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ABSTRACT The application of quantitative genetics in plant and animal breeding has largely focused on additive models, which may
also capture dominance and epistatic effects. Partitioning genetic variance into its additive and nonadditive components using
pedigree-based models (P-genomic best linear unbiased predictor) (P-BLUP) is difficult with most commonly available family structures.
However, the availability of dense panels of molecular markers makes possible the use of additive- and dominance-realized genomic
relationships for the estimation of variance components and the prediction of genetic values (G-BLUP). We evaluated height data from
a multifamily population of the tree species Pinus taeda with a systematic series of models accounting for additive, dominance, and
first-order epistatic interactions (additive by additive, dominance by dominance, and additive by dominance), using either pedigree- or
marker-based information. We show that, compared with the pedigree, use of realized genomic relationships in marker-based models
yields a substantially more precise separation of additive and nonadditive components of genetic variance. We conclude that the
marker-based relationship matrices in a model including additive and nonadditive effects performed better, improving breeding value
prediction. Moreover, our results suggest that, for tree height in this population, the additive and nonadditive components of genetic
variance are similar in magnitude. This novel result improves our current understanding of the genetic control and architecture of
a quantitative trait and should be considered when developing breeding strategies.

QUANTITATIVE genetics and its applications in plant
and animal breeding have largely focused on addi-

tive models. Under idealized conditions, such as those de-
scribed by Cockerham (1954) and Kempthorne (1954),
genetic values due to additive and nonadditive effects are
orthogonal. However, these conditions are often not met in
breeding populations, with the consequence that genetic
values due to additive and nonadditive effects may be con-
founded. Under these conditions, a large proportion of
variance due to interactions of alleles (dominance and epis-
tasis) can manifest as additive variance (Hill et al. 2008).

For the same reason, with most commonly used family
structures, it is difficult to dissect genetic variance into
additive, dominance, and epistatic effects. With standard
pedigree models, variance estimates of these elements are
highly correlated, reflecting confounding effects (Lynch and
Walsh 1998; Hill 2010). The proportion of additive vari-
ance attributable to interactions of alleles largely depends
on the distribution of allele frequencies at causal loci (Lu
et al. 1999; Hill et al. 2008; Zuk et al. 2012). This affects
the estimation of variance components and breeding value
(BV) predictions (Vanderwerf and Deboer 1989; Palucci
et al. 2007), as well as the ability to dissect the genetic
architecture of the trait at the causal level. Understanding
the genetic architecture of a trait is also useful for defining
breeding strategies and for maximizing genetic gains. For
instance, individual genetic differences due to nonaddi-
tive effects can be exploited by designing mating schemes
that maximize favorable allelic combinations, particularly
if family or clonal propagation are possible in the breeding
program.
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Separation of additive and nonadditive genetic compo-
nents with standard pedigree-based models requires specific
family structures, which are commonly available in plant or
animal breeding programs. In practice, estimation of vari-
ance due to dominance and additive effects involves mat-
ing designs with large numbers of close, typically full-sib
relatives. Partitioning epistasis requires, in addition, either
inbreds or vegetatively propagated (clonal) populations. In
perennial plants, inbreds are not used because of their long
generation time and because severe inbreeding depression
often occurs. Thus, clonal populations are an alternative to
explore the full genetic architecture in these species (Foster
and Shaw 1988). Several studies aimed at partitioning ge-
netic variance into its various components detected small
dominance and negligible epistatic effects (Foster and Shaw
1988; Mullin et al. 1992; Wu 1996; Isik et al. 2003, 2005;
Costa E Silva et al. 2004, 2009; Baltunis et al. 2007, 2008,
2009; Araujo et al. 2012). These results do not necessarily
imply that such effects are not important. Instead, the con-
tribution of nonadditive effects may be masked by effects
due to the distribution of allele frequencies (e.g., Hill et al.
2008). These results may also reflect the limitations im-
posed by the data/family structure available or the genetic
information used (pedigrees), which only allows for estima-
tion of the expected degree of genetic similarity.

Genome-wide genotypic data can identify, with a high
level of certainty, the actual fraction of allele sharing between
pairs of individuals. In pedigree-based genetic relationships,
each element in the numerator relationship matrix (Amatrix)
is defined as the expected fraction of shared alleles assuming
an infinitesimal model. However, due to Mendelian sampling,
the values of the realized genomic relationships (AG matrix),
constructed from molecular marker information, deviate from
their expected value (Vanraden 2008; Hill and Weir 2011).
One way of incorporating molecular marker information for
prediction of genetic values consists of replacing, in a genomic
best linear unbiased predictor (BLUP) analysis, the pedigree-
based relationship matrices (P-BLUP) with marker-based
counterparts (or genetic, G-BLUP) (Vanraden 2008). Indeed,
G-BLUP is one of the most frequently used methods that
combine molecular information to predict BVs and has shown
remarkably good predictive performance in animal and plant
breeding populations (Hayes et al. 2009; Habier et al. 2010;
Veerkamp et al. 2011; de los Campos et al. 2012; Heslot et al.
2012).

Genomic BLUP is a well-known and easily understood
methodology. In the context of genome-wide selection (GWS),
it is equivalent to ridge regression BLUP (RR-BLUP) (Vanraden
2008; de los Campos et al. 2012). Similar to P-BLUP, G-BLUP
can be extended to account for nonadditive effects by replacing
pedigree-based relationship matrices due to nonadditive effects
(Mrode 2005), with their marker-based counterpart. This is
because dominance and epistatic interaction (e.g., additive by
additive, dominance by dominance, and additive by domiance)
relationship matrices can also be constructed using molecular
information, as is currently done with AG. Use of dominance

and epistasis matrices of realized genetic relationships may
increase the precision of estimates derived from data in poorly
structured populations and may also increase the power to
dissect genetic variance into components due to main and in-
teraction effects.

Evidence indicates that G-BLUP based on AG yields more
accurate predictions of breeding value and of future pheno-
types than its pedigree-based counterpart (A) (Vanraden
2008; de los Campos et al. 2009; Hayes et al. 2009; Crossa
et al. 2010; Heslot et al. 2012; Resende et al. 2012b; Muñoz
et al. 2013). This suggests that use of the realized genomic
similarity (AG) increases (relative to A) the ability of the
model to uncover the genetic components of the phenotypic
data. However, it is not clear whether the power to partition
genetic variance into additive and nonadditive components
can also be improved by the use of the realized genomic
relationships. If so, this would lead to a finer dissection of
the genetic architecture of complex traits that could have
profound impacts on the future design and implementation
of breeding strategies. The objective of this study is to assess
the extent to which the use of marker-based additive and
nonadditive relationship matrices improves the precision of
partitioning genetic variance into its components. For this
assessment, tree height from a clonal population of Pinus
taeda L. was evaluated with a series of models that account
for additive, dominance, and first-order epistatic interactions
(additive by additive, dominance by dominance, and additive
by dominance) implemented with either pedigree or molec-
ular marker information.

Materials and Methods

Data

Field data from a single experimental trial from the CCLONES
population (see Baltunis et al. 2007 and Resende et al. 2012a
for details) was used in this study. The response variable total
tree height (HT, m) was used. The population was generated
by crossing 32 parents in a circular mating design with addi-
tional off-diagonal crosses, resulting in 70 full-sib families with
an average of 13.5 individuals per family. Each individual was
clonally replicated (ramet) and a clonal field trial was estab-
lished using single-tree plots with eight replicates (one ramet
per replicate), in a resolvable alpha-incomplete block design
(Williams et al. 2002). Four of the replicates were grown
under high intensity management while the rest were under
an operational-like regime.

A subset of the CCLONES population, composed of 951
individuals from 61 families, was genotyped using the Illumina
Infinium platform (Illumina, San Diego (Eckert et al. 2010)
with 7216 SNPs, each representing a unique pine EST contig.
A total of 4853 SNPs were polymorphic and were used for
further analyses.

Relationship matrices

A marker-based additive relationship matrix (AG) was con-
structed following the method described by Yang et al. (2010).
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The pairwise relationship for individuals j and k was de-
fined by

A*
Gjk

¼
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>>>>>:
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where m is the total number of markers, w is an indicator
variable representing the number of copies of a given allele,
and pi is the observed allele frequency of the ith SNP. To
reduce the sampling variance of the entries of AG*, we ex-
panded the formula proposed by Yang et al. (2010) and
adjusted each value of the AG* matrix by shrinking it toward
its expectation. The the adjusted AG was obtained as

AGjk ¼ ð12 1=m
var

�
Cjk

�Þ
�
A*
Gjk

2Ajk

�
þ Ajk;

where Cjk represents all values of AG* that belong to the
same class in Ajk (e.g., full-sib individuals, where Ajk =
0.5). The resulting AG was used to correct the original ped-
igree as previously detailed (Muñoz et al. 2013), and it was
verified that the estimated genomic coefficients and their
standard deviations were within expectations according to
Simeone et al. (2011).

In addition, a molecular marker-based dominance re-
lationship matrix (DG) was constructed. To build a domi-
nance relationship matrix, we created an incidence matrix
(S) for effects due to dominance S = {sij}, where sij was
parameterized to be coded 1 if the genotype was heterozy-
gous and 0 if the marker genotype was homozygous for
either class. The matrix S was further standardized to have
mean zero by using: sij = 1 2 2pjqj if the individual is het-
erozygous, sij = 0 if the individual has missing data, and sij =
0 2 2pjqj otherwise.

Using the above, we expanded the theory for the AG

matrix to construct DG as

DG ¼ SS9Pm
j¼1 2pjqjð12 2pjqjÞ

;

where the denominator is the sum of the variances of sij
under Hardy–Weinberg equilibrium, and the other terms were
previously defined. This extension to construct DG was also
used by Su et al. (2012). Another parameterization has been
proposed for the dominance genomic relationship matrix
(Vitezica et al. 2013), which generates a different partition
of the genetic variance. We also evaluated this parameteriza-
tion and included the results in the supporting material.

Pedigree-based relationship matrices for additive (A) and
dominance (D) effects were computed using standard meth-
ods (Lynch and Walsh 1998; Mrode 2005). Following exist-
ing theory (Cockerham 1954; Kempthorne 1954; Henderson
1985; Gianola and de los Campos 2008), the covariance
matrices due to first degree epistatic terms were computed

using Hadamard products (i.e., cell-by-cell product denoted
as #) of the following form: (i) additive-by-additive inter-
actions (A#A or AG#AG); (ii) dominance-by-dominance
interactions (D#D orDG#DG); and (iii) additive-by-dominance
interactions (A#D or AG#DG) for pedigree and marker-based
methods, respectively.

Genetic analyses

All analyses were carried out in the software ASReml v3.0
(Gilmour et al. 2009), which fits mixed models with com-
plex datasets using sparse matrix methods. ASReml is equip-
ped with the residual maximum likelihood (REML) for
variance component estimation using the average informa-
tion algorithm (Gilmour et al. 1995).

Five models were fit using the pedigree-based matrices
(models 1–5) and five using the marker-based matrices
(models 6–10). These models range from a simple additive
model to a full model including additive, dominance, and
epistatic effects. The full model (i.e., model 5 or 10) is de-
scribed below:

y ¼ Xbþ Z1iþ Z2aþ Z3t1 þ Z4dþ Z5t2 þ Z6ic#c þ e;

where y is the phenotypic HT response, b is a vector of fixed
effects (i.e., silvicultural treatment and replicate), i � N(0,
Is2

i) is a vector of the random incomplete block effects within
replication, a � N(0, C1s2

a) is a vector of random additive
effects of individuals and C1 is a relationship matrix due to
additive effects either from pedigree (A) or markers (AG), t1 �
N(0, C15Is2

t1) is a vector of random additive by silviculture-
type interactions, d � N(0, C2s2

d) is a vector of random
individual dominance effects and C2 is a relationship matrix
due to dominance effects that was computed either from
pedigree (D) or markers (DG), t2 � N(0, C25Is2

t2) is a vector
of random dominance by silviculture-type interactions, ic#c �
N(0, C1#C1s2

iaa) is either a vector of random additive-by-
additive interaction, a vector of random dominance-by-
dominance interactions ic#c � N(0, C2#C2s

2
idd), or a vector

of random additive-by-dominance interactions ic#c � N(0,
C1#C2s2

iad), and e � N(0, Is2
e) is a vector of random re-

sidual effects. Above, matrices X and Z1–Z6, are incidence
matrices for fixed and random effects, respectively, and I
denotes an identity matrix, and 5 and # represent the
Kronecker and Hadamard (cell by cell) product, respectively.

Under the above model, the narrow-sense heritability can
be estimated as h2 ¼ s2

a=s
2
p; the dominance to total variance

ratio as d2 ¼ s2
d=s

2
p; the epistatic to total variance ratio as

i2 ¼ s2
i =s

2
p; and the broad-sense heritability as H2 ¼ s2

g=s
2
p:

The s2
a is the estimated additive variance, s2

d is the estimated
dominance variance, and s2

p, s
2
i , and s2

g are the total pheno-
typic, epistatic, and total genetic variance, respectively, that
changed accordingly to the model being fit (Table 1).

Model comparisons

Models were compared using the Akaike information crite-
rion (AIC) (Akaike 1974). Precision of variance components
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estimates, and their dependency, was assessed using the
asymptotic variance–covariance matrix of estimates of var-
iance parameters (V). The asymptotic sampling correlation
matrix of estimates (F) was computed as F ¼ L21=2VL21=2;

where L is a diagonal matrix containing the diagonal ele-
ments of V. Inspection of the off-diagonal elements of the
F matrix allows assessing sampling correlation of variance
estimates. To have an overall assessment of dependency
between the estimates, eigenvalues of F were examined.
The standard error of the prediction (SEP) was estimated
for each model as the square root of the prediction error
variance (PEV), which is obtained by extracting the ele-
ments of the diagonal of the generalized inverse of the
coefficient matrix from the linear mixed model equa-
tions (left hand side), and scaled by the error variance. In
short form, the PEVs correspond to the Varða2 âÞ (Mrode,
2005, p. 51).

Predictive ability and stability of the models in estimat-
ing breeding and genetic values were evaluated. The pre-
dictive ability of a model’s breeding value was defined as
the correlation between the estimated breeding value and
the phenotypic average of all the ramets (clones). These
values were calculated when all the data were used without
cross-validation (BV-all). The predictive ability of a model’s
total genetic value (sum of BV-all, dominance effect, and
epistatic effect) was defined as the correlation between
the predicted total genetic value and the phenotype average
of all the clones using all the data without cross-validation
(GV-all). Prediction models were assessed under cross-
validation (Kohavi 1995) to obtain predicted breeding value
(BV-cv) and predicted total genetic value (GV-cv) with a ran-
dom sub-sampling partitioning, fixed for all models. The
stability of the predictive models were evaluated as the cor-
relation between the BV-all and BV-cv, and between GV-all
and GV-cv, and was defined as a measure of the dependency
of the predictive breeding value on the phenotype. The
mean square error (MSE) was calculated between BV-all
and BV-cv within each model using standard methods. Fi-
nally, the capacity of the model to predict ranking position of
the top 10% of the individuals, simulating a selection sce-
nario, was evaluated as the correlation between the ranking

position using the BV-all and the ranking position using the
BV-cv.

Results

The genetic parameters and goodness-of-fit statistics, esti-
mated for each model, are summarized in Table 2. Both P_A
and M_A models had narrow-sense heritability (h2) .0.30.
After including the dominance effect in the pedigree-based
model (P_AD), h2 decreased by �26% and the dominance
ratio (d2) estimate was small (0.06) and nonsignificant (23
SE(d2) . 0.06). When the dominance effect was included
with the molecular marker-based model (M_AD), the h2 de-
creased 47%, to 0.20, and d2 increased to 0.12. With the
M_AD model, the dominance variance represents 60% of the
additive value and 39% of the total genetic variation. We
further extended these models to include the additive-by-
additive, dominance-by-dominance, and additive-by-dominance
first-order epistatic interaction factors in three separate
models. In pedigree-based models, P_A#A, P_D#D, and
P_A#D, the estimations of variance components for addi-
tive and dominance varied only slightly from those of the
P_AD model (Supporting Information, Table S1). Moreover,
epistasis estimates were zero in all three models. When the
additive-by-additive, dominance-by-dominance, and additive-
by-dominance interactions were added (models M_A#A,
M_D#D, and M_A#D), the narrow-sense heritability drop-
ped by.30% and the dominance ratio by 80%, compared to
the M_AD model. The epistatic ratio (i2) was estimated at
0.15, 0.12, and 0.14 for the M_A#A, M_D#D, and M_A#D
models, respectively (Table 2). The alternative parameteri-
zation for the dominance genomic relationship matrix pro-
posed by Vitezica et al. (2013) showed similar results
regarding the partition of additive and nonadditive effects
(Table S2).

Goodness-of-fit statistics show that inclusion of nonaddi-
tive effects improved slightly the model fit for pedigree-
based models and substantially for marker-based models
(Table 2). The marker-based models M_A#D and M_D#D
yielded the best fit of the data; however, fitting differences
among the more complex models were small. Thus, the

Table 1 Summary of models, fitted effects, and relationship matrices used in the study

Model Relationship matrix used (information used, A, D = pedigree, AG, DG = markers)

Number Code Additive Dominance Epistasis

1 P_A A
6 M_A AG

2 P_AD A D
7 M_AD AG DG

3 P_A#A A D A#A
8 M_A#A AG DG AG#AG

4 P_D#D A D D#D
9 M_D#D AG DG DG#DG

5 P_A#D A D A#D
10 M_A#D AG DG AG#DG
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dependency of the random component estimates was eval-
uated to further differentiate the best model.

We studied the sampling correlation among the vari-
ance component estimates, to assess which of the nine
models shows less dependency and thus partitioned the
genetic variance better (Table S3). Figure 1 shows the
cumulative proportion of variance explained by high order
eigenvalues of the sampling variance–covariance matrix of
estimates derived from models including additive-plus-
dominance, additive-by-additive, dominance-by-dominance,
and additive-by-dominance epistatic interactions, for
pedigree- and marker-based models. As reference, the dis-
tribution of eigenvalues for a perfect orthogonal correlation
matrix, representing the ideal model (all of the eigenvalues
equal to 1) is included. In all cases, the marker-based cu-
mulative distributions are closer to the orthogonal distribu-
tion, suggesting less dependency between estimates of
variance components. Indeed, the sampling correlation
between estimates of variance components due to addi-
tive and dominance effects decreases in absolute value
from 0.90 with the P_AD to 0.70 with the M_AD model
(Table S2). In general, all the marker-based models that
include epistasis outperform their pedigree-based counter-
part (Figure 1, B–D). Models M_D#D and M_A#D showed
the smallest sampling correlations between additive and
dominance/epistasis, with absolute correlation values ,0.45
(Table S3).

The standard error of the predictions (SEP) of BV and
dominance value (DV) were compared for the pedigree
and markers models including additive by additive, domi-
nance by dominance, and additive by dominance (Figure 2).
Values ,45� reference line indicate that marker-based
models have smaller SEPs. The SEPs for BVs from the
marker-based models were smaller than the pedigree-based
models in 99.2% of the cases (Figure 2, A–C). In the case of
the SEPs of DVs, a clear advantage was observed for
marker-based models (y-axis) over pedigree-based models
(x-axis), with SEP on average 52% lower for the marker-
based models (Figure 2, D–F).

The predictive ability of breeding value and genetic
value for the pedigree-based and marker-based models are
shown in Table 3. The highest predictive ability for BV was
obtained with the pedigree additive model (P_A). A slight
decrease in the BV prediction ability was observed when
nonadditive effects were included in the pedigree-based
model (0.86), and a much larger decrease was observed
for the marker-based models (0.76). All models evaluated
reached similar GV predictive ability.

Predictive stability can be viewed as a measure of how
much the prediction of the breeding value and genetic
value using all the data (BV-all and GV-all) depend on the
individual phenotype (Table 3). Predictions based on
models with markers are more stable than those derived
from pedigree models (3% increase when comparing M_A
to P_A). In the pedigree-based models, inclusion of non-
additive effects increased the stability to predict BV by 13,Ta
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14, and 14% for P_A#A, P_D#D, and P_A#D, respectively,
while inclusion of nonadditive effects in the more complex
marker-based models, increased the BV prediction stability
by.29% when compared with the M_A and by.33% when
compared to P_A. The mean square error (MSE) decreased
by �50% from the additive models (P_A) to the more com-
plex pedigree-based models. The addition of nonadditive
effects to the marker-based models decreased the MSE even
further by .68% and up to 94% decrease in the case of
model P_A#A (Table 3).

In a breeding program, it is important to predict the
trend and magnitude of the complete set of individuals in

the population; however, it is often more important to
predict the best performing individuals (potential selec-
tions). Here we ranked all individuals based on BV-all and
BV-cv and evaluated the ranking correlation of the top
10%, emulating the selection of the top 10% of genotypes
(Table 3). When the pedigree-based matrix was replaced
by the marker-based matrix in the additive models (P_A
and M_A), the capacity to predict the top 10% remained
the same. However, this capacity increased substantially
for the more complex marker-based models where the
predictive stability of the top 10% of genotypes increased
82–170% (Table 3).

Figure 1 Cumulative proportion of variance explained by eigenvalues for models considering A plus D from pedigree (P_AD) vs. markers (M_AD) (A),
A#A interaction from pedigree (P_A#A) vs.markers (M_A#A) (B), D#D interaction from pedigree (P_D#D) vs.markers (M_D#D) (C), and considering A#D
interaction from pedigree (P_A#D) vs. markers (M_A#D) (D). The diagonal represents an orthogonal correlation matrix.
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Discussion

Here we assessed the use of marker- and pedigree-based
models to separate additive from nonadditive variances
for height, in a structured population of loblolly pine. We
showed that the two approaches are dramatically distinct in
their capacity to properly partition the genetic variance into
its various components, with marker-based models being
significantly more effective in accounting for nonadditive
variances. In the pedigree-based models, inclusion of non-
additive effects decreased the estimated narrow-sense
heritability by 26%. This result is expected because de-
pending on the distribution of allele frequencies, a sizable
proportion of variance due to nonadditive effects can be
manifest as additive variance (Lu et al. 1999; Zuk et al.
2012). In marker (pedigree) models 71% (57%) of the de-
crease in additive variance was captured by the dominance
variance, suggesting that indeed, dominance is making
a substantial contribution to the estimated additive variance
obtained when dominance is ignored. This phenomena has
been postulated theoretically (e.g., Falconer and Mackay
1996, p. 126) and observed in multiple studies (Wei and Van
Der Werf 1993; Winkelman and Peterson 1994; Rodriguez-
Almeida et al. 1995; Pante et al. 2002). In addition, when
pedigree-based models included nonadditive effects, the
conclusions were not different from what has been com-
monly observed that nonadditive effects represent a small
fraction of the total genetic variation (Isik et al. 2003; Costa
E Silva et al. 2004; Baltunis et al. 2007; Araujo et al. 2012).

In contrast, marker-based models with additive and nonad-
ditive effects yield a substantially different variance parti-
tioning than their counterparts using the pedigree models.
The additive variance decreased as dominance was included
in the model and it further decreased when dominance and
epistasis were considered. These models indicate that, for
this population and trait, nonadditive effects are as impor-
tant as additive effects, and dramatically larger than pre-
dicted by the pedigree-based matrices. These changes in
the magnitude of variance components have already been
observed when the relationship matrix derived from markers
is used instead of the pedigree-based relationship matrix, in
the context of additive genomic selection models (Lee et al.
2010).

The value for AIC varied modestly for the best models,
with no clear advantage of one model relative to the others.
This is not surprising; if additive effects capture part of the
effects due to dominance and epistasis, the additive model
should not suffer much if these components are omitted.
However, these models varied considerably in the partition-
ing of the genetic variance components, thus changing not
only the inference but also the potential decisions taken in
the breeding strategy.

We also assessed the dependency of the random effects
estimates to discriminate the best model, given the small
differences for AIC in the different models. The level of
confounding between components was very different in the
pedigree- and marker-based models. The most unambiguous

Figure 2 Standard error of the prediction (SEP) for pedigree-based (x-axis) against their counterpart marker-based models (y-axis). SEP for BV prediction
model including A#A interaction (A), D#D interaction (B), and including A#D interaction (C). SEP for dominance value (DV) prediction model including
A#A interaction (D), D#D interaction (E), and A#D interaction (F).

Unraveling Additive from Nonadditive Effects 1765



dissection of the genetic variance occurs when estimates of
variance components are uncorrelated, i.e., the sampling
correlation among the model effects will be closer to zero
and all eigenvalues of this correlation matrix close to one
(Hill 2010). In the models that included additive and dom-
inance, and additive, dominance, and epistatic effects, the
correlation matrices indicated that those derived from mo-
lecular markers partitioned the genetic effects more pre-
cisely, although the partition is still not fully orthogonal.
The parameterizations of these paired models were iden-
tical, except for the origin of the relationship matrices
(pedigree or marker based). The limited capacity of pedi-
gree-based models to partition these components is not
surprising, as all relationship matrices are derived from
the pedigree additive relationship matrix (Mrode 2005)
and, therefore, are strongly correlated (Visscher 2009).
The models M_A#A, M_D#D, and M_A#D had the lowest
correlation between additive and nonadditive, showing
a partition substantially better than that of pedigree-based
models (Table S3). These results support the finding that
pedigree-based models are inadequate in separating the
additive from nonadditive effects, as their results are com-
parable to those of additive models (Hill et al. 2008). On
the other hand, the use of the matrix derived from markers
has already been related to a better capacity to separate
random effects in a model (Lee et al. 2010). Thus, we conclude
that the use of the marker-based relationship matrices increase
substantially the capacity to separate additive and nonadditive
genetic effects.

Assessment of prediction accuracy further support the
conjecture that in pedigree-based models, additive com-
ponents can capture a large proportion of the variance due
to interaction terms (Hill et al. 2008). Consequently, there
is limited gain in this scenario, by including nonadditive
effects. On the other hand, for marker-based models, the
ability to predict the mean phenotype with the BV decreased
when nonadditive effects were included in the model, and
the maximum predictability (0.89) was only reached when
additive and nonadditive values were considered together
(GV). This indicates that pedigree-based models potentially

overestimate the additive effects, which is likely to be due to
an inflated additive variance estimate that also represents
some of the nonadditive components. Inflation from epista-
sis, for example, falls apart as recombination breaks down
favorable combinations of alleles. This is a problem for breed-
ing programs because overestimates of BV inflates genetic
gains, but the portion due to nonadditive effects is transient
and cannot be captured if controlled sexual reproduction is
used. Additionally, the genetic architecture of the trait will be
predicted to be simpler than it actually is.

In breeding programs the true breeding value is never
known. Thus, the prediction models including all the avail-
able data (BV-all) is usually used as the best BV estimation.
We evaluated the stability of BV estimates by comparing the
results obtained with all data, with the results from cross-
validation for pedigree- and marker-based models. This is
a measure of the influence of an individual’s phenotype on
the predicted breeding value. We observed that models with
nonadditive relationship matrices are more stable and pro-
duce estimates of breeding values in independent sets that
are more similar to the BV-all. The inclusion of nonadditive
relationship matrices yields models that predict BVs more
stably than additive pedigree-based (animal model) and
marker-based models (traditional G-BLUP). In addition, in
this cross-validation scheme, the MSE of the model M_A#A
decreased .15- and 8-fold when compared with both addi-
tive models and full pedigree-based models, respectively.
These results indicate that, for this trait, a considerable in-
crease in the stability cannot be reached simply by replacing
the A matrix by the AG matrix but also needs to incorporate
nonadditive effects in the model.

Overall, our study supports the hypothesis that additive
effects can capture a large proportion of the genetic variance
from dominance and epistasis. This is in part due to the fact
that, in breeding populations, additive and nonadditive
genetic components are not typically independent. However,
we also show that with relationship matrices derived from
markers, the genetic variances were partitioned more pre-
cisely than using only pedigree information. Moreover, our
estimates suggest that in this population, for tree height, the

Table 3 Model of predictive ability and stability

Model

Predictive ability Predictive stability

Breeding value* Genetic value** Breeding value MSE (BV) 10% rank cor (BV)

P_A 0.89 — 0.64 1335.67 0.17
M_A 0.87 — 0.66 1294.23 0.17
P_AD 0.86 0.89 0.72 681.53 0.12
M_AD 0.82 0.88 0.74 418.83 0.31
P_A#A 0.86 0.89 0.73 669.99 0.15
M_A#A 0.76 0.89 0.85 82.80 0.46
P_D#D 0.86 0.89 0.73 638.58 0.18
M_D#D 0.77 0.89 0.86 161.78 0.43
P_A#D 0.86 0.89 0.73 657.22 0.16
M_A#D 0.76 0.89 0.86 208.15 0.42

* Correlation between the phenotypic average of all the ramets (phe) and BV-all, and ** correlation between phe and total genetic value (GV-all = BV-all + DV + epistatic
value). Stability in a cross-validation; correlation between BV-all and BV-cv, mean square error (MSE) and correlation of ranking positions for the top 10% individuals [10%
rank cor(BV)].
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additive and nonadditive components of the genetic vari-
ance are similar in magnitude. While further research is
needed in other species, traits, and populations, we show
that variance estimates can be inadequately estimated if
only pedigree information is used. This study improves our
current understanding of the genetic control and architec-
ture of a quantitative trait and should be considered when
developing effective breeding strategies.

Acknowledgments

The authors thank members of the Forest Biology Research
Cooperative at the University of Florida for their support in
establishing, maintaining, and measuring the field trial used in
this study. The work was supported by the National Science
Foundation Plant Genome Research Program (award no.
0501763), the Foundational Program (award no. 2013-
67013-21159), the Department of Energy (award no. 2013-
67009-21200), and the Plant Breeding and Education Program
(award no. 2010-85117-20569) from the US Department of
Agriculture, National Institute of Food and Agriculture.

Literature Cited

Akaike, H., 1974 New look at statistical-model identification.
Transactions on Automatic Control. AC19: 716–723.

Araujo, J. A., N. M. G. Borralho, and G. Dehon, 2012 The impor-
tance and type of non-additive genetic effects for growth in
Eucalyptus globulus. Tree Genet. Genomes 8: 327–337.

Baltunis, B. S., D. A. Huber, T. L. White, B. Goldfarb, and H. E.
Stelzer, 2007 Genetic gain from selection for rooting ability
and early growth in vegetatively propagated clones of loblolly
pine. Tree Genet. Genomes 3: 227–238.

Baltunis, B. S., T. A. Martin, D. A. Huber, and J. M. Davis,
2008 Inheritance of foliar stable carbon isotope discrimination
and third-year height in Pinus taeda clones on contrasting sites
in Florida and Georgia. Tree Genet. Genomes 4: 797–807.

Baltunis, B. S., H. X. Wu, H. S. Dungey, T. J. T. Mullin, and J. T.
Brawner, 2009 Comparisons of genetic parameters and clonal
value predictions from clonal trials and seedling base population
trials of radiata pine. Tree Genet. Genomes 5: 269–278.

Cockerham, C. C., 1954 An extension of the concept of partition-
ing hereditary variance for analysis of covariances among rela-
tives when epistasis is present. Genetics 39: 859–882.

Costa E Silva, J., N. M. G. Borralho, and B. M. Potts, 2004 Additive
and non-additive genetic parameters from clonally replicated and
seedling progenies of Eucalyptus globulus. Theor. Appl. Genet.
108: 1113–1119.

Costa E Silva, J., N. M. G. Borralho, J. A. Araujo, R. E. Vaillancourt,
and B. M. Potts, 2009 Genetic parameters for growth, wood
density and pulp yield in Eucalyptus globulus. Tree Genet. Ge-
nomes 5: 291–305.

Crossa, J., G. D. L. Campos, P. Perez, D. Gianola, J. Burgueno et al.,
2010 Prediction of genetic values of quantitative traits in plant
breeding using pedigree and molecular markers. Genetics 186:
713–724.

de los Campos, G., H. Naya, D. Gianola, J. Crossa, A. Legarra et al.,
2009 Predicting quantitative traits with regression models for
dense molecular markers and pedigree. Genetics 182: 375–385.

de los Campos, G., J. M. Hickey, R. Pong-Wong, H. D. Daetwyler,
and M. P. L. Calus, 2012 Whole genome regression and prediction

methods applied to plant and animal breeding. Genetics 193(2):
327–345.

Eckert, A. J., J. van Heerwaarden, J. L. Wegrzyn, C. D. Nelson, J.
Ross-Ibarra et al., 2010 Patterns of population structure and
environmental associations to aridity across the range of Lob-
lolly Pine (Pinus taeda L., Pinaceae). Genetics 185: 969–982.

Falconer, D. S., and T. F. C. Mackay, 1996 Introduction to Quan-
titative Genetics, Ed. 4. Addison Wesley Longman, Essex, Eng-
land.

Foster, G. S., and D. V. Shaw, 1988 Using clonal replicates to
explore genetic-variation in a perennial plant-species. Theor.
Appl. Genet. 76: 788–794.

Gianola, D., and G. de los Campos, 2008 Inferring genetic values
for quantitative traits non-parametrically. Genet. Res. 90: 525–
540.

Gilmour, A. R., R. Thompson, and B. R. Cullis, 1995 Average in-
formation REML: an efficient algorithm for variance parameter
estimation in linear mixed models. Biometrics 51: 1440–1450.

Gilmour, A. R., B. J. Gogel, B. R. Cullis, and R. Thompson,
2009 ASReml User Guide Release 3.0. VSN International,
Hemel Hempstead, UK.

Habier, D., J. Tetens, F.-R. Seefried, P. Lichtner, and G. Thaller,
2010 The impact of genetic relationship information on geno-
mic breeding values in German Holstein cattle. Genet. Sel. Evol.
42: 5.

Hayes, B. J., P. M. Visscher, and M. E. Goddard, 2009 Increased
accuracy of artificial selection by using the realized relationship
matrix. Genet. Res. 91: 47–60.

Henderson, C. R., 1985 Best linear unbiased prediction of non-
additive genetic merits in noninbred populations. J. Anim. Sci.
60: 111–117.

Heslot, N., H.-P. Yang, M. E. Sorrells, and J.-L. Jannink, 2012 Genomic
selection in plant breeding: a comparison of models. Crop Sci. 52:
146–160.

Hill, W., 2010 Understanding and using quantitative genetic var-
iation. Philos. Trans. R. Soc. Lond. B Biol. Sci. 365: 73–85.

Hill, W. G., and B. S. Weir, 2011 Variation in actual relationship
as a consequence of Mendelian sampling and linkage. Genet.
Res. 93: 47–64.

Hill, W., M. Goddard, and P. Visscher, 2008 Data and theory point
to mainly additive genetic variance for complex traits. PLoS
Genet. 4(2): e1000008.

Isik, F., B. L. Li, and J. Frampton, 2003 Estimates of additive,
dominance and epistatic genetic variances from a clonally rep-
licated test of loblolly pine. For. Sci. 49: 77–88.

Isik, F., B. Goldfarb, A. LeBude, B. L. Li, and S. McKeand,
2005 Predicted genetic gains and testing efficiency from two
loblolly pine clonal trials. Can. J. Forest Research 35: 1754–1766.

Kempthorne, O., 1954 The correlation between relatives in a ran-
dom mating population. Proc. R. Soc. Lond. B Biol. Sci. 143:
103–113.

Kohavi, R., 1995 The power of decision tables. Machine Learning:
ECML-95. pp. 174–189.

Lee, S. H., M. E. Goddard, P. M. Visscher, and J. H. J. van der Werf,
2010 Using the realized relationship matrix to disentangle
confounding factors for the estimation of genetic variance com-
ponents of complex traits. Genet. Sel. Evol. 42: 22.

Lu, P. X., D. A. Huber, and T. L. White, 1999 Potential biases of
incomplete linear models in heritability estimation and breeding
value prediction. Can. J. Forest Research 29: 724–736.

Lynch, M., and B. Walsh, 1998 Genetics and Analysis of Quantita-
tive Traits. Sinauer Associates, Sunderland, MA.

Mrode, R. A., 2005 Linear Models for the Prediction of Animal
Breeding Values. CABI Publishing Series, Cambridge, UK.

Mullin, T. J., E. K. Morgenstern, Y. S. Park, and D. P. Fowler,
1992 Genetic-parameters from a clonally replicated test of black
spruce (Picea mariana). Can. J. Forest Research 22: 24–36.

Unraveling Additive from Nonadditive Effects 1767



Muñoz, P., M. F. Resende, D. A. Huber, T. Quezada, M. D. Resende
et al., 2013 Genomic relationship matrix for correcting pedi-
gree errors in breeding populations: impact on genetic parame-
ters and genomic selection accuracy. Crop Sci. 54: 1115–1123.

Pante, M. J., B. Gjerde, I. McMillan, and I. Misztal, 2002 Estimation
of additive and dominance genetic variances for body weight at
harvest in rainbow trout Oncorhynchus mykiss Oncorhynchus
mykiss. Aquaculture 204: 383–392.

Palucci, V., L. R. Schaeffer, F. Miglior, and V. Osborne, 2007 Non-
additive genetic effects for fertility traits in Canadian Holstein
cattle. Genet. Sel. Evol. 39: 181–193.

Powell, J. E., P. M. Visscher, and M. E. Goddard, 2010 Reconciling
the analysis of IBD and IBS in complex trait studies. Nat. Rev.
Genet. 11: 800–805.

Resende, Jr., M. F. R., P. Muñoz, J. J. Acosta, G. F. Peter, J. M. Davis
et al., 2012a Accelerating the domestication of trees using ge-
nomic selection: accuracy of prediction models across ages and
environments. New Phytol. 193: 617–624.

Resende, Jr., M. F., P. Muñoz, M. D. Resende, D. J. Garrick, R. L.
Fernando et al., 2012b Accuracy of genomic selection methods
in a standard data set of Loblolly Pine (Pinus taeda L.). Genetics
190: 1503–1510.

Rodriguez-Almeida, F. A., L. D. Van Vleck, R. L. Wilham, and S. L.
Northcutt, 1995 Estimation of non-additive genetic variances
in three synthetic lines of beef cattle using an animal model. J.
Anim. Sci. 73: 1002–1011.

Simeone, R., I. Miztal, I. Aguilar, and A. Legarra, 2011 Evaluation
of the utility of the diagonal elements of the genomic relation-
ship matrix as a diagnostic tool to detect mislabelled genotyped
animals in a broiler chicken population. J. Anim. Breed. Genet.
12895): 386–393.

Su, G., O. F. Christensen, T. Ostersen, M. Henryon, and M. S. Lund,
2012 Estimating additive and non-additive genetic variances
and predicting genetic merits using genome-wide dense single
nucleotide polymorphism markers. PLoS ONE 7(9): e45293.

Vanderwerf, J. H. J., and W. Deboer, 1989 Influence of nonaddi-
tive effects on estimation of genetic-parameters in dairy-cattle.
J. Dairy Sci. 72: 2606–2614.

VanRaden, P. M., 2008 Efficient methods to compute genomic
predictions. J. Dairy Sci. 91: 4414–4423.

Veerkamp, R. F., H. A. Mulder, R. Thompson, and M. P. L. Calus,
2011 Genomic and pedigree-based genetic parameters for
scarcely recorded traits when some animals are genotyped. J.
Dairy Sci. 94: 4189–4197.

Visscher, P. M., 2009 Whole genome approaches to quantitative
genetics. Genetica 136: 351–358.

Vitezica, Z.G., L. Varona, and A. Legarra. 2013 On the additive
and dominant variance and covariance of individuals within the
genomic selection scope. Genetics 195: 1223–1230.

Wei, M., and J. H. J. van der Werf, 1993 Animal model estimation
of additive and dominance variances in egg production traits of
poultry. J. Anim. Sci. 71: 57–65.

Williams, E. R., A. C. Matheson, and C. E. Harwood, 2002 Ex-
perimental Design and Analysis for Tree Improvement, Ed. 2. Com-
monwealth Scientific and Industrial Research Organization,
Melbourne.

Winkelman, A. M., and R. G. Peterson, 1994 Genetic parameters
heritabilities, dominance ratios, and genetic correlations for
body weight and length of chinook salmon after 9 and 22
months of saltwater rearing. Aquaculture 125: 30–36.

Wu, R. L., 1996 Detecting epistatic genetic variance with a clon-
ally replicated design: models for low- vs. high-order non allelic
interaction. Theor. Appl. Genet. 93: 102–109.

Yang, J., B. Benyamin, B. P. McEvoy, S. Gordon, A. K. Henders et al.,
2010 Common SNPs explain a large proportion of the herita-
bility for human height. Nat. Genet. 42: 565–569.

Zuk, O., E. Hechter, S. R. Sunyaev, and E. S. Lander, 2012 The
mystery of missing heritability: genetic interactions create phan-
tom heritability. Proc. Natl. Acad. Sci. USA 109: 1193–1198.

Communicating editor: N. Yi

1768 P. R. Muñoz et al.



GENETICS
Supporting Information

http://www.genetics.org/lookup/suppl/doi:10.1534/genetics.114.171322/-/DC1

Unraveling Additive from Nonadditive Effects Using
Genomic Relationship Matrices

Patricio R. Muñoz, Marcio F. R. Resende, Jr, Salvador A. Gezan, Marcos Deon Vilela Resende,
Gustavo de los Campos, Matias Kirst, Dudley Huber, and Gary F. Peter

Copyright © 2014 by the Genetics Society of America
DOI: 10.1534/genetics.114.171322



2 SI  P. R. Muñoz et al. 
 

Table S1   Variance components as a proportion of the total variance. 

Variance Components P_A* M_A* P_AD* M_AD* P_A#A* M_A#A* P_D#D* M_D#D* P_A#D* M_A#D* 
Incomplete block 0.218 0.207 0.227 0.217 0.228 0.234 0.228 0.233 0.228 0.234 

Additive (Add) 0.320 0.347 0.235 0.199 0.233 0.088 0.228 0.139 0.231 0.125 
Dominance (Dom)     0.056 0.117 0.055 0.022 0.058 0.009 0.056 0.006 

Epistasis Add x Add         0.000 0.154         
Epistasis Dom x Dom             0.000 0.121     
Epistasis Add x Dom                 0.000 0.135 

Culture x Add 0.017 0.013 0.010 0.014 0.000 0.001 0.008 0.008 0.008 0.006 
Culture x Dom     0.012   0.000 0.000 0.000 0.000 0.000 0.000 

culture x (Add x Add)         0.026 0.025         
culture x (Dom x Dom)             0.019 0.019     
culture x (Add x Dom)                 0.018 0.020 

Residual variance 0.445 0.433 0.460 0.452 0.459 0.475 0.458 0.471 0.459 0.473 
Total Variance 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000 

*Each column represents a different model. See Table 1 for model description 
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Table S2   Estimates of genetic parameters (standard errors in parenthesis) and goodness-of-fit measures using 

Vitezica et al. (2013) parameterization. 

  P_A M_A P_AD M_AD P_A#A M_A#A P_D#D M_D#D P_A#D M_A#D 
h2 

SE(h2) 
0.32 

(0.017) 
0.347 

(0.018) 
0.235 

(0.047) 
0.239 

(0.027) 
0.233 

(0.047) 
0.10 

(0.041) 
0.228 

(0.046) 
0.162 
(0.03) 

0.231 
(0.047) 

0.149 
(0.032) 

d2 
SE(d2) na na 

0.056 
(0.033) 

0.076 
(0.02) 

0.055 
(0.033) 

0.000 
(0.000) 

0.058 
(0.032) 

0.006 
(0.023) 

0.056 
(0.043) 

0.000 
(0.000) 

i2 
SE(i2) na na na na 

0.000 
(0.000) 

0.164 
(0.032) 

0.000 
(0.000) 

0.112 
(0.031) 

0.000 
(0.000) 

0.124 
(0.024) 

H2 
SE(H2) 

0.32 
(0.017) 

0.347 
(0.018) 

0.29 
(0.021) 

0.315 
(0.018) 

0.288 
(0.021) 

0.265 
(0.019) 

0.286 
(0.021) 

0.280 
(0.018) 

0.288 
(0.021) 

0.273 
(0.018) 

LogL -1299.40 -1323.73 -1295.37 -1306.69 -1294.83 -1293.75 -1293.90 -1294.81 -1294.38 -1293.55 
AIC 2606.80 2655.46 2602.74 2625.38 2605.66 2603.50 2603.80 2605.62 2604.76 2603.10 

*Each column represents a different model. See Table 1 for model description 
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Table S3   Sampling correlation matrix for all models tested. Above diagonal pedigree-based and below diagonal 

marker-based models. additive models 1 and 6 (A),additive plus dominance models 2 and 7 (B), additive plus dominance 

plus additive-by-additive models 3 and 8 (C), additive plus dominance plus dominance-by-dominance models 4 and 9 (D), 

and additive plus dominance plus additive-by-dominance models 5 and 10 (E). Estimated effects are Iblock = incomplete 

block, Add = Additive, Dom = dominance and Culture = silviculture type. 

 
A Iblock Add Culture x Add Residual 

Iblock 1.00 0.00 0.01 -0.07 
Add 0.00 1.00 -0.14 -0.08 

Culture x Add 0.01 -0.08 1.00 -0.24 
Residual -0.07 -0.13 -0.19 1.00 

 
B Iblock Add Dom Culture x Add Culture x Dom Residual 

Iblock 1.00 0.00 0.00 0.00 0.01 -0.07 
Add 0.00 1.00 -0.90 -0.08 0.05 -0.04 
Dom 0.00 -0.70 1.00 0.09 -0.15 0.02 

Culture x Add 0.00 -0.12 0.12 1.00 -0.62 0.02 
Culture x Dom 0.01 0.09 -0.17 -0.69 1.00 -0.26 

Residual -0.07 -0.05 -0.02 0.00 -0.19 1.00 
 

C Iblock Add Dom Add x Add* Culture x Add Culture x Dom Culture x (Add x Add) Residual 
Iblock 1.00 0.00 0.00 - -0.07 -0.07 0.01 -0.07 
Add 0.00 1.00 -0.89 - -0.02 -0.02 -0.04 -0.02 
Dom 0.00 -0.31 1.00 - 0.01 0.01 -0.07 0.01 

Add x Add 0.00 -0.52 -0.52 1.00+ - - - - 
Culture x Add 0.00 -0.09 0.00 0.13 1.00 1.00 -0.30 1.00 
Culture x Dom -0.07 0.01 0.00 -0.02 0.13 1.00 -0.30 1.00 

Culture x (Add x Add) 0.01 0.07 0.00 -0.16 -0.77 -0.29 1.00 -0.30 
Residual -0.07 0.01 0.00 -0.02 0.13 1.00 -0.29 1.00 
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D Iblock Add Dom Dom x Dom* Culture x Add Culture x Dom Culture x (Dom x Dom) Residual 

Iblock 1.00 0.00 0.00 - 0.01 -0.07 0.00 -0.07 
Add 0.00 1.00 -0.89 - -0.02 -0.01 -0.05 -0.01 
Dom 0.00 -0.45 1.00 - 0.04 0.01 -0.07 0.01 

Dom x Dom 0.00 -0.27 -0.58 1.00+ - - - - 
Culture x Add 0.00 -0.09 0.00 0.11 1.00 0.02 -0.48 0.02 
Culture x Dom -0.07 0.00 0.01 -0.01 0.04 1.00 -0.31 1.00 

Culture x (Dom x Dom) 0.01 0.04 0.00 -0.18 -0.54 -0.31 1.00 -0.31 
Residual -0.07 0.00 0.01 -0.01 0.04 1.00 -0.31 1.00 

 
E Iblock Add Dom Add x Dom* Culture x Add Culture x Dom Culture x (Add x Dom) Residual 

Iblock 1.00 0.00 0.00 - 0.01 -0.07 0.00 -0.07 
Add 0.00 1.00 -0.89 - -0.03 -0.02 -0.02 -0.02 
Dom 0.00 -0.40 1.00 - 0.06 0.01 -0.10 0.01 

Add x Dom 0.00 -0.34 -0.58 1.00+ - - - - 
Culture x Add 0.00 -0.09 0.00 0.12 1.00 0.03 -0.54 0.03 
Culture x Dom -0.07 0.00 0.01 -0.02 0.08 1.00 -0.30 1.00 

Culture x (Add x Dom) 0.01 0.05 0.00 -0.17 -0.63 -0.30 1.00 -0.30 
Residual -0.07 0.00 0.01 -0.02 0.08 1.00 -0.30 1.00 

 
*Correlation of epistasis with other effects were not calculated in pedigree-based models as epistasis had no variance (See Table 2) 
+Value from marker-base method 
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