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Soil phosphate represents the only source of phosphorus for plants and, consequently, is its entry into the trophic chain. This
major component of nucleic acids, phospholipids, and energy currency of the cell (ATP) can limit plant growth because of its low
mobility in soil. As a result, root responses to low phosphate favor the exploration of the shallower part of the soil, where phosphate
tends to be more abundant, a strategy described as topsoil foraging. We will review the diverse developmental strategies that can be
observed among plants by detailing the effect of phosphate deficiency on primary and lateral roots. We also discuss the formation of
cluster roots: an advanced adaptive strategy to cope with low phosphate availability observed in a limited number of species. Finally,
we will put this work into perspective for future research directions.

Plant embryogenesis generates a very primitive de-
velopmental blueprint with two apical meristems (shoot
and root) that, unlike in animals, do not reflect the
anatomy of the adult organism. The ability to form new
organs is maintained throughout their lifecycle because
of the sustained activity of these meristems as well as the
presence of dedicated cells that dedifferentiate and
generate new meristems. The continuous nature of plant
development associated with their sessile lifestyle results
in a strong dependency on their immediate environment.
As a result, the study of plant development must not
only focus on the fundamental molecular and cellular
mechanisms but also, integrate their ability to perceive
and respond to the environment. In this regard, plant
root systems represent a good model, because they have
a high level of developmental plasticity in response to
water, nutrients, gravity, and mechanical characteristics
of the soil as well as biotic interactions.

Among the essential nutrients for plant growth and
development, phosphorus is a key component of nucleic
acids and phospholipids and present in soil in the form
of either inorganic phosphate (Pi) or organophosphates.
The former strongly interacts with divalent and trivalent
cations. The latter has to be hydrolyzed to release phosphate

for root uptake. The high sorption capacity of phos-
phate to soil particles results in a very low mobility
and availability for uptake by plants. Therefore, the
capacity of plants to find an adequate phosphate
supply is directly correlated with their ability to explore
the soil. Correspondingly, phosphorus deficiency in-
duces changes in root system architecture as a key
adaptive mechanism. A general strategy has been de-
scribed under the term topsoil foraging that favors a
shallower root system to explore the upper part of the
soil, where phosphate tends to be more available be-
cause of the presence of organic matter and animal
excrements. Although this term was first introduced to
describe root system adaptation in bean (Phaseolus vulgaris;
Lynch and Brown, 2001), the set of responses behind the
topsoil foraging strategy has now been described in
many other species (Panigrahy et al., 2009; Péret et al.,
2011; Li et al., 2012; Shi et al., 2013). We will give an
up-to-date overview of recent publications on develop-
mental adaptations to low phosphate observed in diverse
monocot and dicot species by focusing on the responses
of the primary root (PR) and lateral roots. Finally, we
will describe the evolutionarily advanced developmental
adaptation to low phosphorus that has been found in
several plant families’ (i.e. cluster or proteoid) root
formation.

LOW PHOSPHATE AVAILABILITY INHIBITS
PR GROWTH

Phosphate deficiency dramatically inhibits Arabidopsis
(Arabidopsis thaliana) PR growth (for review, see Abel,
2011; Niu et al., 2013; Giehl et al., 2014). This growth arrest
is caused by reduced cell elongation and progressive
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cessation of cell proliferation in the root meristem that
ultimately exhausts the PR stem cell niche (Fig. 1). Con-
comitantly, cells differentiate (e.g. root hair formation in
epidermal cells) toward the root apex (Sánchez-Calderón
et al., 2005). By comparing the effect of different nutrient
deficiencies on root system architecture, Gruber et al.
(2013) and Kellermeier et al. (2014) confirmed that Pi is
one of the major factors controlling the PR length. Three
major hypotheses have been suggested to explain the
response of the PR to low Pi. First, one hypothesis relies
on a reduction in metabolic activity, resulting in such an
arrest. Second, some studies have reported that low
phosphate leads to a higher availability of iron that could
promote toxic effects responsible for the PR response.
Third, the identification of several mutants with long PRs
under low phosphate supply brings evidence for a de-
terminant genetic control.

Reduced Root Growth Caused by Reduced
Phosphate Metabolism

As a means to retrieve more Pi, plants concomitantly
adopt two main strategies. First, they increase Pi recovery
from organic phosphate by excreting ribonucleases, phos-
phatases, and carboxylates. Second, they improve phos-
phate uptake by increasing the affinity and capacity of its
transport system. This is achieved by inducing the expres-
sion of a subset of plasma membrane phosphate trans-
porters belonging to the PHOSPHATE TRANSPORTER1
(PHT1) family in Arabidopsis (Nussaume et al., 2011). As a
result, mutants affected in genes belonging to either of these
two classes of adaptive responses will alter plant capacity
to maintain growth in low phosphate conditions. For in-
stance, the no acid phosphatase activity1 (nop1) mutant is
affected in the PURPLE ACID PHOSPHATASE10 (PAP10)
gene, encoding for PAP10 (Wang et al., 2011). When grown
on a low Pi medium, the root development of nop1 mu-
tants is slightly attenuated compared with the wild type.
To test the importance of PAP10 in using an organic
source of phosphorus, Wang et al. (2011) supplied the
low-Pi medium with ADP. In the nop1 mutants, the root
fresh weight is improved by exogenous ADP but does not
reach that of the wild type. These results show that PAP10
participates in root growth by allowing the seedling to

use exogenous organic phosphate more efficiently. PAP12
and PAP26 are the two closest paralogs of PAP10 and the
predominant PAPs secreted by roots of Pi-deficient Arabi-
dopsis (Tran et al., 2010). In Pi-replete conditions, the
growth of the pap12 pap26 double mutant is similar to the
wild type but reduced in low Pi (Robinson et al., 2012).
When provided with organic phosphate (glycerol-3-P or
DNA), the root growth of the pap12 pap26 double mutant
is slower than that of the wild type. In these conditions,
the root growth of wild-type seedlings is reduced com-
pared with that in high-Pi medium. This shows that, al-
though organic phosphate can be metabolically used for
shoot growth, the root tip still reacts to the Pi-deficient
medium. The above results indicate that the reduced re-
covery of Pi in the external environment because of the
lack of acid phosphatase activity can directly affect plant
growth.

A similar reduction of the phosphorus source has been
obtained in mutants of the PHT1 phosphate transporters,
which results in a reduced Pi uptake capacity. The pht1;8
and pht1;9 mutants grown on a Pi-deficient medium dis-
play a reduced PR growth (Remy et al., 2012). Inversely,
seedlings overexpressing PHT1;8 or PHT1;9 have a
slightly better PR growth than the wild type. All of these
growth differences are abolished when the seedlings are
grown in high-Pi medium. This result confirms the work
by Shin et al. (2004) showing that the pht1;1 pht1;4 double
mutant affected in the two bulk root uptake systems
absorbs less Pi and displays an overall reduced growth,
including that of roots. Therefore, reducing the ability of
plants to acquire phosphate from the soil by decreasing
either its recovery or its uptake capacity results in an
overall reduction of plant growth that can be explained
by the law of mass action.

In parallel, there is clear evidence for a role of shoot-
derived carbohydrates in modulating plant root responses
to low Pi availability (Hammond and White, 2011). Based
on the study of the hypersensitive to phosphate starvation1
(hps1) mutant, which ectopically overexpresses the Suc
transporter SUC2, Lei et al. (2011a) proposed that Suc is a
global regulator of phosphorus starvation. In particular,
hps1 seedlings have a reduced PR growth in low Pi. This
defect is not reversed by high Pi (1.2mMPi; Lei et al., 2011a).
By using a different strategy aimed at overexpressing SUC2,

Figure 1. Arabidopsis PR response to low phos-
phate. The PR of the model plant Arabidopsis dis-
plays a striking phenotype in response to low
phosphate supply. The lengths of the meristematic
zone (MZ) and the elongation zone (EZ) are
strongly reduced. The differentiation zone (DZ) is,
therefore, observed much closer to the root tip.
Meristem exhaustion ultimately leads to the com-
plete arrest of PR growth. Plants were transferred to
a low-phosphate medium (approximately 15 mM)
for 48 h, imaged with a laser-scanning confocal
microscope, and then converted to a black-and-
white vector image.
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Dasgupta et al. (2014) also observed a reduced PR length in
a growth medium containing 0.6 mM Pi, and this altered
growth was reversed at 1.2 mM Pi.
Isolated in the same genetic forward screen as the

hps1 mutant, the hps7 mutant exhibits a hypersensitive
root phenotype under Pi deficiency, but this phenotype is
not reversed in high Pi (Kang et al., 2014). TheHPS7 gene
corresponds to tyrosylprotein sulfotransferase, a protein
required for the production of active sulfated phytosulfo-
kine with absence that has pleiotropic consequences, in-
cluding altered root meristem maintenance (Komori et al.,
2009; Zhou et al., 2010) and enhanced Microbe Associ-
ated Molecular Pattern-triggered seedling growth inhi-
bition (Igarashi et al., 2012). Surprisingly, expression of
many photosynthetic genes is activated in roots of hps7,
and their expression is further increased in low Pi; ad-
ditionally, the PR tip of hps7 accumulates chlorophyll,
starch, and Suc (Kang et al., 2014). Kang et al. (2014)
proposed that tyrosylprotein sulfotransferase acts as a
master switch in the suppression of photosynthetic gene
expression in roots. These findings extend the data for
suc2mutants, but the molecular origin of the root growth
defect of hps7 seedlings is not yet known.

Reduced Root Growth Caused by an Indirect Low
Pi-Mediated Stress Effect

An experiment aimed at uncoupling the root internal
phosphorus status from the Pi content in the growth
medium suggested that the local external conditions and
not the phosphorus status inside the plant trigger PR
growth inhibition (Thibaud et al., 2010). Indeed, foliar
application of Pi could not prevent the PR growth arrest
(Thibaud et al., 2010) in accordance with split root growth
experiments showing that contact with a low phosphate
medium is needed to trigger this response (Ticconi et al.,
2004). This growth response, therefore, is likely not a
consequence of reduced metabolic activity but part of a
specific stress-induced morphogenic response (SIMR;
Potters et al., 2007) and dependent on the iron content in
the medium (Svistoonoff et al., 2007; for review, see Abel,
2011). These findings extend the data for suc2 mutants
and suggest that the root growth defect of hps7 seedlings
originates from the overaccumulation of sugar or reactive
oxygen species in the root tip. It was suggested that re-
duction of phosphate concentration would increase the
availability of iron (Ward et al., 2008), resulting in a toxic
effect. However, in the absence of direct toxicity mea-
surement, this remains speculative. SIMR is a generic
term describing a set of common growth and develop-
mental processes displayed by plants when exposed to
sublethal abiotic stress conditions (Potters et al., 2007).
Thus, these SIMRs are active responses that should be
distinguished from toxic effects (Potters et al., 2007),
which are caused by exposition to high doses of noxious
compounds not tolerated by plants. Conversely, the PR
response to low Pi requires a coordinated response com-
prising the inhibition of cell elongation, the cessation of
cell division, and the stimulation of cell differentiation.

The coordination of these cellular processes might involve
reactive oxygen species, cell-to-cell signaling, and down-
stream effector targets (Potters et al., 2007) that remain to
be discovered. It is possible that distinct stresses activate
SIMR through specific genetic pathways, making SIMR
compatible with our third hypothesis to explain the re-
sponse of the PR to low Pi discussed below.

Genetic Control of the PR Response to Low Phosphate

The molecular mechanism underlying the PR growth
response to low Pi is poorly understood and probably
depends on many genes. However, so far, only very few
candidate genes have been isolated in Arabidopsis:
LOW PHOSPHATE ROOT1 (LPR1), LPR2 (encoding for
multicopper oxidases; Svistoonoff et al., 2007), and
PHOSPHATE DEFICIENCY RESPONSE2 (PDR2; en-
coding a P-type 5 ATPase; Ticconi et al., 2009). Genetic
and molecular analyses have shown that LPR1 and
PDR2 are functionally related to the maintenance of the
stem cell niche (for review, see Abel, 2011). Other mu-
tants with an lpr- or pdr-like phenotype (i.e. long and
short PRs, respectively) have been isolated in the past
(low phosphate-insensitive1-4, pdr23, and pdr3), but the
corresponding underlying genes have not yet been
identified (for review, see Niu et al., 2013; Giehl et al.,
2014).

Recently, several new mutants with an altered root
growth in response to low Pi have been isolated, and
the corresponding genes have been identified. The local
phosphate sensing impaired (lpsi) mutant was found in an
activation-tagging screen aimed at identifying seedlings
with higher PHT1;4 expression in low Pi (Karthikeyan
et al., 2014). This mutant displays a long PR when
grown in low Pi. Moreover, the expression of several
genes involved in iron and zinc homeostasis and starch
metabolism is altered in lpsi seedlings. In contrast to all
of the other lpr-like mutants, the lpsi adult plant displays
delayed growth and flowering as well as a strongly re-
duced fertility. In addition, lpsi seedlings do not over-
express the endogenous PHT1;4 gene, suggesting that
the lpsi phenotype has a complex genetic origin. It will
be interesting to identify the molecular origin(s) of the
lpr-like phenotype of lpsi and if it is functionally linked
with the altered iron and zinc homeostasis.

TheALTEREDPHOSPHATESTARVATIONRESPONSE1
(APSR1) gene is necessary for root meristem maintenance,
and comparedwith the wild type, the apsr1mutants have a
shorter PR under high Pi supply (González-Mendoza
et al., 2013). In this condition, the root tip of the apsr1
seedling looks much like the tip of the wild type growing
under low Pi supply, with a shorter meristematic zone
and differentiation of root hairs closer to the root tip.
Surprisingly, this short root phenotype is not accentuated
in low Pi, and the PR is similar to the wild type grown in
low Pi. This conditional phenotype is correlated with a
stronger root expression of APSR1 in high- than low-Pi
conditions. These results suggest that the function of
APSR1 is necessary for decelerated root growth but
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not under restrictive, suboptimal conditions. It would
be interesting to test whether the root growth of apsr1 is
altered under other nutrient deficiencies. APSR1 en-
codes a putative basic Leucine Zipper-like protein, and
the APSR1-GFP fusion protein is located in the nu-
cleus, suggesting a role in the control of transcriptional
regulation.

Ethylene is a plant growth regulator modulating the
amplitude and direction of root cell elongation (Nagarajan
and Smith, 2012). Ethylene is also involved in con-
trolling plant responses to biotic and abiotic stresses
(Vandenbussche et al., 2012). In a forward genetic screen
similar to the one used to identify lpsi (see above), Lei
et al., (2011b) isolated the hps2 mutant, an overexpressor
of PHT1;4, and other Pi-related genes. In contrast to lpsi,
hps2 seedlings grown on low-Pi medium display a shorter
root than the wild type. However, this reduced root
growth is not specific to the low-Pi condition, because
on high Pi, hps2 also has a shorter root. It was reported
that hps2 is allelic to constitutive triple response1 (ctr1), a
key negative regulator of ethylene signaling. Corrobo-
rating this link between ethylene and Pi signaling,
Wang et al. (2012) isolated two allelic mutants (hps3-1 and
hps3-2) with increased acid phosphatase activity in
roots. Wang et al. (2012) showed that the hps3 mutants
are alleles of ethylene overproducer1 (eto1), and they display
altered expression of Pi-responsive genes. As seen be-
fore for hps2/ctr1, these mutants have a reduced PR
length irrespective of Pi supply. In the same screen, Yu
et al. (2012) isolated the hps4 mutant, which also has
increased root-associated acid phosphatase activity and
a short PR irrespective of Pi supply. Cloning of HPS4
showed that hps4 is a weak loss-of-function allele of
SABRE, a gene necessary for cell expansion (Aeschbacher
et al., 1995). The hps4 root- and phosphate-associated
phenotypes were confirmed with several other sabre al-
leles. Notably, in low Pi, the short root of hps4 is partially
reversed by Ag+, an inhibitor of ethylene perception.

Although ethylene modulates several Pi-related re-
sponses (Nagarajan and Smith, 2012), the results sum-
marized here show that the role of ethylene in regulating
PR growth is not Pi dependent. However, under phos-
phate starvation, ethylene biosynthesis or signaling might
be increased in root tissue, which in turn, enhances
auxin biosynthesis in root tips as shown by Yu et al.
(2012).

PR Response in Monocot Species

Compared with Arabidopsis, in cereals, the develop-
ment of the root system is more complex. For example,
although in Arabidopsis, the PR is functional from
germination to the senescing adult plant, the embryonic
PR has significance only for seedling development in
cereals (for review, see Hochholdinger and Zimmermann,
2008).

In rice (Oryza sativa) and barley (Hordeum vulgare),
the effect of low Pi on PR growth is less pronounced
than in Arabidopsis (Figs. 2 and 3), possibly because
their seeds contain more abundant phosphorus re-
serves (Calderón-Vázquez et al., 2011). For example,
low Pi slightly stimulates growth of the PR in maize
(Zea mays; Li et al., 2012) and rice ‘Japonica’ (Zhou
et al., 2008; Dai et al., 2012), although some reports are
contradictory (for example, Yang et al., 2014). This
may be attributed to differences in crop cultivars and
experimental conditions. Both environmental adapta-
tions and selective breeding of these crops would have
contributed to these differential effects of low Pi on
root growth.

Only very few genes acting on PR development of
monocots in response to Pi have been identified to
date. The expression of the rice OsMYB4P gene en-
coding an R2R3-type MYELOBLASTOSIS (MYB) pro-
tein is induced in the wild-type root after 7 d of Pi
deprivation. Interestingly, when overexpressed, this

Figure 2. Rice developmental response to low
phosphate. Rice plants from the cv Nipponbare va-
riety were grown for 2 weeks in hydroponic con-
ditions in one-tenth-strength Murashige and Skoog
medium with high (+P; 1 mM) or low (2P; 10 mM)
phosphate. Left, Entire plant. Center, Root systems.
Right, Close-up view of the PR.
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gene increases the PR length independent of the Pi
supply (Yang et al., 2014). This is reminiscent of results
obtained with OsMYB2P-1, a closely related MYB tran-
scription factor gene with expression that is also induced
in roots of seedlings without phosphate (Dai et al., 2012).
In the OsMYB2P-1 overexpressor lines, the PR is longer
than in the wild type, whereas in knockdown RNA inter-
ference lines, it is slightly shorter. In contrast to OsMYB4P
overexpressors, OsMYB2P-1-overexpressing lines have
a shorter PR than the wild type at high Pi supply, whereas
knockdown lines are similar to the wild type (Dai et al.,
2012).
The rice leaf tip necrosis1 (ltn1) mutant was identified

in a forward genetic screen, and its leaf necrosis phenotype
is reminiscent of Pi toxicity (Hu et al., 2011). Similar to the
mutant of its putative Arabidopsis ortholog PHOSPHATE
OVERACCUMULATOR2 (PHO2; Delhaize and Randall,
1995), the ltn1 mutant exhibits increased Pi uptake and
translocation from root to shoot, and it is altered in Pi
signaling. In addition, the PR of ltn1 is longer than in the
wild type when grown in low-Pi medium but not when
grown in high Pi (Hu et al., 2011). This growth phenotype
may be caused by a stronger starvation signaling resulting
from a lower phosphorus status in the ltn1 mutant roots.
Another rice gene named NUTRITION RESPONSE AND
ROOTGROWTH (NRR) produces two alternatively spliced
transcripts, NRRa and NRRb, coding for polypeptides of
308 and 223 amino acids, respectively. Knockdown of

the expression of these genes by RNA interference resulted
in enhanced rice root growth in Pi-limited conditions
(Zhang et al., 2012).

The plant hormone strigolactone regulates many
aspects of shoot and root development (Waldie et al.,
2014). By using rice mutants altered in the biosynthesis
or sensitivity to strigolactones, Sun et al. (2014) showed
that strigolactones control the induction of PR growth in
response to low Pi. However, this response is not specific
to Pi, because similar effects were observed with nitrogen
deficiency (Sun et al., 2014). Root architecture alterations
resulting from Pi deficiency are also achieved by modu-
lation of the auxin sensitivity of roots. Accordingly, some
knockout lines of auxin response factor (ARF) genes impair
root growth under low Pi supply. In the osarf12 and osarf12/
25 mutants, the PR elongation was more responsive to Pi
deficiency than the wild type (Wang et al., 2014b).

In conclusion, over the recent years, several new
mutants with altered root growth under low Pi con-
ditions have been isolated. However, for most of these
newmutants, the root growth phenotype is not completely
suppressed in Pi-replete conditions. Thus, although some
of their phenotypes are caused by an alteration of the local
low Pi-triggered signaling or stress response, others are
probably a mere consequence of reduced metabolic activ-
ities (Péret et al., 2011).

LATERAL ROOT FORMATION IS INDUCED BY
PHOSPHATE STARVATION

Concomitantly with the effect on PR growth, Pi starva-
tion affects the formation of lateral roots. In this case, plants
are faced by a dilemma: they must maximize phosphorus
use efficiency while at the same time, promote exploration
of the soil. As a result, the lack of Pi triggers a reduction of
root growth according to the metabolic limitation, while at
the same time, genetic programs will induce the develop-
ment of new organs. It is, therefore, not surprising that the
effect of Pi deficiency on lateral root formation is not as
striking as that on the PR. Experimental setups used to
reveal root responses to low Pi also may affect the phe-
notypic outcomes. Plants germinated on low-Pi medium
may harbor a stronger metabolic limitation, whereas
transferring plants from high- to low-Pi mediumwill reveal
short-term genetically controlled responses. These changes
can affect lateral root production, growth rate, and angle as
well as root diameter (Bonser et al., 1996; Williamson et al.,
2001; Hodge, 2004). The initial phases of lateral root
development are affected by Pi starvation. A difference
between plants grown in high- and low-Pi medium can
be seen from 1 to 2 d after germination (Pérez-Torres
et al., 2008), suggesting that both lateral root initiation
driven by divisions of the pericycle cells and lateral root
primordium growth and emergence through the outer
tissue are affected.

Auxin Impacts Lateral Root Adaptation to Low Phosphate

The role of auxin during the formation of lateral
roots has been well described (Lavenus et al., 2013),

Figure 3. Barley developmental response to low phosphate. Barley
‘OUK305’ variety plants were grown for 2 weeks in hydroponic con-
ditions in one-tenth-strength Murashige and Skoog medium with high
(+P; 1 mM) or low (2P; 10 mM) phosphate.
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and the involvement of auxin in the response to Pi has
been shown (López-Bucio et al., 2002, 2005; Al-Ghazi
et al., 2003; Nacry et al., 2005). However, most reports
have relied on auxin-related mutants rather than searching
for phosphate-specific lateral root mutants. For instance,
the indole acetic acid28 (iaa28) mutant shows resistance to
the stimulatory effect of low Pi on lateral root formation
(López-Bucio et al., 2002). Another example is the aberrant
lateral root formation3 (alf3) mutant displaying a long PR
covered with many arrested lateral primordia on high
phosphate (Celenza et al., 1995). However, lateral root
formation of alf3 can be rescued by either addition of
exogenous auxin or transfer to a low-phosphate medium
(Nacry et al., 2005). This suggested that low-phosphate
conditions trigger lateral root formation by increasing the
sensitivity of roots to auxin. Recently, it was shown that
an increase in auxin sensitivity as a result of increased
TRANSPORT INHIBITOR RESPONSE1 (TIR1) expres-
sion was responsible for the increase in lateral root for-
mation in low phosphate (Pérez-Torres et al., 2008). The
mechanisms controlling the level of expression of the
auxin receptor TIR1 as a result of changes in Pi avail-
ability remain to be discovered.

Interestingly, some mutants of the Pi perception path-
way are affected in their lateral root response to Pi. For
instance, pdr2 has lost the ability to produce more lateral
roots on low Pi (Ticconi et al., 2004). Epistasis analysis
indicates that the LPR and PDR2 genes are functionally
connected. Correspondingly, PDR2 colocalizes with
LPR1 in the endoplasmic reticulum, which could indicate
PDR2 and LPR1 functioning together in an endoplasmic
reticulum-resident pathway and adjusting root meristem
activity to external Pi (Ticconi et al., 2009). This would,
therefore, control PR growth, whereas their combined
effect on lateral root is not known.

Despite a small effect of the pht1;8 and pht1;9mutants
on PR growth, the pht1;9mutant displays an increase in
lateral root number (Remy et al., 2012). The absence of
this transporter results in a higher sensitivity to Pi starvation,
which is further confirmed by a PHT1;9-overexpressing line
that forms fewer lateral roots than wild-type plants, thus
showing a decreased sensitivity to Pi starvation (Remy et al.,
2012).

Phosphite (H2PO3
2) is a close steric but not metabolically

inert analog of Pi that triggers unique physiological and
developmental responses in plants and impairs Pi sensing,
membrane transport, and subcellular compartmentaliza-
tion. It is able to block some typical Pi starvation responses,
such as an increased root-to-shoot ratio, root hair forma-
tion, anthocyanin accumulation, and phosphate starvation-
related gene induction (Ticconi et al., 2001; Varadarajan
et al., 2002). Surprisingly, phosphite application does
not impact the induction of lateral roots by low phos-
phate (Berkowitz et al., 2013). This provides evidence
for the existence of distinct mechanisms of phosphate
perception and downstream responses to control the wide
variety of physiological and developmental adaptations.
All of the above findings suggest the existence of distinct
pathways regulating PR and lateral responses to low
phosphate.

Diverse Lateral Root Responses to Phosphate Supply in
Monocot Species

Root system architectures of monocots and dicots dis-
play strong differences (Hochholdinger and Zimmermann,
2008), and their adaptation to low Pi reflects these differ-
ences. Phosphate starvation in maize inhibits lateral root
formation (Li et al., 2012), whereas lateral root formation is
increased in rice (Li et al., 2000). However, the selection
processes used to produce these domesticated plants may
have affected the way that they respond to Pi. Indeed, the
common use of high levels of Pi fertilizers may have re-
moved the selection pressure for genotypes adapted to low
Pi. Increasing the efficiency of root systems to explore the
soil for Pi may help reduce the amount of phosphorus
needed to grow crops. Interestingly, some species have
developed specific adaptations to low Pi conditions. The
full genetic pathways controlling their formation are still
unknown, but they may represent good strategies for fu-
ture crop improvement (Veneklaas et al., 2012). A good
example of such improvement is the recent cloning of a rice
quantitative trait locus (QTL) conferring resistance to low
phosphorus availability. This locus, called Phosphorus up-
take1 (Pup1), was originally identified in the traditional aus-
type rice ‘Kasalath’ variety. This variety comes from a
group of rice that originates from a region of India with
very nutrient-poor soils and is, therefore, used as a good
source of genes that are absent from other cultivated
varieties. The Pup1 QTL is the only phosphorus-related
QTL available for marker-assisted breeding programs
(Ramaekers et al., 2010; Calderón-Vázquez et al., 2011;
Lynch, 2011; Shi et al., 2013), and it confers improved
root growth under stress conditions. The molecular clon-
ing of the Pup1 QTL revealed that overexpression of the
protein kinase PHOSPHORUS STARVATION TOLER-
ANCE1 (PSTOL1) is responsible for the early establish-
ment of the root system, therefore improving acquisition
of phosphorus and other nutrients (Gamuyao et al., 2012).
Although the molecular mechanisms of the PSTOL1 ac-
tion are still unknown and seem to be nonspecific to
phosphorus, this example illustrates how root devel-
opmental adaptation directly impacts the plant’s ca-
pacity to acquire phosphorus and other nutrients.

CLUSTER ROOTS ARE AN EXTREME ADAPTATION
TO PHOSPHORUS-LIMITED ENVIRONMENTS

Cluster roots (CRs) are specialized roots formed by
densely spaced lateral rootlets that form at very low Pi
supply (typically 1–5 mM Pi depending on the species)
and are suppressed at higher Pi supply (Fig. 4). Their
formation is an adaptive mechanism of specialist, mostly
nonmycorrhizal plant species that thrive in environments
with scarce nutrient availability (Shane and Lambers,
2005). Their development has, so far, largely been in-
vestigated under phosphorus-limited conditions, but it
is also affected by nitrogen and iron availability (Arahou
and Diem, 1997; Zaid et al., 2003; McCluskey et al.,
2004; Rath et al., 2010). CR structure and physiology are
geared to enlarge the surface area of the root for the
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exudation of large amounts of carboxylates (exudative
burst) to generate high local concentrations for the mining
of insoluble forms of Pi from the soil and the efficient
uptake of Pi (Neumann and Martinoia, 2002; Lambers
et al., 2006).
CRs are found in a diverse range ofmonocot (Cyperaceae

and Restionaceae) and dicot plant families and occur in
two main forms: simple bottle brush like or compound
mat forming (Skene, 1998; Shane and Lambers, 2005).
Over the past two decades, white lupin (Lupinus albus;
Fabaceae; Fig. 4) and harsh hakea (Hakea prostrata; Pro-
teaceae; Fig. 5) have become model species for the anal-
ysis of CR development and physiology (Cheng et al.,
2011; Lambers et al., 2011). CR formation is highly re-
sponsive to both abiotic and biotic factors (Lamont, 2003).
Although detailed microscopic and molecular analyses
of the events leading to the initiation of tens to hundreds
of rootlets in close proximity to one another are scarce
(Skene, 2000), evidence suggests that many of the key
events leading on from the primordia foundation are
very similar to the processes described for the estab-
lished model plant species (Cheng et al., 2011). In white
lupin, an intriguing finding is the synchronous emer-
gence of rootlet clusters in pulses, suggesting a systemic
signal linking CR formation to whole-plant phosphorus
status (Watt and Evans, 1999). Correspondingly, foliar
application of Pi leads to a depression of CRs, whereas
sensing of Pi-rich patches induces local CR formation in
white lupin (Shane et al., 2003b; Shu et al., 2007). In
harsh hakea, analysis of a split root system showed that,
although CR initiation occurred in regular bursts and
was controlled locally, CR growth was systemically reg-
ulated (Shane et al., 2003a). Because of the Mediterra-
nean climate in its natural habitat, phosphorus is stored
in stem tissues, allowing for CR development and Pi
uptake in the wetter winter months and shoot growth in
summer (Shane and Lambers, 2005).
Similar to lateral root initiation in well-studied model

species (Péret et al., 2009), auxin and cytokinin have been
established as the key hormones regulating the spatial
patterning of rootlet initiation in white lupin, whereas
there is some evidence that gibberellic acid, nitrous oxide,
ethylene, reactive oxygen species, and sugars also have
some function in the fine tuning of CR formation (Cheng
et al., 2011).
Most recently, several studies in white lupin using

next generation sequencing technology have generated
a de novo transcriptome assembly for white lupin. This
provided the basis for global gene expression analyses
of the acclimation of white lupin CRs to phosphorus
deficiency and the identification of gene networks in-
volved in CR formation at different developmental
stages (O’Rourke et al., 2013; Secco et al., 2014; Wang
et al., 2014a). These studies revealed known regulators
of lateral root formation to also be involved in the es-
tablishment of the characteristic dense rootlet pattern-
ing. For example, genes homologous to PIN-FORMED,
LIKE-AUXIN1, Aux/IAA and YUCCA are differentially
expressed across mature, immature, and the PR tip of CRs
likely to generate an auxin gradient. Genes coding for

cytokinin receptors and degrading enzymes have con-
trasting expression levels in different CR developmental
stages, possibly controlling lateral root density (Secco
et al., 2014; Wang et al., 2014a). Similarly, transcription
factors involved in lateral root initiation, meristem main-
tenance, and cell differentiation, such as members of the
ARF and PLETHORA families as well as SCARECROW
and PHAVOLUTA, were more highly expressed toward
the PR tip (Secco et al., 2014). By contrast, transcription
factors involved in the formation of root hairs, ROOT
HAIR DEFECTIVE-LIKE1 (RSL1) and RSL2, were pref-
erentially expressed toward the mature part of the CRs,
where dense root hair formation on the rootlets is taking
place for efficient nutrient uptake (Watt and Evans, 1999;
Secco et al., 2014).

Proteaceae show a much more complex CR mor-
phology than white lupin (Fig. 5; Skene, 1998). Harsh
hakea is endemic to the Southwest Botanical Province
of western Australia that features ancient weathered soils

Figure 4. White lupin developmental response to low phosphate.
White lupin plants were grown in hydroponic conditions for 3 weeks
on Hoagland medium with (+P; 100 mM) or without (2P) phosphate.
Close-up image shows a CR from the low-phosphate plant.
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that are mostly limited by phosphorus requiring a highly
specialized Pi mining strategy (Lambers et al., 2008;
Hopper, 2009). This plant develops up to 1,000 rootlets
per centimeter of secondary or tertiary root to a point
where all pericycle cells have given rise to a rootlet and
in extreme cases, two rootlets emerge from each of seven
protoxylem poles (i.e. every possible rootlet initiation site
is used in an all or nothing pattern along the root axis;
Lamont, 1972; Skene, 2000). This massive structure poses
a high carbon cost to the plant and therefore, only pro-
vides a competitive advantage in soils with very low
phosphorus availability (Lambers et al., 2008). Early
during harsh hakea CR development, respiration peaks
before protein synthesis, which emphasizes the enor-
mous energy cost and a need for the sequential organi-
zation of developmental processes (Shane et al., 2004a).
Harsh hakea CRs are ephemeral and able to remobilize
more than 95% of the phosphorus at the end of their
lifecycle of about 21 d (Shane et al., 2004b). Although
harsh hakea is slow growing and has a long lifespan, the
first steps have been taken to develop this species into a
model plant for molecular studies (Lambers et al., 2012;

Shane et al., 2013; Sulpice et al., 2014). A de novo tran-
scriptome obtained by next generation sequencing will
become available in the near future to allow for the analysis
of CR development on the transcriptional level (R. Jost,
P.M. Finnegan, and H. Lambers, unpublished data). Harsh
hakea has adapted to its phosphorus-impoverished envi-
ronment in unique ways (e.g. through delayed chloroplast
development in leaves and partitioning of scarce phos-
phorus resources between cytosolic and plastidic ribo-
somes; Sulpice et al., 2014). Combined with metabolome
studies, the molecular characterization of CR development
will elucidate the underlying regulators of CR initiation
and sequential resource allocation that enable growth on
extremely phosphorus-impoverished soils.

CONCLUSION

Evolution has selected several strategies to deal with
the lack of readily available phosphorus sources in the
soil. Most commonly represented in land plants is the
establishment of mycorhizal symbioses, a subject that

Figure 5. Harsh hakea developmental response
to low phosphate. Four-month-old harsh hakea
seedlings were transferred from soil to hydroponic
solution containing 10 mM phosphate and grown
for 12 weeks before being transferred to solutions
with (+P; left) or without (2P; center) phosphate.
Solutions were exchanged two times per week,
and plants were treated for 21 d. Right, A devel-
oping 7-d-old CR (bottom) and a fully mature CR
with full carboxylate exudation potential (top).
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has not been discussed in this Update, because it involves
distinct molecular interactions and cellular differentiations,
and has been extensively reviewed elsewhere (Parniske,
2008; Smith et al., 2011). However, developmental adap-
tations discussed here similarly represent strategies that
lead to an increased capacity for soil exploration. Because
of the immobile nature of phosphate, plants have to ac-
tively search for phosphate-rich soil patches, and this fact
has conditioned their adaptive response to this deficiency.
Additional studies in CR-forming species will increase our
knowledge on how these species generate these special-
ized structures by using essentially very similar regulatory
networks of hormones, transcription factors, and other
signaling components used by plants with less complex
roots. However, the unique dense formation of lateral
roots is likely dependent on an added layer of regulatory
and metabolic processes yet to be elucidated. Under-
standing of these networks might open up the possibility
to engineer crops with improved root architecture able to
use limited soil phosphorus more efficiently. Isolating
more mutants and variants in model species, such as
Arabidopsis and rice, specifically altered in the low-Pi
response and signaling will be crucial for the under-
standing of molecular mechanisms. Screening mutants
altered in root architecture is still very labor intensive,
albeit plenty of imaging tools are now available (Lobet
et al., 2013). QTL and Genome Wide Association analy-
ses require less plant manipulation than mutant screen-
ings and therefore, should help in finding new genes and
their interactions more quickly. Another level of com-
plexity will arise from studies of cross talks between
nutrients to further decipher natural adaptation strate-
gies. Among these nutrients, iron seems to play a key
role in terms of both physical interactions in the soil
and in planta and perception and signaling pathways.
Recent studies have described that the Pi starvation-
related transcription factor PHOSPHATE STARVATION
RESPONSE1 (PHR1) can bind to the FERRITIN1 pro-
moter. This first report on a direct molecular link between
iron and phosphate homeostasis (Bournier et al., 2013)
suggests the existence of a complex genetic interplay
between nutrients for future research to decipher.
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