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ABSTRACT The use of dense SNPs to predict the genetic value of an individual for a complex trait is often referred to as “genomic
selection” in livestock and crops, but is also relevant to human genetics to predict, for example, complex genetic disease risk. The
accuracy of prediction depends on the strength of linkage disequilibrium (LD) between SNPs and causal mutations. If sequence data
were used instead of dense SNPs, accuracy should increase because causal mutations are present, but demographic history and long-
term negative selection also influence accuracy. We therefore evaluated genomic prediction, using simulated sequence in two con-
trasting populations: one reducing from an ancestrally large effective population size (Ne) to a small one, with high LD common in
domestic livestock, while the second had a large constant-sized Ne with low LD similar to that in some human or outbred plant
populations. There were two scenarios in each population; causal variants were either neutral or under long-term negative selection.
For large Ne, sequence data led to a 22% increase in accuracy relative to �600K SNP chip data with a Bayesian analysis and a more
modest advantage with a BLUP analysis. This advantage increased when causal variants were influenced by negative selection, and
accuracy persisted when 10 generations separated reference and validation populations. However, in the reducing Ne population,
there was little advantage for sequence even with negative selection. This study demonstrates the joint influence of demography and
selection on accuracy of prediction and improves our understanding of how best to exploit sequence for genomic prediction.

METHODOLOGY has been developed to predict genetic
value for polygenic traits in livestock and crops by

exploiting high-density genome-wide SNP genotypes that
are fitted simultaneously in an analytical model (Meuwissen
et al. 2001). The same methodology can be applied in hu-
man genetics, for example, to predict complex disease risk
(reviewed in De los Campos et al. 2010). In livestock and
plants this analytical approach is often referred to as “geno-
mic selection” because the genomic predictions are used for
selection decisions. First, a large “reference population” with
genotypes and phenotypes is required to jointly estimate
genome-wide SNP effects. Then the accuracy of prediction

using the estimated SNP effects is reevaluated in an inde-
pendent “validation population,” before the genomic predic-
tion equation is routinely applied on individuals with
genotypes but no phenotypes.

Genomic prediction (GP) methods generally use dense
genome-wide SNP genotypes and therefore rely on exploit-
ing linkage disequilibrium (LD) between these SNPs and
unknown causative mutations or quantitative trait loci
(QTL). The lower the LD is between the SNP and causal
mutations, the lower the accuracy will be of GP. As the
number of generations separating the reference and valida-
tion populations increases, the LD between SNPs and
causative mutations is further eroded by recombination
and therefore accuracy of GP will fall. The impact of
recombination could be eliminated if the prediction was
based on the causal mutations themselves. This would be
possible if we had access to whole-genome sequence and
this is increasingly likely as the cost of sequencing falls.
Furthermore a number of species-specific databanks of
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whole-genome sequence are being generated and, using
these as reference genomes, it is possible to impute full
sequence for many thousands of individuals that have been
genotyped with high-density SNP chips.

Several simulation studies have shown that there would
be a significant advantage for genomic prediction using
sequence compared to the equivalent of 30,000–60,000
genome-wide SNPs in an �30-M genome (Meuwissen and
Goddard 2010; Clark et al. 2011; Druet et al. 2014). How-
ever, these studies did not compare use of sequence data
with the higher-density commercial SNP arrays that are
now commonly used for a number of species (for example,
$600,000 SNPs in humans and cattle).

An additional argument for using sequence for GP is that
it should be particularly advantageous when QTL have been
under long-term negative selection (such as disease or
fertility traits): causal variants are then more likely to be
rare and therefore in low LD with SNPs on commercial chips
that typically have minor allele frequency (MAF) . 0.1. A
study by Druet et al. (2014) indirectly investigated this po-
tential advantage of sequence by simulating genotype data
in which QTL were represented only as rare variants. Given
this approach, these authors conclude that sequence data
could significantly improve the accuracy of GP compared
to the equivalent of 50,000 SNPs genome-wide. However,
simulation studies in which only rare variants are chosen to
act as surrogate QTL may not provide an adequate model of
loci under long-term negative selection. For example,
changes in ancestral demography such as a recent bottle-
neck in effective population size (Ne) also exert a strong
influence on the distribution of allele frequencies (e.g.,
Marth et al. 2004) and even mutations with a deleterious
effect on fitness may drift to higher frequencies than would
be expected in a population with no recent bottleneck. Also,
patterns of LD surrounding loci that are under long-term
negative selection may be quite different from those surround-
ing neutral loci due to “background selection” (Charlesworth
et al. 1993).

In this study we investigate the potential advantages of
sequence data for genomic prediction and demonstrate that
this will jointly depend on the ancestral demography of
a population, the presence or absence of long-term negative
selection acting on QTL, and the method of analysis. We
investigated two contrasting demographic scenarios in
which QTL were represented by neutral loci or loci subjected
to long-term negative selection. The first scenario was a large
constant Ne at the upper limit for estimates of recent human
and maize Ne (e.g., Vigouroux et al. 2002; Schaffner et al.
2005; McEvoy et al. 2011). The second scenario mimicked
sequence data from a single cattle breed (MacLeod et al.
2013). We compared realized accuracies, using either se-
quence data or dense SNP panels chosen to reflect the
high-density commercial SNP arrays currently applied in hu-
man and livestock genetics. The GP analytical methods used
were genomic best linear unbiased prediction (“GBLUP”)
(e.g., Habier et al. 2007; VanRaden 2008; Goddard 2009;

Hayes et al. 2009) and a Bayesian method referred to as
BayesR (Erbe et al. 2012), which is conceptually similar to
BayesB (Meuwissen et al. 2001). We chose these two ana-
lytical methods because both are commonly applied in ge-
nomic prediction studies. A key difference between these
two approaches is that GBLUP assumes a quasi-infinitesimal
model while the Bayesian method assumes a large propor-
tion of loci have no effect.

Materials and Methods

Simulated genotypes

Sequence data were forward-in-time simulated, using FRE-
GENE software (Hoggart et al. 2007; Chadeau-Hyam et al.
2008) in a Wright–Fisher panmictic population. Two differ-
ent populations were simulated: one with a constant effec-
tive population size (Ne) of 25,900 (“constant”) and the
other with a decreasing population size (“bovine”). The full
Ne parameters used for the bovine population were from
a study that inferred demography in the Holstein cattle
breed, using whole-genome sequence data (MacLeod et al.
2013, supplementary information, table S1). For both pop-
ulations the mutation (m) and recombination (r) rates were
chosen as similar to recent mammalian estimates for these
parameters (Kumar and Subramanian 2002; Arias et al.
2009; Roach et al. 2010; Campbell et al. 2012) and to gen-
erate realistic single-locus heterozygosity rates. Both m and r
were assumed constant across the genome, with r = 1 3
1028 and m = 9.4 3 1029/bp per generation. The expected
single-base pair heterozygosity was 9.7 3 1024 in both the
bovine and constant populations, similar to observed hetero-
zygosity in Holstein dairy cattle (MacLeod et al. 2013) and
some human populations (Venter et al. 2001; Voight et al.
2005).

As specified in FREGENE, the parameter scaling option
was used to reduce the time taken for simulations (Hoggart
et al. 2007; Chadeau-Hyam et al. 2008) where Ne . 2000.
For the final output in the constant-sized population, the
FREGENE “unscale” method was implemented to restore
Ne to the actual size while rescaling all other rate parame-
ters appropriately (Chadeau-Hyam et al. 2008). In the bo-
vine population the Ne reduced to 90 individuals in the final
three generations but we required a sample size of 5000
individuals. This was achieved by scaling up the Ne of 90
and the time period of three generations by a factor of 56,
with the reciprocal scaling down of mutation rate, recombi-
nation rate, and selection coefficients.

The simulation of the large constant-sized population ran
for 370,000 generations to ensure that it had reached
a drift–recombination–mutation–selection (drm) equilibrium
while in the bovine population, and only the most ancestral
population reached drm equilibrium. The bovine and constant-
sized populations were simulated both as neutral popula-
tions (Bov-Neut and Const-Neut) and as populations with
long-term negative selection (Bov-Sel and Const-Sel).
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Twenty replicates were simulated for each of these four
scenarios.

In both Bov-Sel and Const-Sel, long-term negative selec-
tion was simulated on a random selection of 0.1% of all new
mutations with a constant selection coefficient (s) of 22 3
1024 with additive effects (h = 0.5). Selection coefficients
were constant over time but in FREGENE there is a user-
specified probability that selection is switched off at any
given site. We set this probability to 1/1,000,000 in the
Bov-Sel population, which is equivalent to a mean of se-
lected sites being switched off after 1,000,000 generations
if not naturally lost or fixed. Similarly in the Const-Sel pop-
ulation the probability of selection being switched off
was set to 1/750,000. This simply ensured that a drift–
recombination–mutation–selection equilibrium was reached
in the most ancestral large Ne of the bovine population and
in the constant-sized population.

To make the study computationally feasible for genomic
prediction using sequence data, we generated a genome size
of 50 Mb, under the scaling argument demonstrated by
Meuwissen and Goddard (2010) (that is, accuracy of GP is
proportional to number of reference individuals per morgan
length of the genome). At the end of the simulation, in each
replicate of Const-Sel and Const-Neut, we used “SAMPLE”
software (Chadeau-Hyam et al. 2008) to randomly sample
haplotype pairs to generate sequence genotype data for
5000 individuals, and we henceforth refer to these individ-
uals as “0_Gen”. Due to the low Ne in the bovine population,
we first sampled 10,000 genotyped individuals for each rep-
licate. Then, from these 10,000 individuals, we randomly
selected 5000, having first discarded any one of a pair if
they differed at ,1500 genotypes of a random 10,000
SNP loci tested. We did this to ensure that there were no
extremely close relatives (or near duplicates) in the final
5,000 0_Gen individuals. We then continued the simulations
for a further 10 generations and then used SAMPLE to gen-
erate sequence genotypes for a further 2000 individuals and
refer to this set of genotyped individuals as “10_Gen”. For
each scenario we ran these 10 generations with Ne at the
final full population size, that is, 5040 in the bovine popu-
lation and 25,900 for the constant-sized population. Al-
though an Ne of 5040 for the bovine populations
represented an increase in the present-day bovine popula-
tion size, this had only a very minimal impact on the ob-
served LD pattern in the population because it spans
a relatively short period of time. The scripts and parameter
files used to generate simulated genotype data for each of
the four scenarios are given in supporting information, File
S1, File S2, File S3, and File S4.

High-density SNP genotypes (“HD SNPs”) were gener-
ated for all individuals by selecting 10,000 loci uniformly
at random from the sequence variants to represent an HD
SNP array (i.e., approximately one SNP/5 kbp). To mimic
the ascertainment bias of commercial SNP arrays, HD
SNPs were selected only if their MAF . 0.1. Additionally,
for the Bov-Neut and Bov-Sel data, the same procedure

was followed to generate medium-density SNP genotypes
(“MD SNPs”) of 1000 loci.

Simulated phenotypes

A total of 50 additive QTL effects were simulated for all
genotyped individuals in each of the Bov-Neut, Bov-Sel,
Const-Neut, and Const-Sel replicated populations. In the
Const-Neut and Bov-Neut populations, loci were randomly
selected from polymorphic loci in the sequence data. In
Const-Sel and Bov-Sel, 50 QTL loci were randomly chosen
from segregating loci that had been subjected to long-term
negative selection. In five of the Bov-Sel populations, there
were just under 50 selected loci still segregating (49, 47, 46,
46, and 41) and therefore the shortfall was accommodated
by randomly selecting QTL loci from neutral loci chosen
with MAF , 0.1.

QTL allele substitution effects (ai) were sampled from
a normal distribution (mean of zero) and additive genetic
values for each individual, at each QTL (i = 1 to 50) were
calculated as

Genotype  “0”  ðalleles 11Þ: GVi0 ¼ 2qiai;
Genotype  “1”  ðalleles 12Þ: GVi1 ¼ ðqi 2 piÞai;

and

Genotype  “2”  ðalleles 22Þ: GVi2 ¼ 2 2piai;

where pi and qi are the major and minor allele frequencies
for locus i (Falconer and Mackay 1996). Genetic values (GV)
for each QTL were summed to provide a true additive
genetic value (TGVj) for each of the genotyped individuals
( j = 1 to 5000):

TGVj ¼
X50
i¼1

GVij:

Phenotypes were generated by adding an appropriate re-
sidual term to the TGVj, drawn from a normal distribution, N
(0, s2

e). The s2
e was chosen to generate a specified herita-

bility (h2) by first estimating the variance of the TGVs
(s2

TGV) in the simulated population and then

s2
e ¼

�
s2
TGV  

�
12 h2

��
h2

:

For each replicate we simulated a number of phenotypic
data sets for a range of h2: 0.45, 0.15, 0.1, and 0.01. In Bov-
Neut and Bov-Sel, for h2 = 0.1 we also generated pheno-
typic data sets with 15 QTL.

Accuracy of predicted genetic values

“Reference” individuals (T) with phenotypes and genotypes
were used to estimate the prediction equations for SNP
effects, where SNP genotypes were MD SNPs, HD SNPs, or
full-genome sequence SNPs (SEQ). Realized accuracy of GP
was tested in “validation” individuals (V) by assessing the
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correlation between their predicted genetic value (PGV) and
the TGV. For each scenario, accuracy was calculated from
the average of 20 replicated simulations. Both 0_Gen refer-
ence and validation groups were randomly chosen as non-
overlapping subsets (NT and NV) from the 5000 genotyped
individuals in each replicated data set (NT = 3750 and NV =
1250 or NT = 2500 and NV = 2500). The 2000 individuals
from 10_Gen were used as a second validation group for
each replicate.

GBLUP analysis

Genomic prediction was implemented using best linear
unbiased predictor (BLUP) methodology (Henderson 1984)
but with a “genomic relationship matrix” (GRM) replacing
the traditional pedigree relationship matrix. This approach
is often referred to as “GBLUP” and has been shown to be
equivalent to the original ridge regression BLUP approach
implemented by Meuwissen et al. (2001) (e.g., Habier et al.
2007; Goddard 2009). The GBLUP analysis was imple-
mented in ASReml software (Gilmour et al. 2005), using
the model

y ¼ m1þ Zgþ e;

where m is the population mean, 1 is a vector of ones, Z is
the incidence matrix for random individual effects, g is a vec-
tor of genetic values, and e is the vector of residuals. The g
and e random effects are assumed to be normally distributed
as N(0, Gs2

g) and N(0, Is2
e), where G is the GRM derived

using the approach of Yang et al. (2010). The G matrix was
estimated from either the set of SNP markers (HD SNPs or
MD SNPs) or the entire set of sequence SNPs, which also
included the causal mutations (SEQ).

The variance components for random effects (s2
g and

s2
e) were estimated first in ASReml and then used to esti-

mate the genetic value ([ĝ]) for reference and validation
individuals as

½ĝ� ¼
"
Z9Z þ G21s

2
e

s2
g

#21

Z9ð y2 1m̂
ih

BayesR analysis

We implemented Bayesian genomic predictions, using the
“BayesR” method detailed in Erbe et al. (2012). Briefly, this
approach is similar to BayesB (Meuwissen et al. 2001) but
SNP effects are assumed to come from one of four normal
distributions, each with a mean of zero and variance

s2
1 ¼ 0;  s2

2 ¼ 0:0001s2
g;  s

2
3 ¼ 0:001s2

g;  s
2
4 ¼ 0:01s2

g:

The models fitted to our data were as described in Erbe et al.
(2012) except that we omitted a polygenic effect because
individuals were randomly bred with no formal pedigree
structure,

y ¼ m1þWuþ e;

where m is the mean, 1 is a vector of ones, W is the design
matrix allocating records to SNP effects represented by the
vector u, and e is the vector of random residuals. The dimen-
sions ofW were NT 3 Nm, where NT is the number of reference
individuals and Nm is the number of marker genotypes. Each
element of the W matrix was scaled by the allele frequency of
SNP i, as for GBLUP: wij ¼ ðxij 2 2piÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pið12 piÞ

p
; where xij

is the genotype for SNP i in animal j (genotypes coded as 0 =
11, 1 = 12, and 2 = 22).

The true heritability of the trait was used to furnish an
a priori estimate of the proportion of the total variance due
to causal mutations (s2

g). We specified a total of 20,000
iterations with the first 10,000 discarded as burn-in, based
on previous experience with the BayesR method and pre-
liminary tests with our simulated data. For the MD and HD
SNP data we ran four BayesR chains within each of the 20
replicated data sets, while for the SEQ data we ran two
chains for each data set to moderate computational require-
ments. From the consistency of the results within and across
replicates we were confident that this was adequate.

Deterministic prediction of accuracy

Deterministic equations have been developed to furnish
an a priori estimate of the accuracy of GBLUP GP (“R̂”)
(Daetwyler et al. 2008, 2010; Goddard 2009; Goddard et al.
2011). Here we applied the approach of Goddard et al.
(2011), where the predicted squared accuracy of GP is given
as

R̂
2 ¼ b

u

uþ
�
12h2R̂

2
�;

and solving the above equation as a quadratic with R̂
2 ¼ x;

the accuracy is

R̂ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþ 1Þ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðuþ 1Þ2 2 4h2bu

q
2h2

vuut
; (1)

where u = NTbh2/Me, NT is the number of reference individ-
uals, b is a correction factor for the proportion of the QTL
variance captured by the markers, and Me is an estimate of
the average number of independently segregating chromo-
some segments genome-wide (Goddard 2009). Me ¼ 1=r2

(Goddard et al. 2011), where r2 represents the pairwise
measure of LD averaged across all pairs of loci on each
chromosome. Me can be calculated analytically but requires
the assumption of constant Ne so we estimated it empirically
from the simulated sequence data with a random sample of
2500 SNPs in each of the 20 replicates. We determined that
2500 SNPs were an adequate sample size because we found
a very similar result using 5000 SNPs in one replicate of the
bovine and constant Ne population.
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Results

The HD SNP density in this study is approximately
equivalent to �600,000 genome-wide SNPs and MD SNPs
to �60,000 SNPs in cattle and humans with their approx-
imate genome size of 30 M (Venter et al. 2001; Bovine
Genome Sequencing and Analysis Consortium et al.
2009). All results are expressed as an average across 20
replicated data sets. Allele frequency distributions and av-
erage LD in the bovine and constant Ne scenarios are pre-
sented first because these have a strong influence on the
realized accuracy of GP.

Allele frequency distributions and LD

In the large constant-sized neutral population (Const-Neut)
the distribution of derived allele frequency (DAF) among
segregating loci (Figure 1A) followed the classic expectation
for a neutral population (e.g., Marth et al. 2004). In Const-
Neut 72% of segregating neutral loci had a DAF , 0.1 while
91% of the loci under long-term negative selection in Const-
Sel had a DAF , 0.1 (Figure 1, A and B).

In contrast to Const-Neut, the DAF distribution for
neutral loci in Bov-Neut is relatively flat (Figure 2A) be-
cause of the reduction in recent Ne. Although the bovine Ne

in the most ancestral equilibrium phase was 62,000, the
final DAF distribution was strongly influenced by random
drift because the bovine demography underwent a sharp
decline in Ne from �3000 generations ago to the present
day. As a result, only 18% of loci have a DAF , 0.1 in Bov-
Neut, and even for loci under long-term negative selection
in Bov-Sel there were only 32% with DAF , 0.1 (Figure 2,
A and B).

The pairwise nucleotide diversity or heterozygosity per
base pair was expected to be 9.7 3 1024 for all neutral
populations. The Const-Neut populations matched this ex-
pectation, but Bov-Neut had a slightly lower heterozygos-
ity than predicted (average of 8.9 3 1024). This was
probably a result of the scaling used for computational
efficiency (see Materials and Methods): FREGENE simula-
tions employ a two-allele finite site model and therefore
repeat mutations at one site may have occurred more of-
ten than in an unscaled population. The heterozygosity in
populations with long-term negative selection was only
slightly lower than that of the neutral populations because
only 0.1% of sites were subjected to selection. The aver-
age total numbers of segregating sites on the 50-Mb ge-
nome in 0_Gen populations were 404,589 in Const-Neut,
402,687 in Const-Sel, 142,973 in Bov-Neut, and 135,692
in Bov-Sel.

As expected, the average LD (pairwise r2) in Bov-Neut
was much higher than in Const-Neut due to the recent pop-
ulation bottleneck in the bovine demography (Figure 3). We
estimated Me (i.e., the number of effectively independent
chromosome segments) directly from the average r2 in the
sequence and found in Const-NeutMe = 1786, while in Bov-
Neut Me = 59 on the 50-Mb genome.

GBLUP accuracy: effects of long-term negative selection
and demography

Table 1 compares the GBLUP realized accuracies for GP in
the constant Ne and bovine populations for scenarios with
either neutral or negatively selected causal mutations. The
realized accuracy of GP is much higher in the bovine pop-
ulation than in the large constant-size population for a trait
with the same heritability because of the higher LD in the
bovine population. In the bovine scenarios the GBLUP accu-
racies were similar for SEQ and HD SNP, and in the constant
Ne scenarios only a small improvement in GBLUP accuracy
was observed with SEQ compared to HD SNPs.

When causal mutations were subject to long-term nega-
tive selection, we observed some reduction in the GBLUP
realized accuracy in both Const-Sel and Bov-Sel compared to
the neutral populations (Table 1). The lower the heritability
was, the greater the difference between the accuracies of GP
in selected and neutral populations. Notably, the difference
between Const-Neut and Const-Sel GBLUP accuracies was
more extreme with HD SNPs compared to SEQ. In contrast,
the differences between GBLUP accuracies in Bov-Neut and
Bov-Sel for a given heritability were the same regardless of
using SEQ or HD SNPs.

The GBLUP heritability (h2) estimates were generally
close to the true heritabilities (Table 1), but tended to be
lower in Const-Sel relative to Const-Neut particularly when
using HD SNPs. For example, in Const-Sel, when true h2 =
0.45, the h2 estimate using HD SNPs implies that �14% of
the QTL variance was not captured by the SNPs. When the
true h2 was 0.45, there was a trend for the SEQ data to
estimate a downward bias in Bov-Neut, indicating that the
sequence data introduce unwanted noise to the estimate of
variance compared to HD SNPs. However, the regression of
TGV on PGV was on average equal to one with both SEQ and
HD SNPs, indicating that there was no obvious bias detected
in the PGV (results not shown).

The deterministic predictions of accuracy using the Me

estimated directly from the data are reasonably close to
the realized GBLUP values, although they tend to slightly
overestimate accuracy in the bovine population (Table 1).

BayesR accuracy: effects of long-term negative selection
and demography

The BayesR method resulted in a very marked improvement
in realized accuracies for GP, using SEQ compared to HD
SNPs in in both Const-Neut and Const-Sel (Table 2). How-
ever, there was no improvement in BayesR accuracy for the
bovine scenarios from using SEQ rather than HD SNPs
(Table 2). In Table 2 the h2’s are lower for the bovine popula-
tion simply to allow the bovine and constant Ne results to be
compared at similar levels of GBLUP accuracy [remembering
that accuracy is proportional to NTh2/Me (Equation 1)]. The
realized BayesR accuracy in Const-Neut and Const-Sel was
considerably higher than GBLUP accuracy, particularly with
SEQ but also for HD SNPs, while in the bovine scenarios
there was no difference between BayesR and GBLUP

Genomic Prediction with Sequence Data 1675



accuracies (Table 2). Although BayesR accuracy using HD
SNPs was more variable than GBLUP accuracy across the
constant Ne replicates, the within-replicate BayesR accuracy
was always higher than GBLUP accuracy (results not
shown).

Persistency of accuracy across generations

The persistency of accuracy was determined by comparing
the accuracy of GP in validation individuals either from the
same generation as the reference individuals (0_Gen) or
separated by 10 generations (10_Gen). Figure 4 compares
these accuracies in the constant Ne populations when h2 =
0.1 (3750 reference individuals). For GBLUP, there was
�25% reduction in the accuracy of GP from 0_Gen to
10_Gen. This drop in the GBLUP accuracy was observed
with both SEQ and HD and is slightly more pronounced in
Const-Sel compared to Const-Neut. In contrast, the BayesR
accuracy with SEQ for Const-Neut and Const-Sel showed
only a marginal reduction from 0_Gen to 10_Gen. This high
persistency of SEQ BayesR conferred the greatest advantage
to Const-Sel where accuracy in 10_Gen was 37% higher
with SEQ compared to HD SNPs. Although the BayesR ac-
curacy using HD SNPs did fall in 10_Gen, it still remained
considerably higher than GBLUP accuracy for both Const-
Neut and Const-Sel. Similar results as shown in Figure 4
were obtained for Const-Neut and Const-Sel with trait h2

= 0.45 (results not shown).
The same test of persistency was made in the bovine

populations in simulations with either 50 or 15 QTL and
a heritability of 0.1 (Figure 5). In addition to SEQ and HD
SNPs, we tested the persistency of accuracy, using the MD
SNP density (equivalent to a 60,000 SNP density in the
bovine genome). In the bovine populations we simulated
an additional scenario with 15 QTL because it is expected
that Bayesian methods will perform better than GBLUP only
if the number of QTL is considerably lower than Me (e.g.,
Daetwyler et al. 2010). As observed in the constant Ne, there
was an �25% drop in GBLUP accuracy from 0_Gen to
10_Gen in all scenarios, and no very clear difference was
observed between GBLUP SEQ, HD, and MD SNP accuracies

(Figure 5). When the number of QTL = 50, the persistency
was only slightly better for BayesR compared to GBLUP,
with little difference between SEQ, HD, and MD SNPs.
When the number of QTL = 15, the advantage in the per-
sistency of BayesR accuracy compared to GBLUP is much
clearer with both SEQ and HD SNPs: the reduction in accu-
racy was only �13% from 0_Gen to 10_Gen. However, even
in Bov-Sel with QTL = 15, the BayesR accuracy in 10_Gen
was only 2.8% higher with SEQ compared to HD SNPs.

Discussion

This is a novel study evaluating the effect on GP accuracy of
demography, long-term negative selection, use of SEQ
compared to HD SNPs, the analytical method (Bayesian vs.
GBLUP), and an interval of 10 generations between the ref-
erence and validation data. Below we discuss the effects and
interactions of these variables, but first we consider how
well our simulated data reflect real genomic data from con-
trasting populations such as domesticated livestock,
humans, or outbred plant populations.

Model populations

We simulated two contrasting population scenarios to create
LD, variant densities, and allele frequency spectra that
reflect opposite ends of the range observed in real popula-
tions, because these parameters are critical in evaluating
genomic prediction accuracy. Importantly, the simulation
LD, nucleotide diversities, and allele frequency spectra are
detailed in this article to allow further comparison as more
real population sequence data become available.

Our bovine simulation models a single breed of domes-
ticated livestock species, where effective population sizes
have reduced dramatically since domestication and breed
formation. The LD, nucleotide diversity, and allele frequency
distribution in this bovine simulation were generally similar
to those observed within a range of cattle breeds, in
particular, Holstein dairy cattle (Bovine HapMap Consortium
2009; Villa-Angulo et al. 2009; MacLeod et al. 2013). A
recent study of 234 whole-genome sequences from three

Figure 1 (A and B) Histogram showing
(A) the DAF distribution for segregating
neutral loci in Const-Neut populations
(20 replicates) and (B) the DAF distribu-
tion for loci subjected to negative se-
lection that were still segregating in
Const-Sel populations (20 replicates).
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dairy cattle breeds (Daetwyler et al. 2014) showed a higher
proportion of rare variants (MAF, 0.05) compared to those
in our simulation but this is expected because their allele
frequencies were calculated across breeds. Additionally,
there is some evidence that a considerable proportion of
these rare variants may be sequencing errors even though
relatively strict variant calling filters were used (O. Gonzalez-
Recio and H. Daetwyler, personal communication). It is pos-
sible that the allele frequency spectrum of our simulated
variants under selection is closer to the true distribution in
error-free sequence than our neutral simulation. The total
number of SNPs segregating in our bovine simulation is
equivalent to �8 million in a 2800-Mb genome (2800/50
3 143,000). Although this is considerably lower than the
�15 million variants reported by Daetwyler et al. (2014) for
Holstein breed sequence data, their number includes �1.5
million indels (not included in our simulation) as well as
homozygous nonreference alleles. Their estimate is also
inflated by sequencing errors (possibly 1–1.5 million errors)
and potentially has an upward bias from population sub-
structure because they included black and white Holsteins
from North America, Europe, and Australia as well as a sub-
population of red and white Holsteins. We chose a dairy
cattle breed demography because a number of countries
are already implementing genomic prediction in dairy cattle
populations (Lund et al. 2011; VanRaden et al. 2011; Pryce
and Daetwyler 2012). This is likely to reflect one of the more
extreme livestock breeds in terms of the very sharp recent
reduction in Ne, because the widespread use of artificial in-
semination enables popular bulls to sire tens of thousands of
daughters.

We contrast the bovine demography with a population
having a large constant Ne to study the effect of other var-
iables in a simple demography with low LD. The low LD in
the constant Ne scenario is characteristic of some outbred
commercial plant populations such as maize (Rafalski and
Morgante 2004) and pines (Neale and Savolainen 2004).
While the average LD observed in Const-Neut is lower than
that found in most human studies, it follows a similar pat-
tern to that in African populations, which generally show the

lowest levels of LD compared to a range of ethnic groups
(McEvoy et al. 2011, supplementary figure 5 and figure 6B).
Most human demography studies have found that there has
been recent rapid expansion to the present-day Ne and, with
the possible exception of African populations, this was pre-
ceded by a bottleneck 2000–4000 generations ago (e.g.,
Schaffner et al. 2005; Li and Durbin 2011).

In an expanding population, there would be a higher
proportion of very rare recent mutations compared to those
in a constant-sized population and this would exaggerate
the differences observed in our constant-sized population. In
a European and Asian human demography model (ances-
trally large and then a bottleneck followed by rapid recent
expansion) the past bottleneck would increase LD and
average MAF but this would then be partly reversed by
the rapid recent expansion in Ne (Simons et al. 2014).
Therefore, although the nucleotide diversity and allele fre-
quency distribution in Const-Neut are similar to those
reported for humans (International HapMap Consortium
2007), it is possible that in some human populations there
is a larger proportion of very rare recent variants compared
to our constant-sized Ne. However, a recent study concluded
that for many complex human diseases, rare alleles account
for only a small proportion of the total genetic variation and
therefore recent population growth will have little impact on
these traits (Simons et al. 2014).

We therefore argue that our results give a reasonable
indication of trends that would be expected in human and
some outbred plant and livestock populations. Furthermore,
our selection model is of interest because there is recent
empirical evidence that genome-wide nonsynonymous muta-
tions are more often at lower derived allele frequencies than
neutral mutations, indicating that these variants often result in
deleterious fitness effects (1000 Genomes Project Consortium
2012; Tennessen et al. 2012; Simons et al. 2014).

Genetic variance explained by SNPs and
sequence variants

The genetic variance explained by the HD SNPs in the
constant population is less than the total genetic variance

Figure 2 (A and B) Histogram showing
(A) the DAF distribution for segregating
neutral loci in Bov-Neut populations (20
replicates) and (B) the DAF distribution
for loci subjected to negative selection
that were still segregating in Bov-Sel
populations (20 replicates).
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(Table 1) presumably because the causal variants are often
rare and hence in incomplete LD with the SNPs that have
MAF . 0.1. This interpretation is supported by the fact that
the variance explained is even lower in the Const-Sel pop-
ulation (where causal variants have even lower MAF) than
the Const-Neut population and by the fact that the full ge-
netic variance is explained by the sequence data that include
the causal variants. In recent studies of human height and
schizophrenia, there was an even higher proportion of the
genetic variance missing than found here (Yang et al. 2010;
Lee et al. 2012). If the “missing heritability” is due to low
MAF variants and not to other factors such as overestimation
of heritability using pedigree records, this suggests that
causal variants for these traits may have lower MAF than
those in our Const-Sel population.

The underestimate of the genetic variance in the bovine
demography using sequence data in a trait with h2 = 0.45 is
harder to explain. It may occur because the GRM calculated
from the sequence variants assumes that low MAF variants
each cause as much genetic variance as high MAF variants,
whereas in the simulated data the high MAF variants cause
more genetic variance than low MAF variants. We reana-
lyzed Bov-Neut data (h2 = 0.45), using an alternative
method of constructing the GRM that allows higher MAF
variants to cause more variance (VanRaden 2008, method
1). In this case the genetic variance was closer to the true
variance for SEQ, but with a tendency to be overestimated in
both SEQ and HD SNPs (estimated h2 of 0.464 and 0.470,
respectively). The prediction accuracies did not change.

Demography, method of analysis, and genetic
architecture of the trait

The higher GBLUP accuracy in the bovine compared to the
constant Ne population is due to the recent sharp reduction
in the bovine Ne, resulting in a higher level of LD and a lower
number of effectively independent chromosome segments
(Me). The GBLUP model estimates a SNP effect from a single

normal distribution on each effectively independent chromo-
some segment. It is therefore an appropriate method when
the effects of chromosome segments follow a normal distri-
bution (such as the bovine demography) when the number of
QTL is very similar to the number of effectively independent
chromosome segments (QTL = 50 and Me = 59).

Previous studies have demonstrated that Bayesian meth-
ods similar to BayesR will show higher accuracies than
GBLUP only when chromosome segment effects are not
normally distributed (e.g., Daetwyler et al. 2010; Meuwissen
and Goddard 2010; Clark et al. 2011). This can occur either
because a large proportion of the effectively independent
segments contain no QTL or the distribution of QTL effects
is markedly nonnormal. BayesR, by using a mixture of four
normal distributions, one of which has a zero variance, is
able to more accurately estimate the SNP effects than
GBLUP in the constant Ne population where many chromo-
some segments have no effect (Me = 1786). In this scenario
the prior distribution assumed by BayesR is a closer approx-
imation to the simulated distribution than the prior implied
by GBLUP. This is the reason that BayesR has an advantage
over GBLUP in the bovine demography when the number of
QTL is only 15 (Figure 5).

In real single-breed cattle populations with SNP densities
equivalent to our HD or MD SNPs there is often little
difference between accuracies for GP with GBLUP or
Bayesian methods (Habier et al. 2010; Erbe et al. 2012;
Pryce et al. 2012; Su et al. 2012; Gao et al. 2013). The main
exception has been for traits that are known to be affected
by one or several genes of large effect and an unknown
number of very much smaller effects, where a Bayesian ap-
proach was more accurate (Hayes et al. 2010). This implies
that the GBLUP infinitesimal model generally provides
a good approximation of real QTL effects for complex traits
in a single cattle breed because of the high LD.

Clearly, the accuracy of the Bayesian analysis in our
bovine population is quite sensitive to the density of QTL

Figure 3 Observed LD (linkage disequilibrium—pairwise
r2) averaged over bins of 2 kbp (Kb) for the Const-Neut
(blue) and Bov-Neut (green) populations. The simulation
recombination rate was set to 1 3 1028; therefore
1 Mb [ 1 cM.
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across the genome and the distribution of their effects. We
chose a QTL density of 50 QTL per 50 Mb because this is
equivalent to �3000 QTL effects on a 30-Mb genome and is
of a similar order for recent estimates of the number of QTL
affecting human height and complex diseases (Park et al.
2011; Stahl et al. 2012). Our scenario of 15 QTL is approx-
imately equivalent to 900 QTL genome-wide, but if far fewer
QTL explain most of the trait variance, then we would ex-
pect clear differences between the BayesR and GBLUP accu-
racies for a bovine population.

For this study we chose to simulate QTL effects from
a single normal distribution although there is evidence that
effects may follow a more leptokurtic distribution (e.g.,
Hayes and Goddard 2001; Flint and Mackay 2009; Park
et al. 2011). Our approach avoids the issue of odd results
from some simulations where one or a few very large QTL
are segregating, particularly given our small genome. Pre-
vious studies have demonstrated that the use of a gamma
(shape parameter ,1) or double exponential distribution
will generally result in higher Bayesian accuracies compared
to normally distributed effects, but that GBLUP is little af-
fected by the distributions used (Daetwyler et al. 2010;
Clark et al. 2011). Thus, had we used for example a gamma
distribution of QTL effects, some of the observed differences
between GBLUP and BayesR might have been larger where
the number of QTL was considerably lower than the Me, but
overall our conclusions would not change. Clark et al.
(2011) found a clearer advantage compared to our study
for SEQ over MD SNPs with a Bayesian analysis of a bovine-
like simulation and this is probably largely due to their
QTL effects being simulated as a double exponential
distribution.

Long-term negative selection model

Our study focused on modeling long-term negative selection
because there has been considerable focus recently on the
so-called missing heritability of polygenic traits (i.e., a pro-

portion of the genetic variance not accounted for by dense
SNP marker associations). This phenomenon could be due
to a significant proportion of rare causal variants that are in
very low LD with the generally common SNPs used on com-
mercial SNP arrays (Yang et al. 2010). A high proportion of
rare variants affecting a trait may be due to large or recently
expanding Ne and/or long-term selection pressure, and ev-
idence to date suggests that negative selection is far more
common than positive or balancing selection (reviewed by
Eyre-Walker and Keightley 2007; Boyko et al. 2008).

In Const-Sel the BayesR accuracy with HD SNPs was
clearly reduced by negative selection because causal var-
iants were mainly at very low frequency (Figure 1B), result-
ing in lower LD with HD SNPs. To maintain a minimum r2 of
0.5 between SNPs and causal variants there must be no
more than 0.15 difference between their respective allele
frequencies (Wray 2005). This difficulty was overcome by
SEQ because the causal variants were present in the data.
Even in Const-Neut the causal variants were at often at
lower MAF than the HD SNPs due to the large Ne, and
therefore there was also a large advantage for SEQ accura-
cies in Const-Neut. In a simulation study, Meuwissen and
Goddard (2010) found that removing only causal mutations
from sequence data reduced accuracy by 2.5–3.7% with
a Bayesian analysis, confirming the importance of having
causal variants (or markers in complete LD with them) in-
cluded in the data.

Conversely, accuracy in Bov-Sel was less affected by long-
term negative selection because the sharp reduction in the
recent Ne allows many of the loci under the influence of
selection to drift to relatively high frequencies, while others
were purged more rapidly than in the large constant Ne. The
allele frequency distribution of causal variants in Bov-Sel is
therefore quite similar to that of the neutral SNPs and often
one or more HD SNPs (with MAF . 0.1) are likely be in
good LD with a causal variant. Therefore, even with BayesR,
the high LD in the bovine population will still tend to spread

Table 1 Realized and deterministic GBLUP accuracy with estimated heritabilities (h2) in bovine and constant Ne populations with either
neutral QTL (Neut) or QTL under negative selection (Sel)

Scenario True h2
Neut population
estimated h2 (SE)

Sel population
estimated h2 (SE)

Neut population
realized

accuracy (SE)

Sel population
realized

accuracy (SE)

Relative reduction
in accuracy due
to selection (%)

Deterministic
prediction
of accuracya

Constant SEQb 0.45 0.459 (0.005) 0.452 (0.001) 0.595 (0.005) 0.593 (0.005) 0 0.662
0.15 0.161 (0.006) 0.147 (0.006) 0.427 (0.008) 0.405 (0.007) 5.1 0.420

Constant HD SNPb 0.45 0.401 (0.006) 0.371 (0.008) 0.585 (0.006) 0.562 (0.007) 3.9 0.572
0.15 0.14 (0.005) 0.120 (0.005) 0.418 (0.009) 0.378 (0.008) 9.6 0.361

Bovine SEQb 0.45 0.401 (0.005) 0.413 (0.008) 0.960 (0.001) 0.961 (0.001) 0 0.985
0.15 0.148 (0.005) 0.145 (0.004) 0.892 (0.003) 0.888 (0.004) 0.4 0.938
0.01 0.010 (0.001) 0.009 (0.001) 0.591 (0.018) 0.585 (0.013) 1.0 0.624

Bovine HD SNPb 0.45 0.440 (0.007) 0.461 (0.010) 0.961 (0.001) 0.960 (0.001) 0 0.983
0.15 0.154 (0.006) 0.152 (0.005) 0.894 (0.003) 0.888 (0.004) 0.7 0.935
0.01 0.01 (0.001) 0.009 (0.001) 0.591 (0.018) 0.586 (0.014) 1.0 0.621

Standard errors across replicates are given in parentheses.
a These accuracies are estimated using Equation 1 with our empirically estimated Me.
b Accuracies are given for full sequence (SEQ) and high-density SNPs (HD SNPs) averaged across 20 replicates. The number of reference and validation individuals was 2500,
except for the bovine scenario h2 = 0.01 where it was 3750.
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the effect of the causal variant across a number of SNPs in
very high LD with the causal variant. Druet et al. (2014)
found a marked improvement in accuracy from use of se-
quence compared to MD SNPs even though they used a very
similar bovine demography to ours. However, they simu-
lated QTL only on rare variants as an indirect means of
modeling long-term negative selection, while our results in-
dicate that random drift is likely to prevent such an extreme
distribution of low-frequency causal variants.

In a recent study of genomic prediction in Drosophila,
Ober et al. (2012) found no improvement from using either
a Bayesian or a GBLUP analysis with “sequence data” com-
pared to much less dense markers. This seems surprising
because the Ne of Drosophila is believed to be very large.
However, the authors had first discarded all rare variants
from their sequence because they had a very small reference
population (,200). It is plausible that this approach dis-
carded many rare causal variants because the traits analyzed
were fitness traits and could explain why there was no im-
provement under their Bayesian analysis. However, as sug-
gested by the authors, it could equally be a result of the
highly polygenic nature of their traits saturating the effec-
tive number of chromosome segments so that the Bayesian
analysis had no advantage over GBLUP (Ober et al. 2012).

The real world is more complex than our simple model of
negative selection, so would this affect our conclusions? For
example, domestic animals and plants have in recent time
been subjected to positive selection. A recent study found no
clear selection signatures related to complex economic traits
in cattle (Kemper et al. 2014), and the authors postulate
that this is in part due to the highly polygenic nature of
these traits and pleiotropic effects with opposing fitness
costs. The size and direction of our QTL effects were inde-
pendent of the selection coefficient as for a pleiotropic
model, which is also consistent with evidence from some
human disease susceptibility loci (Park et al. 2011). Al-
though the reality for many traits is likely to lie somewhere
between this and complete dependence, even a moderate
correlation between QTL effect and selection coefficient
would result in little change in the contribution of rare
alleles to the genetic variance (Simons et al. 2014). There-
fore it is unlikely that accounting for recent positive selec-
tion or for a moderate correlation between s (the selection

coefficient) and the QTL effect would change our conclu-
sions, particularly in species such as cattle that have under-
gone a sharp reduction in recent Ne, which in itself causes
a major reduction in the proportion of rare deleterious
mutations segregating due to random drift.

The critical parameter in determining the strength of
selection in any population is the absolute value of Nes,
where s is the selection coefficient. When |Nes| , 1, the
mutation will remain effectively neutral and conversely, if
|Nes| . 100, the mutation is likely to be lost very rapidly.
Therefore, our selection coefficient was chosen to be of sim-
ilar magnitude to moderate fitness cost estimates in humans
(reviewed by Eyre-Walker and Keightley 2007): |Nes|� 5 in
the constant-size population and |Nes| � 12 in the most
ancestral bovine population, lowering to near neutral in very
recent time as Ne is reduced. A larger selection coefficient
would therefore have accentuated the differences between
Const-Sel and Const-Neut (and vice versa). In the bovine
simulation we would expect a more subtle effect from
a stronger s because of the moderating influence of random
drift in the small recent Ne. We applied a constant selection
coefficient, while the true distribution of fitness effects is
believed to be closest to a gamma or mixture model (Boyko
et al. 2008; Keightley and Halligan 2009). However, this is
a reasonable simplification because modeling a mixture dis-
tribution is likely to give similar but more variable results
where mutations with higher s would be more rapidly lost,
while many variants with weaker s would be effectively
neutral. It is interesting to note that the loci under negative
selection in Const-Sel reflected a similar allele frequency
distribution to that found in a study of human exome data,
in which variants are more likely to be influenced by nega-
tive selection (Tennessen et al. 2012).

Accuracy 10 generations after the estimation of
SNP effects

The accuracy of GP is often evaluated by a cross-validation
design in which the data set is randomly divided into
a reference set and a validation set. This is likely to result
in a closer relationship between reference and validation
populations than between the reference population and the
population where the GP is to be applied in the real world,
which may be separated in space or time from the reference

Table 2 Realized accuracies for GP in Const-Neut, Const-Sel, Bov-Neut, and Bov-Sel, using BayesR methodology with sequence (SEQ) or
high-density SNPs (HD SNPs)

Population (size, T)
Accuracy BayesR
with SEQ (SE)

Accuracy BayesR
with HD SNPs (SE)

Increased accuracy BayesR vs.
GBLUP with SEQ (%)

Increased accuracy BayesR vs.
GBLUP with HD SNPs (%)

Const-Neut h2 = 0.45 (T = 2500) 0.957 (0.002) 0.779 (0.01) 36.2 19.4
Const-Sel h2 = 0.45 (T = 2500) 0.952 (0.003) 0.703 (0.015) 35.9 14.1
Const-Neut h2 = 0.15 (T = 2500) 0.791 (0.012) 0.614 (0.019) 36.4 19.6
Const-Sel h2 = 0.15 (T = 2500) 0.832 (0.008) 0.534 (0.025) 42.7 15.6
Bov-Neut h2 = 0.1 (T = 3750) 0.895 (0.004) 0.883 (0.004) 0 0
Bov-Sel h2 = 0.1 (T = 3750) 0.896 (0.004) 0.882 (0.004) 0 0
Bov-Neut h2 = 0.01 (T = 3750) 0.587 (0.017) 0.592 (0.017) 0 0
Bov-Sel h2 = 0.01 (T = 3750) 0.579 (0.012) 0.587 (0.013) 0 0

Also shown is the absolute increase in accuracy from using BayesR rather than GBLUP. Standard errors of the accuracies across replicates are given in parentheses.
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population. We have attempted to model this by assessing the
accuracy of GP 10 generations after the reference population.

GBLUP predicts the effect of each QTL by using a linear
combination of many SNPs that are in LD with the QTL,
spread over a wide genome region. Over 10 generations this
LD is eroded by recombination, causing a marked decline in
the accuracy of prediction. BayesR makes more use of causal
variants or markers close to them and so the accuracy of
prediction is eroded more slowly or not at all in the case of
SEQ in the constant Ne population. In the bovine demogra-
phy, the LD is so extensive that BayesR may still assign an
effect to markers a long distance from the QTL and therefore
recombination still reduces the accuracy after 10 genera-
tions. In fact, the best accuracy in the constant Ne population
after 10 generations was higher than the best accuracy in
the bovine population after 10 generations (a reversal of
generation 0 results). This is presumably because the lower
LD in the constant population helps BayesR to find the
causal mutations in the sequence data and thus make pre-
dictions that are stable over generations. This is an impor-
tant result because it demonstrates a potential economic
advantage for BayesR, because phenotypes would need to
be measured less often when prediction equations are more
stable over time. We did observe an advantage for BayesR
after 10 generations in the bovine scenario with 15 QTL
even though there was little difference at 0 generations. This
might explain why published studies with real cattle data
find little difference between Bayesian and GBLUP accura-
cies because their reference and validation animals are gen-
erally more closely related than in our 10_Gen scenario.

Deterministic accuracy of GP

Past studies demonstrate that the deterministically derived
accuracy of GP provides a reasonable match with observed
GBLUP accuracies in simulated data when the assumption of

a constant population size holds (Daetwyler et al. 2008,
2010; Goddard 2009; Goddard et al. 2011). However, with
a more complex demography it is not clear what the appro-
priate Ne is to estimate Me. For example, when we used our
true bovine present-day Ne of 90 to estimate Me for Equation
1, the deterministic prediction of accuracy was much higher
than our realized accuracy because the expected r2 in a con-
stant Ne of 90 would be much higher than for our more
complex demography. Our empirically calculated Me

resulted in good a priori estimates of the realized accuracy.
We estimated that the equivalent constant-sized Ne that
would give rise to this Me would be �330 (applying the
analytical formula of Goddard et al. 2011). The determinis-
tic formula provides a lower limit for the BayesR accuracy
but the realized accuracy for BayesR will depend on the
actual number of QTL and the distribution of their effects
as well as the Me. This is hard to predict a priori without
knowing the genetic architecture underlying a specific trait.
A priori calculation of the expected accuracy of GP is useful
in planning for effective use of resources: this is particularly
important when considering use of sequence data, given the
extra costs involved in generating, storing, and analyzing
the data.

Current limitations for the application of sequence data

It is important to point out that current sequencing
technology is not perfect and this represents a real limitation
not considered in our simulation: for example, there are
base-calling errors, and causal deletions/insertions may not
be correctly mapped. These errors mean that some causal
variants may still not be captured in sequence data and
random errors will add noise. Furthermore, these errors will
also reduce imputation accuracies and accurate imputation
of rare variants is difficult until large banks of genome
sequences are available for a range of populations. This will

Figure 4 GBLUP and BayesR accuracies in the Const-
Neut and Const-Sel populations when validation individ-
uals were either from the same generation as reference
individuals (0_Gen) or separated by 10 generations
(10_Gen). The trait h2 = 0.1, number of reference indi-
viduals = 3750, and number of QTL = 50.
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erode part of the predicted improvement from using
sequence data, but this field is rapidly evolving with much
emphasis on improving both sequencing quality and cost as
well as imputation accuracy. A further important practical
difficulty of implementing genomic prediction with whole-
genome sequence is the enormous number of genotypes and
training individuals that need to be processed; therefore it
will be important to develop more computationally efficient
approaches.

Conclusion

The accuracy of GP depends on two factors (Goddard 2009):
(1) the proportion of the genetic variance explained by the
SNP and (2) the accuracy with which the SNP effects are
estimated.

The first factor depends on the MAF of QTL, the density
of SNPs, and Me. If QTL have low MAF, SNPs have low
density and Me is large, then the LD between SNPs and
QTL is reduced and the SNPs fail to explain all the genetic
variance. In human complex traits half the genetic variance
is often missing using HD SNPs and this will severely limit
the accuracy of GP based on SNPs with MAF . 0.1. Our
simulation suggests that the missing genetic variance could
be recovered by the use of sequence data, provided the
current limitations of sequence data, imputation, and com-
putational efficiency can be surmounted.

The second factor, the accuracy with which SNP effects
are estimated, depends on an interaction between all the
variables considered in this study. When the data are
analyzed by GBLUP, the accuracy depends on NTh2/Me but
is unaffected by the genetic architecture of the trait. Al-
though GBLUP may have high accuracy in the generation
used for reference, the accuracy drops sharply when tested
10 generations later because recombination breaks up the

chromosome segments whose effects GBLUP estimated.
BayesR has an advantage when the number of causal var-
iants ,,Me and when the distribution of QTL effects is far
from normal. BayesR is then able to more accurately esti-
mate effects than GBLUP, using HD SNP or sequence data,
and accuracy persists better than under GBLUP when
more generations separate the reference and validation
populations.

Evidence from our study indicates that in populations
with low LD and large Ne, such as some human and outbred
plant populations, there is likely to be a significant advan-
tage in using sequence data, but only with a Bayesian anal-
ysis. This advantage could be even greater if mutations
affecting the complex trait have been under the influence
of long-term negative selection. An example would be for
risk prediction of complex diseases in humans, such as di-
abetes, where there is evidence of long-term negative selec-
tion operating on causal mutations (Park et al. 2010).
Furthermore the persistency of accuracy with sequence even
after 10 generations separated the validation and reference
population indicates that the predictions of risk would be
more robust across space and time than when using HD SNP
data or analysis by GBLUP.

In domestic livestock, such as within a breed of cattle,
where the Ne has been reducing from ancestrally large to
very small, sequence data and Bayesian analysis have an
advantage over HD SNPs and GBLUP only for some traits.
However, the predictions are not robust and decay in accu-
racy with time. This could be overcome by continually
retraining the prediction model but this may involve the
expense of continually collecting more phenotypes. As an
alternative, we suggest combining sequence data from two
or more breeds of cattle to reduce long-range LD. This, to-
gether with a Bayesian analytical approach, should improve

Figure 5 GBLUP and BayesR accuracies in the Bov-
Neut and Bov-Sel populations when validation indi-
viduals were either from the same generation as
reference individuals (0_Gen) or separated by 10
generations (10_Gen). The trait h2 = 0.1, number
of reference individuals = 3750, and number of
QTL = 50 or 15.
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the robustness of the prediction. To compensate for reduced
LD in the mixed-breed population, it will also be necessary
to increase the size of the reference population.

Data availability

The scripts and FREGENE parameter files used to generate
simulated sequence data for each of the four scenarios are
given in File S1, File S2, File S3, and File S4. Due to the
large size and number of data sets generated for this study,
the data have not been deposited in a public repository, but
the authors are willing to share data files on request.
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