Using the properties of the confluent hypergeometric
function, this yields

pðkÞ ¼
�
n
k

�
 
1F1ðbþ k;aþ bþ n; gÞðbÞkðaÞn2k

 1F1ðb;aþ b; gÞðaþ bÞn
;

ð0, k,nÞ
(16b)

Figure 2 The curves are the values (in percentages) as functions of b for the mean frequency of A1, p (red, dashed curve), p from Equation 10b (blue,
solid curve), p as given by the infinite sites model (green, solid curve), the uncorrected rate of substitution relative to neutrality (black, dashed curve), and
the corrected rate of substitution relative to neutrality (pink, dashed curve).

Population Genetics of Hyperdiversity 1593



pð0Þ ¼  1F1ðb;aþ bþ n; gÞðaÞn
1F1ðb;aþ b; gÞðaþ bÞn

(16c)

pðnÞ ¼  
 1F1ðbþ n;aþ bþ n; gÞðbÞn

1F1ðb;aþ b; gÞðaþ bÞn
: (16d)

The proportion of sites that are observed to be segregating is

pseg ¼ 12 pð0Þ2 pðnÞ: (16e)

The conditional site frequency spectrum (SFS) for segre-
gating sites can be obtained by dividing Equation 16b by
Equation 16e. The folded SFS for segregating sites [which
describes the numbers of variants of either type at frequen-
cies 1–0.5n + 1 (n odd) or 0.5n (n even)] can also easily be
obtained.

Equations 16a–16e can readily be used to obtain the the-
oretical values of standard sample statistics, such as the di-
versity per site (p) (Tajima 1983), Watterson’s uw = pseg /an
(Watterson 1975), and Tajima’s D (Tajima 1989b), using
the standard formulas for these quantities. A well-known
problem with Tajima’s D is the fact that its magnitude is
strongly dependent on both the level of variability in the
population and the length of sequence used to estimate it
(Tajima 1989b). Langley et al. (2014) proposed the use of
the summary statistic Dp = (p – uw)/uw for measuring the
extent of departure of the SFS from the infinite sites neutral
equilibrium expectation, which should not suffer from these
problems. Another summary statistic for this purpose is pro-
vided by the proportion of singleton variants among segre-
gating sites, given by

psn ¼ ½pð1Þ þ pðn2 1Þ�
pseg

: (16f)

(This is closely related to the widely used D statistic of Fu
and Li 1993.)

Numerical results

Use of the series expression for the confluent hypergeo-
metric function allows rapid computation of all relevant
statistics; to avoid overflow when g is large, however, it is
necessary to use logarithms of the individual terms and par-
tial sums of the series (which can be done, since the selec-
tion model is defined such that g . 0). A FORTRAN program
is available on request to B. Charlesworth.

Table 1 displays some examples of such computations, for
the case of a mutational bias of 2 toward deleterious muta-
tions, for a subset of the parameter values used in Figure 1.
The expected p values are not shown, since these are the
same as the population diversities given in Figure 1. Figure 3
show the folded SFSs for some chosen examples, using
a sample size of 20 alleles. It can be seen that a high b value
(20) means that the proportion of sites that are found to be
segregating (pseg) is effectively 100%, even for g as high as
50 and a sample size (n) of 20. A moderate b value (0.2)

behaves similarly in the neutral case with a sample size of
200, but otherwise is associated with a pseg of ,80% (pseg is
as low as 13% for n = 20 and g = 50). With neutrality or
weak selection (g # 5), moderate or high values of b cause
a distortion of the SFS toward a much lower proportion of
singletons (psn) and higher Tajima’s D and Dp than is expected
with the infinite sites model. Even for g = 50, a very low psn
and a positive D are found when b = 20. This reflects the
tendency of high b values to push the distribution of q toward
intermediate frequencies, which has long been known (Wright
1931). Some analytical approximations for pseg are derived in
supporting information, File S1.

Discussion

The results described above have some important implica-
tions for the interpretation of data on DNA sequence variation
and evolution when there is hyperdiversity; i.e., the scaled
mutational parameter (b in the notation used here) is suffi-
ciently large that the infinite sites model does not accurately
describe patterns of variation within populations. Recent sur-
veys of DNA sequence polymorphisms show that that such
hyperdiversity is more common than previously thought,
even in multicellular organisms (Cutter et al. 2013). In addi-
tion, given the evidence from studies of organisms like Arabi-
dopsis thaliana and maize that epigenetic variants such as
methylated cytosines can be transmitted fairly stably through
meiosis, but have origination and disappearance rates that
are several orders of magnitude higher than those of nucleo-
tide variants (Johannes et al. 2009; Becker et al. 2011;
Schmitz et al. 2011; Lauria et al. 2014), the patterns de-
scribed above are relevant to population-level studies of some
classes of epigenetic variants.

Distortion of the SFS with hyperdiversity

As was pointed out �20 years ago in the context of human
mitochondrial DNA sequence variability (Bertorelle and
Slatkin 1995; Aris-Brosou and Excoffier 1996; Tajima 1996;
Yang 1996), a major effect of a high scaled mutation rate (b in
the notation used here) is that more intermediate-frequency
variants will be present at polymorphic sites in a sample from
a population than under the equilibrium infinite sites model.
In particular, for a stationary population at equilibrium be-
tween drift and the input of neutral or nearly neutral muta-
tions, the expected values of Tajima’s D statistic (DT) and the
Dp statistic proposed by Langley et al. (2014) are positive
rather than slightly negative or zero, respectively, as expected
under the infinite sites model (Tajima 1989b)—see Figure 1
and Table 1. This reflects the fact that the expected value of
the pairwise diversity per site (p) is greater than the expected
value of the measure of diversity based on the number of
segregating sites at a locus (uw). As can be seen from Table
1, this effect is quite noticeable even for b as low as 0.02 when
selection is absent or weak, and small positive values of DT

and Dp are found with neutrality even when b= 0.002 (of the
order of 1% with n = 200).
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With very high values of b, a positive Tajima’s D can occur
even with quite strong purifying selection (a scaled selection
parameter g of 50), as shown in Table 1. A SFS with an excess
of intermediate-frequency variants at loci across the genome
is usually interpreted as indicating a recent population bot-
tleneck or a subdivided population (e.g., Staedler et al. 2009).
False positive results for tests for bottlenecks and/or subdivi-
sion may thus be obtained if infinite sites rather than finite
sites models are applied to hyperdiverse populations or epi-
genetic variation, even when moderately strong purifying se-
lection is acting. Given that very small positive mean values
across sites of statistics such Dp can be statistically significant
with genomic-scale data and large sample sizes, caution
should be used when applying infinite sites predictions to
such data sets. The suggested criterion for hyperdiversity of
p or uw of 5% for using finite sites models rather than the
infinite sites model (Cutter et al. 2013) may be too high for
such data.

Relation to the data

This raises the question of whether there is indeed evidence
for the expected pattern of a skew of the SFS spectrum
toward intermediate-frequency variants. In the study of Cae-
norhabditis sp. 5 by Cutter et al. (2012), where the within-
population diversity at synonymous sites is �0.08, Tajima’s
D values for “scattered” samples [where one allele per locus
was sampled from each of 13 locations, to minimize depar-
ture from the standard coalescent process (Wakeley 2000)]
were nearly all positive, with a mean of 0.28. This is consis-
tent with the coalescent simulations of Cutter et al. (2012),
who used the SIMCOAL2 program of Laval and Excoffier
(2004) with a finite sites model with equal mutation rates
among all four possible nucleotides (A. Cutter and L. Excoffier,
personal communication). The model used here gives an
expected value of Tajima’s D of �0.10 with g = 0 or 0.5 and

a mutational bias of 2, assuming a sample size of 13 and 150
bp per locus (corresponding approximately to the numbers
of synonymous sites in the study). At least qualitatively, this
species thus fits the expectation under hyperdiversity for
DNA sequence variability.

In contrast, the synonymous SFS in the much more
hyperdiverse species Caenorhabditis brenneri is biased to-
ward low-frequency variants, with a mean Tajima’s D of
–0.56 over 23 loci with an average of �150 bp per locus
(Dey et al. 2103, table S3), again using scattered sampling.
Similarly, in the only detailed survey of epigenomic variation
published to date, that of�200 northern European accessions
of A. thaliana (Schmitz et al. 2013, supplementary table 9),
the SFS for single methylated vs. nonmethylated cystosines is
also highly skewed toward low-frequency variants. The lack
of linkage disequilibrium between this class of variants and
SNPs suggests that these epigenetic variants are not caused
by nucleotide site variants associated with methylation status,
but represent true heritable epialellic variation (Schmitz et al.
2013).

There are several possible reasons for this sharp dis-
agreement between the theoretical predictions and these
observations. One is that demographic effects, such as a
recent population expansion, mean that predictions based
on the assumption of a stationary population are over-
whelmed by the well-known excess of rare variants associ-
ated with expansion (Tajima 1989a; Slatkin and Hudson
1991). This is ruled out for the case of epigenetic variation
in A. thaliana, because the SFS for SNPs is far less biased
toward rare variants (Schmitz et al. 2013), but remains pos-
sible for C. brenneri. The second possibility is that purifying
selection is sufficiently strong to skew the SFS toward rare
variants. This seems unlikely in the case of C. brenneri,
where the estimates of the overall g for synonymous sites
suggest a value close to 0.5 (Dey et al. 2103), which is

Table 1 Sample statistics for the reversible mutation model (k = 2)

n = 20 n = 200

b pseg psn DT Dp pseg psn DT Dp

g = 0 0.02 0.088 0.287 0.038 0.016 0.142 0.159 0.089 0.040
0.2 0.533 0.219 0.322 0.109 0.728 0.086 0.745 0.326
2.0 0.966 0.062 1.181 0.399 1.000 0.001 1.252 1.226

20 0.999 0.007 1.637 0.553 1.000 0.000 3.570 1.567
g = 0.5 0.02 0.094 0.289 0.029 0.009 0.152 0.159 0.076 0.034

0.2 0.559 0.213 0.348 0.117 0.753 0.080 0.848 0.373
2.0 0.970 0.055 1.248 0.421 1.000 0.001 2.924 1.284

20 0.999 0.007 1.649 0.556 1.000 0.000 3.586 1.574
g = 5.0 0.02 0.071 0.441 20.654 20.226 0.146 0.228 20.843 20.380

0.2 0.511 0.319 20.241 20.081 0.787 0.104 20.032 20.014
2.0 0.990 0.025 0.950 0.532 1.000 0.000 3.443 1.511

20 0.999 0.004 1.755 0.592 1.000 0.000 3.722 1.634
g = 50 0.02 0.014 0.845 21.539 20.586 0.063 0.478 21.820 20.851

0.2 0.129 0.795 21.650 20.564 0.478 0.351 21.826 20.806
2.0 0.744 0.408 20.967 20.327 0.998 0.005 20.171 20.169

20 1.000 0.000 1.329 0.736 1.000 0.000 4.270 1.875

pseg is the proportion of sites that are segregating, psn is the proportion of singletons among segregating sites in a sample of size n, DT is the mean of Tajima’s D for
a sequence of 450 bp, and Dp = (p – uw)/uw, where uw = pseg/an and an = 1 + 1/2 + . . . + 1/(n – 1). All statistics were calculated from Equations 16a–16f.
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insufficient to cause a skew toward rare variants (see Table
1). This explanation is more plausible for the A. thaliana
example, since high levels of methylation of cytosines are
nonrandomly distributed across the genome and are espe-
cially prevalent in transposable element sequences where
methylation is important for their silencing (Schmitz et al.
2013). It is therefore very likely that the methylated states
in such sequences are favored by selection. Another possi-
bility is that methylation is selectively neutral, and the dif-
ferences between genomic regions simply reflect different
levels of mutational bias, either toward or against methyla-
tion. Calculations using the biallelic model show that ex-
treme mutational bias at neutral or nearly neutral sites
can overcome the skew of the SFS toward intermediate-
frequency variants (results not shown). The published
results of mutation accumulation experiments in A. thaliana
(Becker et al. 2011; Schmitz et al. 2011) do not shed much
light on the question of the extent of the direction and mag-
nitude of mutational bias, since the experimental design

ascertains sites for which at least one of the mutation accu-
mulation lines contains a methylated cytosine at the site in
question. It is thus strongly biased toward detecting variants
at which the original state was methylation, making it hard
to determine the rate of mutation toward methylation. Dis-
tinguishing between these possible interpretations is a chal-
lenging task and will require the use of numerical models
that incorporate past population size changes and popula-
tion structure.

Limitations of the biallelic model

It is important to note that the biallelic model used here,
which is similar to that used by Bertorelle and Slatkin
(1995) and Desai and Plotkin (2008), is likely to underesti-
mate the effect of hyperdiversity on the SFS, since the pres-
ence of more than two variants at a segregating site will
result in higher p but not uw. On the other hand, the infinite
alleles assumption, apparently used by Aris-Brosou and
Excoffier (1996), means that the upper limit to p is 1,

Figure 3 The vertical bars are the values (in percentages) of the probabilities of finding the minor allele in a sample of 20 at the frequencies indicated on
the x-axis, for different values of b and g.
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whereas in reality there is a maximum of four segregating
variants per site, leading to an upper limit to p of 3/4 (when
all four variants are present at equal frequencies), as op-
posed to 1/2 for the biallelic model used here. Given the
almost universal existence of mutational biases toward tran-
sitions vs. transversions and for GC to AT vs. AT to GC muta-
tions, the upper limit is in practice likely to be considerably
,1, so that the biallelic model with modest mutational bias
probably provides a reasonably good guide to the values of
measures of skew in the SFS. There has been much discus-
sion of the question of why silent nucleotide site diversity
does not a span a much wider range than is commonly seen
(see Leffler et al. 2012 for a recent account). The saturation
of diversity at a level considerably ,3/4 when there is mu-
tational bias may well be a contributing factor.

An intermediate situation is provided by assuming a K-
allele model (Ewens 2004, pp. 192–200) with K = 4,
corresponding to equal mutation rates among all four nucle-
otide states at a site (Tajima 1996; Yang 1996; Desai and
Plotkin 2008). Under neutrality the exchangeability of the
different nucleotides under this model means that the prob-
ability density f(qi) for the frequency qi of a variant of type i
(i = 1–4) is proportional to ð12qiÞu21qðu=3Þ21

i ; where u is the
net mutation rate per site; i.e., f(qi) follows a b-distribution
with parameters u and u/3 (Tajima 1996). With semidomi-
nant selection with type i having a selective advantage s
over all other variants, which are assumed to be selectively
equivalent to each other, this expression is simply multiplied
by exp(gqi).

Following Tajima (1996), these assumptions allow simple
analytical formulas for the sample statistics used above to be
obtained for the case of neutrality: p ¼ u=½1þ ð4u=3Þ�;
pseg ¼ 12 ½Sn21ðu=3Þ=Sn21ð4u=3Þ�; and psn ¼ nuSn22ðuÞ=
psegSn21ð4u=3Þ; where SkðxÞ ¼ ð1þ xÞð2þ xÞ :  :  : ðkþ xÞ:
These can be compared with the statistics obtained from the
biallelic model in Table 1, setting u to the equilibrium infinite
sites neutral diversity with reverse mutation 2bk/(1 + k) =
4b/3 (with k = 2) to obtain comparable net scaled mutation
rates per site. As expected, for very low u, the two models yield
similar results, but even with b = 0.02 the four-allele model
gives noticeably higher expected values of Tajima’s D and Dp;
e.g., with a sample size of 20 and b = 0.02, the values of
Tajima’s D and Dp are 0.069 and 0.022, respectively, vs.
0.038 and 0.016 for the biallelic model. With a sample size
of 20 and b = 0.2, the values of Tajima’s D and Dp for the
four-allele model are 0.61 and 0.20, respectively, compared
with 0.32 and 0.11 for the biallelic model; values of D and Dp

much greater than twice the biallelic values can be generated
by the four-allele model when b is large, reaching 4.7 and 1.6,
respectively, with b = 20. The proportion of singletons
behaves rather differently under the four-allele model; it can
even increase with b up to some upper limit, after which it
declines and is always higher than for the biallelic model (e.g.,
0.36 vs. 0.22, respectively, for b = 0.2 and n = 20; and 0.17
vs. 0.01 for b = 20). This behavior presumably reflects the fact
that there are four possible variants at each site that can behave

as singletons in the case of the four-allele model, and the above
formula simply sums over the probabilities that each one of
these is a singleton, regardless of the status of the other three
possible variants at the same site. A statistic such as Dp is thus
probably a better summary of the skew of the SFS than the
proportion of singletons when a substantial fraction of polymor-
phic sites segregate for more than two variants, unless variants
are collapsed into biallelic alternatives such as GC vs. AT base
pairs (for example, Evans et al. 2014).

For studying situations with multiple alleles per nucleo-
tide and nonequilibrium demography, numerical methods
such as that of Zeng (2010) will be needed.

Some other implications

One difficulty with interpreting the results of population
surveys of epiallelic variation is that it is impossible to know
whether sites that lack epigenetic marks in all individuals
sampled are potentially capable of acquiring them. This
means that the denominator in per-site statistics such as p

and uw is unknown, making it hard to apply standard pop-
ulation genetics methods to these kinds of data. Fortunately,
however, with high b values (.0.2), nearly all sites capable
of mutation will be found to be segregating in a large sam-
ple, even with a scaled selection strength as high as g = 5;
thus, the majority of sites capable of epimutations can be
identified from population surveys, unless strong purifying
selection is acting. Population surveys could, therefore, be
a valuable tool for the characterization of the epigenome.

Another finding that is relevant for both hyperdiverse
DNA sequence variation and hypermutable epigenetic
variation is the fact that substitution rates for sites under
purifying selection may be close to or even greater than
rates at neutral sites with high b values. As described above,
this may occur even after correcting for the effects of differ-
ences in base composition between neutral and selected
sites (Figure 1 and Figure 2). This lack of sensitivity of sub-
stitution rates to the strength of purifying selection is con-
sistent with the patterns described by Cutter et al. (2013),
where there is only a weak relation between codon usage
bias and a measure of synonymous site divergence in the
hyperdiverse species Ciona savigni. Similarly, diversity at
sites subject to weak purifying selection is expected to show
a nonlinear pattern of relationship with g, such that p in-
creases with g when sites are close to neutral and then
declines again as g approaches or exceeds 1; the range of
g values over which there is an increase is broader for large
b (Figure 2). Synonymous diversity of genes in C. brenneri
does indeed show a quadratic relation with the frequency of
optimal codons, such that genes with �50% optimal codons
have the highest diversity values (A. Cutter, personal
communication).

With g values typical of those reported from studies of
selection on codon usage (g #1), the standard Li–Bulmer
equation (Li 1987; Bulmer 1991) tends to overestimate the
expected level of codon bias, as measured by the mean fre-
quency of the favored allelic type (q), when b . 0.02. For
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example, with g = 1 and b = 0.2, the exact value of q from
Equation 5a is 0.49 compared with the Li–Bulmer infinite
sites prediction of 0.58, while the second-order approxima-
tion from Equations 7a and 7b gives 0.44. Analyses of codon
usage in hyperdiverse species that use codon usage data to
estimate g (see Sharp et al. 2010) should probably use the
exact expression. It is interesting in this context to note that
there is only a small difference in the mean level of codon
usage bias between C. brenneri and C. remanei, despite an
approximately threefold difference in synonymous site
diversity (A. Cutter, personal communication). This raises
the question of whether the purifying selection model used
here is appropriate for codon usage or whether a model of
stabilizing selection (Kimura 1981) is more realistic, since
the latter means that g is insensitive to Ne over a wide range
of parameter values, provided that there is mutational bias
(Charlesworth 2013). The behavior of this model with
hyperdiversity would, therefore, be worth studying.
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Appendix

The Expected Number of New Mutations That Arise at a Segregating Site

Assume that we have a nucleotide site that is segregating for a neutral mutation that arose at an initial frequency of 1/(2N).
Let the probability that this variant mutates to an alternative nucleotide be u per generation (this includes the possibility that
it reverts to the ancestral state); let the probability that the ancestral variant mutates to another state be v (this includes the
possibility that the mutation is identical in state to the variant that is already segregating). If the frequency of the mutation in
the population in a given generation is x, the expected total number of mutational events is 2N[ux + v(1 – x)]. The expected
time that the original mutation spends in the frequency interval x to x+ dx is given approximately by 4Ne/(1 – x) for 0, x#
1/(2N) and 2Ne/(Nx) for 1/(2N) , x # 1 (Ewens 2004, p. 160). The total expected number of new mutations that arise
during the sojourn of the mutation in the population is thus

4Ne

(Z 1=ð2NÞ

0

2½ux þ vð12 xÞ�
ð12 xÞ  dx þ

Z 1

1=ð2NÞ
½ux þ vð12 xÞ�

Nx
 dx

)
� 4Ne½uþ vlnð2NÞ�: (A1)

Approximations to Equations 5a and 5b with Small a and b

Equation 5a is equivalent to

q ¼
�
1þPN

i¼1
�
giðbþ 1Þi

�
i!ðaþ bþ 1Þi

���
1þ kþ g þPN

i¼2
�
giðbþ 1Þiþ1

�
i!ðaþ bþ 1Þiþ1

��: (A2)

We can write terms of the form (b + i – j)/(a + b + i – j) as 1 – [bk/(i – j)] + O(b2); keeping only O(b) terms, we have

q �
n
1þPN

i¼1
�
gi
�
i!
�Qi

j¼1½12bk=ðiþ 12 jÞ�
o

n
1þ kþ g þPN

i¼2ðgi=i!Þ
Qi21

j¼1 ½12bk=ði2 jÞ�
o (A3a)

or

q �


1þPN

i¼1
�
gi
�
i!
�
expð2bkaiþ1Þ

�

1þ kþ g þPN

i¼2ðgi=i!Þexpð2bkaiÞ
�; (A3b)

where ai = 1 + 1/2 + 1/3 + . . . 1/(i –1) (i $ 2). The exponential terms in the numerator and denominator of Equation A3b
can thus be replaced by 1 + O(b), yielding Equation 6 of the main text.

In Equations 7a and 7b, ai+1 , i for i . 1, the first summation in the numerator of g is less than the sum of g i(i –1)!, so
that the sum is ,g exp(g). Similarly, ai+1 – ai = 1/i, so that the second summation is ,exp(g) – (1 + g). It follows that g is
positive and ,kg + exp(g) – 1. This is multiplied by exp(–g) in the numerator of Equation 5a, to obtain the multiplicand of
bk, yielding kg exp(–g) + 1 – exp(–g), k+ 1 – exp(–g). The contribution of –bkg exp(–g) to the numerator of Equation 7a
is thus negative and smaller in magnitude than bk (1 + k). The leading term in Equation 6 should provide a good
approximation when bk is #0.1.

Approximations for the Frequencies of the Fixed Classes

Assuming that a ,, 1 and b ,, 1, and employing the approximations used in Equation A3b, we find that

f1f �
Gðaþ bÞ
GðaÞGðbÞ

	
1þ k�

1þ kþ g þPN
i¼2ðgi=i!Þexpð2bkaiÞ

�þ Oðb2Þ


3  b21ð2NÞ2b½1þ OðgN21Þ þ OðbN21Þ�: (A4a)

Similarly,

f2f �
Gðaþ bÞexpðgÞ

GðaÞGðbÞ
	

1þ k

½1þ kþ g þPN
i¼2ðgi=i!Þexpð2bkaiÞ�

þ Oðb2Þ



3  ðbkÞ21ð2NÞ2bk½1þ OðgN21Þ þ OðbN21Þ�:
(A4b)
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We can use the fact that G(1 + x) = xG(x) to write G(x) = G(1 + x)/x. For small x, the representation of the gamma
function as an infinite product (Abramowitz and Stegun 1965) implies that G(1 + x) = (1 – cx) + O(x 2), where c � 0.577 is
Euler’s constant, and similarly for the other gamma integrals. We can thus approximate G(x) for small x by 1/x, and the term
involving gamma functions in Equations 9a and 9b is then kb/(1 + k)[1 + O(b)]. Using a similar approximation to that used
in Equations 7a and 7b, and neglecting higher-order terms in b, we obtain

f1f �
k expð2 gÞð2NÞ2b

½1þ k expð2gÞ�
	
1þ bkh expð2 gÞ

½1þ k expð2 gÞ�


½1þ OðgN21Þ þ OðbN21Þ� (A4c)

f2f �
ð2NÞ2bk

½1þ k expð2 gÞ�
	
1þ bkh expð2 gÞ

½1þ k expð2 gÞ�


½1þ OðgN21Þ þ OðbN21Þ�; (A4d)

where

h ¼
XN
i¼2

gi

i!
ai: (A4e)

The higher-order terms in b vanish when g = 0, suggesting that these expressions are good approximations when b and g

are both small. More rigorously, for finite i, ai is less than some constant A, which is approximately equal to ln(i – 1). If terms
in i . k can be neglected in the sum that defines h, h , ln(k)exp(g), so that h exp(–g) , bk ln(k), where ln(k) is a small
multiple of one unless g is very large.

In addition, for arbitrary g, the terms involving (2N)–b in Equations A4c and A4d are equal to 1– b ln(2N) + O(b 2) and
1– bk ln(2N) + O(b 2), respectively. Provided that ln(2N) is of order one, ff1 and ff2 are each equal to their respective
infinite sites value, multiplied by a factor 1 – O(b), implying that the infinite sites values provide a good approximation
unless b .. 0.

Fixations of Mutations

Consider first the case of A2 to A1 mutations that arise at a site that was initially fixed for A2. We approximate the frequency
of this fixed class, f2f, by the integral in Equation 9b. The fixation probability, Q1, of an A1 mutation with initial frequency
1/(2N) when N is large is g (2N)21[exp(g) – 1]21 + O[g 2(2N)–2], so that the net number of new A2 mutations that arise in
a given generation and are expected to become fixed is 2Nkvf2f{g/(2N)[exp(g) – 1]21 + O[g 2(2N)–2]} = kvf2f{g [exp(g) –
1]21 + 2N O[g 2(2N)–2]}. Using the same approximation for Q1 and the fact that q is close to one in Equation 9b, the
corresponding formula from Equations 13 and 14a is

kv
Z 1

121=ð2NÞ
Q1ðpÞp21qfðqÞdq ¼ kv

(
g½expðgÞ21�21

Z 1

121=ð2NÞ
fðqÞdqþ O½g2ð2NÞ22�

)
: (A5)

Provided that 2N is sufficiently large in relation to g, so that the higher-order terms in g(2N)–1 can be ignored, the two
results are equivalent.

The following argument can be used for the other end of the frequency range. In this case, there is no contribution from
the class fixed for A1 mutations, whose frequency is f1f as given by Equation 9a, to the fixation of new A1 mutations. The
corresponding formula from Equations 13 and 14a is

kv
Z 1=ð2NÞ

0
Q1ðpÞp21q fðqÞ dq ¼ kv ð2NÞ21

n
1þ O½ð1þ gÞð2NÞ21�

o
: (A6)

Again, provided that 2N is sufficiently large in relation to g, the two results are equivalent. Parallel arguments can be used for
the fixation of new A2 mutations.

The Relative Rate of Substitution Under the Infinite Sites Assumption

At equilibrium between mutation, drift, and selection, the frequencies of sites fixed for A1 and A2 under the infinite sites
model are approximated by k exp(–g)/[1 + k exp(–g)] and 1/[1 + k exp(–g)], respectively (Li 1987; Bulmer 1991; McVean

Population Genetics of Hyperdiversity 1601



and Charlesworth 1999). Averaging over the contributions from mutations arising at each class of fixed sites, taking into
account their respective fixation probabilities, the equilibrium rate of nucleotide substitution is then

lðgÞ ¼ 2kvg
½1þ kexpð2 gÞ�½expðgÞ21� (A7a)

(Charlesworth and Charlesworth 2010, p. 275).
If we consider neutral mutations arising at fixed sites with the same frequencies of A1 and A2 variants as the selected sites

(i.e., with the same base composition), the substitution rate is

lð0Þ ¼ kv½1þ expð2 gÞ�
½1þ k expð2 gÞ� : (A7b)

The ratio R(g) = l(g)/l(0) gives the rate of substitution of selected mutations relative to neutral expectation, conditioning
on the same base composition; we have

RðgÞ ¼ 2g
½expðgÞ2 expð2 gÞ�: (A8)

It is easily seen that R = 1 at g = 0 and decreases as g increases.
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Analytical approximations for the fraction of segregating sites

The proportion pseg of segregating sites is given by

pseg = 1− p(n)− p(0) (S1.1)

where

p(k) =

∫ 1

0

dq

(

n

k

)

qk(1− q)n−kφ(q) (S1.2)

and

φ(q) = Ceγqqβ−1(1− q)α−1 (S1.3)

Moments of the frequencies q and p: We first consider p(n) = qn which is

given by

p(n) =
(β)n

(α + β)n

1F1(n+ β, n+ α+ β, γ)

1F1(β, α+ β, γ)
(S1.4)

=
(β)n

(α + β)n

1 +
∑

∞

j=1G
(n)
j

γj

j!

1 +
∑

∞

j=1G
(0)
j

γj

j!

(S1.5)

where

G
(n)
j =

(n+ β)j
(n+ α + β)j

(S1.6)

and (a)j is the Pochhammer’s symbol. For α, β → 0 with κ = α/β finite, we

have

G
(n)
j ≈

{

1− α(Hn+j−1 −Hn−1) , n > 0
1

1+κ
(1− αHj−1) , n = 0

(S1.7)

where Hj =
∑j

k=1(1/k) is the jth Harmonic number. Also, we can write

(β)n
(α + β)n

≈
1

1 + κ
(1− αHn−1) (S1.8)

Substituting the above approximations in the expression for p(n) and keeping
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terms to order α, we finally obtain

p(n) ≈
1

1 + κe−γ

(

1− αHn−1e
−γ −

αe−γ

1 + κe−γ
(S1(n) + κS2(n))

)

(S1.9)

where

S1(n) =
∞
∑

j=1

(Hn+j−1 −Hj−1)
γj

j!

γ≫1
∼

eγ

γ
(n+ c1γ

−1) (S1.10)

S2(k) = e−γ

∞
∑

j=1

Hn+j−1
γj

j!

γ≫1
∼ ln γ (S1.11)

We note that the dependence on n appears at order α. Thus in the infinite

sites model where these terms are neglected, all the moments of fraction q

are equal. Setting n = 1 and 2 in the above equations reproduces the results

for q̄ in (7a) and (7b), and for q − q2 in (13) (after dividing by 2) given in

the main text. In the neutral case, we have

p(n) ≈
1− αHn−1

1 + κ
(S1.12)

while in the strong selection limit, using the asymptotic results for the sums

S1(n) and S2(n), we get

1− p(n) =
1

1 + κ−1eγ

(

1 +
α

κ
(Hn−1 +

neγ

γ
)

)

(S1.13)

For γ → ∞, the above expression shows that 1− p(n) → αn/γ.

We next consider p(0) = (1− q)n which is given by

p(0) =
(α)n

(α + β)n

1F1(β, n+ α + β, γ)

1F1(β, α+ β, γ)
(S1.14)

For α, β → 0 but arbitrary n and j, we can write

(β)j
(n+ α + β)j

≈ β
(j − 1)!(n− 1)!

(n+ j − 1)!
(S1.15)
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Using the above approximation and as before, keeping terms to order α, we

find that

p(0) ≈
κe−γ

1 + κe−γ

(

1−
α

κ
Hn−1 +

α(n− 1)!

κ
S3(n) +

αS2(0)

1 + κe−γ

)

(S1.16)

where

S3(n) =

∞
∑

j=1

γj

j(n + j − 1)!

γ≫1
∼

eγ

γn
(S1.17)

In the case of neutrality, we have

p(0) =
κ− αHn−1

1 + κ
(S1.18)

and in the strong selection limit, we get

p(0) =
1

1 + κ−1eγ

(

1−
α

κ
(Hn−1 −

(n− 1)!eγ

γn
)

)

(S1.19)

For γ → ∞, the fraction p(0) → α(n− 1)!/γn.

Segregating site fraction (pseg): Using the above results, we can now look at

the behavior of pseg. For γ = 0, both p(0) and 1 − p(n) contribute equally

(in magnitude) to give

pseg =
2αHn−1

1 + κ
(S1.20)

SinceHn ∼ lnn+γEM for large n, the proportion of segregating sites increases

logarithmically with the sample size in the neutral case. For β = 0.02, the

above expression gives pseg = 0.094 and 0.156 for n = 20 and 200 respectively

which are close to the data in Table 1 of the main text. In the strong selection

limit, for large γ, we have

pseg ≈
αn

γ
(S1.21)

which increases linearly with the sample size.

One can also look at the β → ∞ limit. For the neutral case, we have

pseg = 1−
(α)n + (β)n
(α+ β)n

(S1.22)
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For n ≪ α, β, we can write

(α)n
(α + β)n

≈

(

κ

1 + κ

)n

(S1.23)

while for n ≫ α, β, using Stirling’s approximation s! ∼
√
2πs(s/e)s, we get

(α)n
(α + β)n

≈
(α + β − 1)!

(α− 1)!
n−β (S1.24)

Using these approximations, we find that

1− pseg =

{

1+κn

(1+κ)n
, n ≪ α, β

(α + β − 1)! ( 1
(α−1)!nβ + 1

(β−1)!nα ) , n ≫ α, β
(S1.25)

Thus in small samples (relative to scaled mutation rates), pseg approaches

unity exponentially fast while for larger samples, the approach is algebraic.
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