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Abstract

A major source of information (often the most crucial and informative part) in scholarly articles 

from scientific journals, proceedings and books are the figures that directly provide images and 

other graphical illustrations of key experimental results and other scientific contents. In biological 

articles, a typical figure often comprises multiple panels, accompanied by either scoped or global 

captioned text. Moreover, the text in the caption contains important semantic entities such as 

protein names, gene ontology, tissues labels, etc., relevant to the images in the figure. Due to the 

avalanche of biological literature in recent years, and increasing popularity of various bio-imaging 

techniques, automatic retrieval and summarization of biological information from literature figures 

has emerged as a major unsolved challenge in computational knowledge extraction and 

management in the life science. We present a new structured probabilistic topic model built on a 

realistic figure generation scheme to model the structurally annotated biological figures, and we 

derive an efficient inference algorithm based on collapsed Gibbs sampling for information 

retrieval and visualization. The resulting program constitutes one of the key IR engines in our 

SLIF system that has recently entered the final round (4 out 70 competing systems) of the Elsevier 

Grand Challenge on Knowledge Enhancement in the Life Science. Here we present various 

evaluations on a number of data mining tasks to illustrate our method.

General Terms

Algorithms; Experimentation

1. INTRODUCTION

The rapid accumulation of literatures on a wide array of biological phenomena in diverse 

model systems and with rich experimental approaches has generated a vast body of online 

information that must be properly managed, circulated, processed and curated in a 
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systematic and easily browsable and summarizable way. Among such information, of 

particular interest due to its rich and concentrated information content, but presenting 

unsolved technical challenges for information processing and retrieval due to its complex 

structures and heterogeneous semantics, are the diverse types of figures present in almost all 

scholarly articles. Although there exist a number of successful text-based data mining 

systems for processing on-line biological literatures, the unavailability of a reliable, scalable, 

and accurate figure processing systems still prevents information from biological figures, 

which often comprise the most crucial and informative part of the message conveyed by an 

scholarly article, from being fully explored in an automatic, systematic, and high-throughout 

way.

Compared to figures in other scientific disciplines, biological figures are quite a stand-alone 

source of information that summarizes the findings of the research being reported in the 

articles. A random sampling of such figures in the publicly available PubMed Central 

database would reveal that in some, if not most of the cases, a biological figure can provide 

as much information as a normal abstract. This high-throughput, information-rich, but 

highly complicated knowledge source calls for automated systems that would help biologists 

to find their information needs quickly and satisfactorily. These systems should provide 

biologists with a structured way of browsing the otherwise unstructured knowledge source 

in a way that would inspire them to ask questions that they never thought of before, or reach 

a piece of information that they would have never considered pertinent to start with.

The problem of automated knowledge extraction from biological literature figures is 

reminiscent of the actively studied field of multimedia information management and 

retrieval. Several approaches have been proposed to model associated text and images for 

various tasks like annotation [16], retrieval [10, 18] and visualization [3]. However, the 

structurally-annotated biological figures pose a set of new challenges to mainstream 

multimedia information management systems that can be summarized as follows:

• Structured Annotation: as shown in Fig. 1, biological figures are divided into a 

set of sub-figures called panels. This hierarchical organization results in a local and 

global annotation scheme in which portions of the caption are associated with a 

given panel via the panel pointer (like “(a)” in Fig. 1), while other portions of the 

caption are shared across all the panels and provide contextual information. We call 

the former scoped caption, while we call the later global caption. How can this 

annotation scheme be modeled effectively?

• Free-Form Text: unlike most associated text-image datasets, the text annotation 

associated with each figure is a free-form text as opposed to high-quality, specific 

terms that are highly pertinent to the information content of the figure. How can the 

relevant words in the caption be discovered automatically?

• Multimodal Annotation: although text is the main source of modality associated 

with biological figures, the figure’s caption contains other entities like protein 

names, GO-term locations and other gene products. How can these entities be 

extracted and modeled effectively?
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We address the problem of modeling structurally-annotated biological figures by extending 

a successful probabilistic graphical model known as the correspondence latent Dirichlet 

allocation [3] (cLDA) model, which was successfully employed for modeling annotated 

images. We present the struct-cLDA (structured, correspondence LDA) model that 

addresses the aforementioned challenges in biological literature figures. The rest of this 

paper is organized as follows. In Section 2, we give an overview of our approach and basic 

preprocessing of the data. Then in Section 3, we detail our model in a series of simples 

steps. Section 4 outlines a collapsed Gibbs sampling algorithm for inference and learning. In 

Section 5 we provide a comprehensive evaluation of our approach using qualitative and 

quantitative measures. Finally in Section 6, we provide a simple transfer learning 

mechanism from non-visual data and illustrate its utility. The model presented in this paper 

has been integrated into the publicly available Structured Literature Image Finder (SLIF) 

system , first described in [14]. Our system has recently participated in the Elsevier Grand 

Challenge on Knowledge Enhancement in the Life Science, which is an international contest 

created to improve the way scientific information is communicated and used, and was 

selected as one of the 4 finalists among the 70 participating teams1.

2. FIGURE PRE-PRECESSING

In this section we briefly give an overall picture of the SLIF system (Structured Literature 

Image Finder). SLIF consists of a pipeline for extracting structured information from papers 

and a web application for accessing that information. The SLIF pipeline is broken into three 

main sections: caption processing, image processing (which are refereed to as figure 

preprocessing in Fig. 1) and topic modeling, as illustrated as Fig. 1.

The pipeline begins by finding all figure-captions pairs. Each caption is then processed to 

identify biological entities (e.g., names of proteins)[11]. The The second step in caption 

processing is to identify pointers from the caption that refer to a specific panel in the figure , 

and the caption is broken into “scopes” so that terms can be linked to specific parts of the 

figure [5]. The image processing section begins by splitting each figure into its constituent 

panels, followed by describing each panel using a set of biologically relevant image features. 

In our implementation, we used a set of high-quality 26 image features that span 

morphological and texture features [13].

The first two steps result in panel-segmented, structurally and multi-modally annotated 

figures as shown in the bottom-left of Fig. 1 (Discovered protein entities are underlined and 

highlighted in red). The last step in the pipeline, which is the main focus in this paper, is to 

discover a set of latent themes that are present in the collection of papers. These themes are 

called topics and serve as the basis for visualization and semantic representation. Each topic 

consists of a triplet of distributions over words, image features and proteins. Each figure in 

turn is represented as a distribution over these topics, and this distribution reflects the 

themes addressed in the figure. Moreover, each panel in the figure is also represented as a 

distribution over these topics as shown in Fig. 1; this feature is useful in capturing the 

variability of the topics addressed in figures with a wide coverage and allows retrieval at 

1http://www.elseviergrandchallenge.com/finalists.html
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either the panel or figure level. This representation serves as the basis for various tasks like 

image-based retrieval, text-based retrieval and multimodal-based retrieval. Moreover, these 

discovered topics provide an overview of the information content of the collection, and 

structurally guide its exploration.

3. STRUCTURED CORRESPONDENCE TOPIC MODELS

In this section we introduce the struct-cLDA model (structured correspondence LDA model) 

that addresses all the challenges in- troduced by structurally-annotated biological figures. As 

the name implies, struct-cLDA builds on top of and extends cLDA which was designed for 

modeling associated text and image data. We begin by introducing the cLDA; then in a 

series of steps we show how we extended the cLDA to address the new challenges 

introduced by the structurally-annotated biological figures. In Figure 2, we depict side-by-

size the graphical representations of the original cLDA model and our struct-cLDA model, 

to make explicit the new innovations. Following conventions in the machine learning 

literature, we use bold face letters to denote vectors and normal face letters for scalars. For 

example, wp is the vector containing all words that appear in panel p. That is, 

, where Np is the number of words in panel p.

3.1 The Correspondence LDA

The cLDA model is a generative model for annotated data – data with multiple types where 

the instance of one type (such as a caption) serves as a description of the other type (such as 

an image). cLDA employs a semantic entity known as the topic to drive the generation of 

the annotated data in question. Each topic is represented by two content-specific 

distributions: a topic-specific word distribution, and a topic-specific distribution over image 

features. The topic-specific word distribution is modeled as a multinomial distribution over 

words, denoted by Multi(β); and image features are real-valued and thus follow a Gaussian 

distribution, denoted by N(µ, σ). As mentioned in Section 2, in our study, each panel is 

described using M = 26 image features, thus each topic has 26 Gaussian distributions: one 

for each image feature.

The generative process of a figure f under cLDA is given as follows:

1. 1. Draw θf ~ Dir (α)

2. 2. For every image feature gm

a. Draw topic zm ~ Multi(θf)

b. Draw 

3. For every word ωn in caption

a. Draw topic yn ~ Unif (z1,…, zm)

b. Draw ωn|yn = k ~ Multi(βk)

In step 1 each figure f samples a topic-mixing vector, θf from a Dirichlet prior. The 

component θf,k of this vector defines how likely topic k will appear in figure f. For each 
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image features in the figure, gm, a topic indicator,zm, is sampled from θf , and then the image 

feature itself is sampled from a topic-specific image-feature distribution specified by this 

indicator. The correspondence property of cLDA is manifested in the way the words in the 

caption of the figure are generated in step 3. Since each word should, in principle, describes 

a portion of the image, the topic indicator of each word, y, should correspond to one of those 

topic indicators used in generating the image features. Specifically, the topic indicator of the 

n-th word, yn, is sampled uniformly from those indicators associated with the image features 

of the figure as in step 3.(a). Finally, the word, wn, is sampled from the selected topic’s 

distribution over words. Since the image feature and word distributions of each topic are 

highly correlated, the correspondence between image features and words in the caption is 

enforced.

3.2 Structured Correspondence LDA

In this section we detail the struct-cLDA model that addressed the new challenges 

introduced by biological figures. Fig. 2 depicts a graphical representation of the model. In a 

struct-cLDA, each topic, k, now has a triplet representation: a multinomial distribution of 

words βk (drawn from Dir(α2)), a multinomial distribution over protein entities Ωk (drawn 

from Dir(α4)), and a set ofM normal distributions, one for each image feature (whose prior 

will be detailed in section 3.2.4). The full generative scheme of a multi-panel biological 

figure, f under this model is outlined below:

1. Draw θf ~ Dir(α1)

2. Draw λf ~ Beta(a, b)

3. For every panel p in Pf:

a. For every image feature  in panel p:

i. Draw topic 

ii. Draw 

b. For every word  in scoped caption of panel p

i. Draw topic 

ii. Draw 

4. For every word  in global caption:

a. Draw coin xn ~ Bernoulli(λf)

b. If(xn = = 1)

i. Draw topic 

ii. Draw 

c. If(xn = = 0)

i. Draw 
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5. For every protein entity rl in global caption:

a. Draw topic υl ~ Unif(z1, …, zPf)

b. Draw rl|υl = k ~ Multi(Ωk)

In the following subsections we break the above generative steps into parts each of which 

addresses a specific challenge introduced by biological figures.

3.2.1 Modeling Scoped Caption—In this subsection, we describe how we approached 

the problem of modeling scoped and global captions. As shown in Fig. 1, the input to the 

topic modeling module is a partially-segmented figure where some of the words in the 

caption are associated directly with a given panel, say p, and the remaining words serve as a 

global caption which is shared across all the Pf panels in figure f, and provides contextual 

information. There are two obvious approaches to deal with this problem that would enable 

the use of the flat cLDA model described in Section 3.1:

• Scoped-only annotation: in this scheme the input to the cLDA model is the panels 

with their associated scoped captions. Clearly this results in an under-

representation problem as contextual information at the figure level is not included.

• Caption replication: in this scheme the whole figure caption is replicated with each 

panel, and this constitutes the input to the cLDA model. Clearly this results in an 

overrepresentation problem and a bias in the discovered topics towards over-

modeling figures with large number of panels due to the replication effect.

In addition to the above problems, resorting to a panel-level abstraction is rather suboptimal 

because of the lack of modeling the interaction between panels at the figure level which 

precludes processing retrieval queries at the whole figure level.

We introduce scoping to model this phenomenon. As shown in Fig. 2.(b), the topic-mixing 

vector θf of the figure is shared across all the panels (step 1). However, each panel’s set of 

words, , correspond only to this panel’s image features. Moreover, 

words in the figure’s global caption, wf, correspond to all the image features in all the panels 

of this figure. This suggests a two-layer cLDA generative process:the scoped caption is 

generated in 3.(b) which with 3.(a) represents exactly the same generative process of cLDA 

over image features of a panel and words in the scoped caption of this panel. In the next 

subsection we will detail the generation of words in the global caption.

3.2.2 Modeling Global Caption—As we noted earlier, the global caption is shared 

across all panels, and represents contextual information or a description that is shared across 

all panels. This suggests that words in the global caption of figure f can be generated by 

corresponding them to the collective set of topic indicators used in generating the image 

features in all the panels – this is in fact equivalent to a flat cLDA model between words in 

the global caption and the image features in all the panels. If we took this approach, we 

found that corpus-level stop-words in the form of non content-bearing words(like: bar, cell, 

red and green) appear at the top of most of the discovered topics due to their high 

frequencies. In fact, inherent in the modeling assumption of cLDA is the fact that 
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annotations are specific to the figure and of high quality: that is, every word in the caption 

describes a part in the image. However, captions in biological figures are free-form text and 

therefore this assumption is violated. To solve this problem, we use factoring which is 

similar to background subtraction in [4]. Specifically, we introduce a background topic, β0 

(which is sampled from Dir(α3) once for the whole corpus) that is used to generate the 

corpus-level stopwords. This process is equivalent to factoring these stopwords from 

content-bearing topics — we call this process factoring.

The generative process for the global caption now proceeds as follows. With each figure, f, 

we associate a coin whose bias is given by λf (step 2). This bias models the ratio of content-

bearing to background words in the figure, and is sampled individually for each figure from 

a beta distribution. As shown in step 4, to generate a word in the global caption, , we first 

flip the coin and name the outcome, xn. If xn is head, we pick a topic indicator for this word, 

, uniformly from the topic indicators used to generate the image features of the panels in 

this Figure (step 4.(b)). Then, we generate the word from this topic’s distribution over 

words, . On the other hand, if xn is tail, we sample this word from the background topic 

β0 (step 4.(c)).

3.2.3 Modeling Multimodal Annotation—The final step is to model multimodal 

annotations. For simplicity, we restrict our attention here to protein annotations, although 

other forms of gene products like GO-terms could be added similarly. For simplicity, we 

place all protein annotations at the level of the global caption (even if they appear in the 

scoped caption), although it is very straightforward to model scoped multimodal annotation 

in the same way we modeled scoped word captions. Generating a protein entity is very 

similar to generating a word in the global caption. To generate a protein entity, rl, in step 5.

(a) we pick a topic indicator for this protein entity, υl, uniformly from the topic indicators 

used to generate the image features of the panels in this Figure (note that the notation 

Unif(z
1, …, zPf) denotes a concatenation of all the z vectors). Then, we generate the protein 

entity from this topic’s distribution over protein entities Ωυl

It should be noted that while protein entities are words, modeling them separately from other 

caption words has several advantages. First, protein mentions have high variance, i.e.the 

same protein entity can be referred to in the caption using many textual forms. Mapping 

these forms, also known as protein mentionsto protein entities is a standard process known 

as normalization [12]; our implementation followed our earlier work in [11]. Second, 

protein entities are rare words and have different frequency spectrums than normal caption 

words, thus modeling them separately has the advantage of discovering the relationship 

between words and protein entities despite this frequency mismatch. Moreover, endowing 

each topic with two distributions over words and protein entities results in more 

interpretable topics (see Section 5.1) and enables more advanced query types (see Section 

5.3 and 5.4).

3.2.4 A Note about Hyperparameters—All multinomial distributions in the models in 

Figure 2 are endowed with a dirichlet prior to avoid overfitting as discussed in [3]. Perhaps 

the only part that warrants a description is our choice for the prior over the mean and 
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variance of each image feature’s distribution. Each image feature is modeled as a normal 

distribution whose mean and variance are topic-specific. The standard practice is to 

embellish the parameters of a normal distribution with an inverse Wishart prior, however, 

here we took a simpler approach. We placed a non-informative prior over the values of the 

mean parameters of these image features, that is µk, m ~ Unif. Our intuition stems from the 

fact that different features have different ranges. However, we placed an inverse prior over 

the variance to penalize large variances:  (see [7] chapter 3.2). The reason for 

this choice stems from the noise introduced during calculation of the image features. 

Without this prior, a maximum likelihood (ML) estimation of σ2 in a given topic is not 

robust to outliers (see [1] for more details).

4. A COLLAPSED GIBBS SAMPLING ALGORITHM

Under the generative process, and hyperparmaters choices, outlined in section 3.2, we seek 

to compute:

where f is shorthand for the hidden variables (θf, λf, y, z, x, v) in figure f. The above 

posterior probability can be easily written down from the generative model in section 3.2, 

however, we omit it for the lack for space. The above posterior is intractable, and we 

approximate it via a collapsed Gibbs sampling procedure [8] by integrating out, i.e. 

collapsing, the following hidden variables: the topic-mixing vectors of each figure, θf, the 

coin bias λf for each figure, as well as the topic distributions over all modalities 

. Therefore, the state of the sampler at each iteration contains 

only the topic indicators for all figures. We alternate sampling each of these variables 

conditioned on its Markov blanket until convergence. At convergence, we can calculate 

expected values for all the parameters that were integrated out, especially for the topic 

distributions over all modalities, and for each figure’s latent representation (mixing-vector). 

To ease the calculation of the Gibbs sampling update equations we keep a set of sufficient 

statistics (SS) in the form of co-occurrence counts and sum matrices of the form  to 

denote the number of times instance e appeared with instance q. For example,  gives 

the number of times word ω was sampled from topic k. Moreover, we use the subscript −i to 

denote the same quantity it is added to without the contribution of item i. For example, 

 is the same as  without the contribution of word ωi. For simplicity, we might 

drop dependencies on the panel or figure whenever the meaning is implicit form the context.

Sampling a topic ( ) for a given panel word ( )

(1)
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Sampling a topic (υl) for a given protein entity (rl)

(2)

The above two local distributions have the same form which consists of two terms. The first 

term measures how likely it is to assign topic k to this word (protein entity) based on the 

topic indicators of the corresponding image features (at the panel level in Eq. (1), and at the 

figure level in Eq. (2) — i.e. the set of all image features’ indicators in all panels). The 

second term measures the probability of generating this word (protein entity) from topic k’s 

distribution over words (protein entities).

Sampling a coin and a topic  for a given global caption word ( )

For a given word in the shared global caption, it is easier to sample (xn, yfn) as a block— a 

similar approach was used in [4].

(3)

where  is the word count matrix for the background topic, and  counts, in figure f, 

how many words were assigned to the background topic (x = 0) and how many words were 

assigned to a panel’s image feature and were thus sampled from a latent topic (x = 1). 

Similarly,

(4)

The above two equations can be normalized to form a K + 1 multinomial distribution — K 

information-bearing topics when xn = 1, in addition to the background topic when x = 0.

Sampling a topic  for the mth image feature  in panel p

Perhaps this is the most involved equation as all other topic indicators in the figure/panels 

are influenced by the topic indicators of the image features. For simplicity, the (| …) in the 

equation below is a shorthand for all these topic indicators which are: topic indicators of 

words in the global caption (yf), topic indicators of words in the scoped caption of panel p 

(yp), topic indicators of all other image features in all panels (z1, …, zPf), and topic 

indicators for protein entities in the global caption (v).
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(5)

where t(g; µ, σ2, n) is a student t-distribution with mean µ, variance σ2, and n degree of 

freedom (see [7] chapter 3.2). µ̂k,m is the sample mean of the values of image feature m that 

are assigned to topic kand  is defined similarly.  is the number of times image 

feature m was sampled from topic k. The first two parts in Eq. (5) are similar to the previous 

sampling equations: they measure the comparability of joining a topic given the observed 

feature and the topics assigned to neighboring image features. However, since every other 

annotation in the figure is generated based on the topic indicator of the image feature, three 

extra terms are needed. These terms measure how likely is the current assignment of the 

topic indicators of other annotations — panel words, figure words, and protein entities—

given the new assignment to this image feature’s topic indicator. Notice that this uniform 
probabilities are exactly the same probabilities that appeared in the generative process, and 

also the same factors that appeared as the first fraction in Eqs. (4, 2, 1) respectively—

however after updating the corresponding C matrix with the new value of  under 

consideration (see [1] for more details).

Eqs. (1–5) are iterated until convergence, then expected values for the collapsed variables 

can be obtained via simple normalization operations over their respective count matrices 

using posterior samples. Moreover, the expected topics’ distributions over each modality can 

be calculated similarly.

At test time, to obtain the latent representation of a test figure, we hold the topic count 

matrices fixed, iterate Eqs. (1–5) until convergence, and then calculate the expected latent 

representation of each figure from posterior samples after convergence.

5. EXPERIMENTAL RESULTS

We evaluated our models on a set of articles that were downloaded from the publicly 

available Pubmed Central database2. Aftre applying the preprocessing steps described in 

section 2, the resulting dataset consists of 5556 panels divided into 750 figures. Each figure 

has on average 8 panels, however some figures have up to 25 panels. After removing words 

and protein entities that appear less than 3 and 2 times respectively, the resulting number of 

word types and protein types are 2698 and 227 respectively. Moreover, the average number 

of words per caption is 150 words. We divided this dataset into 85% for training and 15% 

for testing. For all the experiments reported below, we set all the α hyperparmaters to .01 

(except α1 = .1), and (a, b) to 3 and 1 respectively. We found that the final results are not 

2http://www.pubmedcentral.nih.gov
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largely sensitive to these assignments. We ran Gibbs sampling to learn the topics until the 

in-sample likelihood converges which took a few hundred iterations for all models.

For comparison, we used cLDA and LSI as baselines. To apply cLDA to this dataset, we 

duplicated the whole figure caption and its associated protein entities with each panel to 

obtain a flat representation of the structured figures. Therefore, we will refer to this model 

as cLDA-d. For LSI, we followed the same strategy and then concatenated the word vector, 

image features and protein entities to form a single vector. Moreover, to understand the 

contribution of each feature in our model (scoping vs factoring), we removed factoring from 

the struct-cLDA model to obtain a model that only employs scoping, and we call the 

resulting model struct-cLDA−f. In the following subsections we provide a quantitative as 

well as a qualitative evaluation of our model and compare it against the LSI and cLDA 

baselines over various visualization and retrieval tasks. Clearly, our goal from these 

comparisons is just to show that a straightforward application of simpler flat models can not 

address our problem adequately. In this paper, we extended cLDA to cope with the structure 

of the figures under consideration, however, adapting LSI, and other related techniques, to 

cope with this structure is left as an open problem. Moreover, our choice of comparing 

against LSI for annotation and retrievals tasks stems from the fact that in these tasks our 

own proposed model serves merely as a dimensionality reduction technique.

5.1 Visualization and Structured Browsing

In this section, we examine a few topics discovered by the struct-cLDA model when applied 

to the aforementioned dataset. In Fig. 3, we depict three topics from a run of the struct-

cLDA with K = 20. For each topic we display its top words, protein entities, and the top 9 

panels under this topic (i.e. the panels with the highest component for this topic in their 

latent representation θf). It is interesting to note that all these topics are biologically 

meaningful. For instance, the first topic represents the theme related to the EBA (The 

enucleation before activation) method which is a conventional method of producing an 

embryo and comprises enucleating “oocytes”, transferring donor cells into “oocytes”, fusing 

the oocytes and the donor cells, and activating the fused reconstruction cells. Moreover, 

protein “VP26” has been shown in various studies to interact with protein “actin” during 

these procedures. The second topics is about various cell structure types. The third topic is 

about tumor-related experiments. Examining its top words and proteins we found “cbp” and 

“hbl” which are known tumor suppressors. Moreover “actin” has been shown to be an 

important protein for tumor developments due to its rule in cell division. Also “Cx43” is a 

genetic sequence that codes for a protein that has tumor suppressing effect, moreover, 

protein “Caspases-3” is a member of the Caspases family which plays essential roles in 

apoptosis (programmed cell death). Interestingly “UNC” appears in this topic due to the 

wide usage of the University of North Carolina tumor dataset.

Moreover, given a figure f, as shown in Fig. 4, the system can visualize its topic 

decomposition, i.e. what are the topics represented in this figure along with its weights, 

either at the whole figure level, θf, or at the panel level. As shwon in in Fig. 4, the biological 

figure is composed of 6 panels, and thus our model gives a topic decomposition of each 

panel, a topic decomposition of the whole figure (bottom-left), and a topic assignment for 
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each word in the caption. This, in fact, is a key feature of our model as it breaks the figure 

into its themes and allows biologist to explore each of these themes separately. For instance, 

this figure addresses several phases of cell division, under a controlled condition, that starts 

from the Anaphase stage (panels (a-c)) and progresses towards post mitosis stages (panels 

(d-f)). Indeed, our model was able to discern these stages correctly via the latent 

representation it assigns to each panel. Please note that this figure represents a case in which 

the scoped-caption module was not able to segment the caption due to the unorthodox 

referencing style used in this figure, however, the model was able to produce a reasonable 

latent representation. In the bottom-right of Fig. 4, we show three important topics addressed 

in this figures. It is quite interesting that Topic 13, which corresponds to various biological 

processes important to cell division, was associated with this figure mainly due to its image 

content, not its word content. Moreover, while the figure does not mention any protein 

entities, the associated protein entities with each topic play key roles during all stages of cell 

division addressed in the figure: for instance, dna ligase is an important protein for DNA 

replication. Therefore, the biologist might decide to retrieve similar figures (based on the 

latent representation of the whole figure) that address cell division under the same 

conditions, retrieve figures that address a given stage per see (based on the latent 

representation of some panels), or further explore a given topic by retrieving its 

representative figures.

These features glue the figures in the whole collection via a web of interactions enabled by 

the similarity between the latent representation of each figure at multiple granularities. 

Moreover, this unified latent representation enables comparing figures with largely different 

number of panels.

Finally, in Table 1 we examine the effect of introducing the factored background topic on 

the quality of the discovered topics. Table 1 shows the background topic from the struct-

cLDA model which clearly consists of corpus-level stopwords that carry no information. 

Examining a few topics discovered using a non-factored model (i.e. by removing the 

factoring component from struct-cLDA), it is clear that many of these stopwords (underlined 

in Table 1) found its way to the top list in seemingly information-bearing topics, and thus 

obscure their clarity and clutter the representation.

5.2 Timing Analysis and Convergence

Fig. 5.b compares the time, in seconds, consumed by each model in performing a full Gibbs 

iteration. All the models were coded in Matlab. It is clear from this figure that replicating the 

caption with each panel to anable the use of a standard cLDA model increases the running 

time considerably. In addition, cLDA and struct-cLDA converges after roughly the same 

number of iteration (a few hundred for this dataset as depicted for the struct-cLDA model in 

Fig. 5.a). This result shows that while struct-LDA is seemingly more sophisticated than its 

ancestor cLDA, this sophistication does not incur an added penalty on the running time, on 

the contrary it runs even faster, and also enhances the performance qualitatively as shown in 

Table 1, quantitatively using perplexity analysis in Fig. 5.c (see Sec. 5.3.1), and enables 

sophisticated retrieval tasks (as will be shown in Sections 5.3 and 5.4).
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5.3 Annotation Task

Since the main goal of the models presented in this paper is discovering the correspondence 

between mixed modalities, in this section, we examine the ability of the struct-cLDA model 

to predict the textual caption of a figure based on observing its image features, and the 

protein entity annotations of a given figure based on observing its image features and textual 

caption.

5.3.1 Caption Perplexity—For the first task, we used the perplexity of the figures’s 

caption based on observing its image features. Perplexity, which is used in the language 

modeling community, is equivalent algebraically to the inverse of the geometric mean per-

word likelihood, that is:

The above conditional probability can be computed by running the Gibbs sampling 

algorithm of Sec. 4 by iterating Eq. (5) only until convergence (with no words or protein 

entities used). A number of posterior samples can then be generated from this posterior by 

resuming the Gibbs Sampling on Eqs. (1, 3 and 4) while holding the image features topic 

indicators fixed. These samples are then used to compute the average likelihood of the 

caption conditioned on the image features. Fig. 5.(c) compares caption perplexity using 

cLDA-d, struct-cLDA, and struct-cLDA−f. This experiment shows that modeling the figure 

as a whole via the struct-cLDA−f model is better than duplicating the caption across panels, 

as this duplicating results in over representation and less accurate predictions. Moreover, 

factoring out background words, as in the struct-cLDA model, further improves the 

performance because, as was shown in Table 1, it excludes non content-bearing words from 

being associated with image features and thus misleading the predictions.

5.3.2 Protein Annotation—To annotate a test figure based on its image features and 

caption words, we first project the figure to the latent topic space using the observed parts of 

the figure by first iterating Eqs. (1,3,4,5 until convergence, and then collecting posterior 

samples for θf. Moreover, from the training phase, we can compute each topic’s distribution 

over the protein vocabulary (Ωk). Finally, the probability that figure f is annotated with 

protein r, can be computed as follows:

(6)

It is interesting to note that the above measure is equivalent to a dot product in the latent 

topic space between the figure representation θf and the latent representation of the protein 

entity r — as we can consider Ωrk as the projection of the protein entity over the kth topical 

dimension. Protein entities can then be ranked based on this measure. We compare the 

ranking produced by the struct-cLDA with that produced by LSI. Applying LSI to the 

training dataset results in a representation of each term (image feature, protein entity, and 
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text word) over the LSI semantic space. These terms are then used to project a new figure in 

the testset onto this space using “folding” as discussed in [6]. Afterwards cosine similarity is 

used as the distance measure for ranking. We evaluated each ranking using three measures: 

the highest (low in value) rank, average rank and lowest rank (Rank at 100% recall) of the 

actual annotations as it appear in the recovered rankings. Fig. 6 shows the result across 

various number of topics (factors for LSI).

5.4 Multi-Modal Figure Retrieval

Perhaps the most challenging task in multimedia retrieval is retrieving images based on a 

multimodal query. Given a query q = (ω1, …, ωn, r1, …, rm) composed of a set of text words 

and protein entities, we use the query langauge model [17] to evaluate the likelihood of the 

query given a test figure as follows:

(7)

As we noted in Eq. (6), p(ω|f) is a simple dot product operation between the latent 

representations of word ω and the latent representation of figure f in the induced topical 

space. The above measure can then be used to rank figures in the testset for evaluation. We 

compared the performance of struct-cLDA to LSI. Each of the two models has access to 

only the image features of the figures in the testset. Query computations in LSI are handled 

using cosine similarity after folding both the test figures and the query onto the LSI space 

[6]. Fig. 7 shows the precision-recall curves over 4 queries. For a given query, an image is 

considered relevant if the query words appear in its caption (which is hidden from both 

models, and is only used for evaluation). As shown in Fig. 7, struct-cLDA compares 

favorably to LSI across a range of factors (we only show the result for K = 15 for space 

limitations but we observed the same behavior as we vary the number of factors).

6. TRANSFER LEARNING FROM PARTIAL FIGURES

In this section we explore the utility of using non-visual data in the form of textual date 

accompanied with protein entities. Examples of such data include biological abstracts tagged 

with protein entities, and biological figures that lack visual data which we refer to as partial 

figures (i.e. figures with no panel images).Partial figures occur frequently in our pipeline 

due to the absence of the figure’s resolution which is necessary for normalization of the 

image features. We focus here on partial figures, although the former case can be handled 

accordingly. A partial figure f that comprises a set of global words and protein entities can 

be generated as follows:

1. Draw θf ~ Dir(α1)

2. Draw λf ~ Beta (a, b)

3. For every word  in global caption:

a. Draw coin xn ~ Bernoulli(λf)

b. If(xn = = 1)
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i. Draw topic 

ii. Draw 

c. If(xn = = 0)

i. Draw 

4. For every protein entity rl in global caption:

a.
Draw topic  display math

b. Draw rl|υl = k ~ Multi(Ωk)

In essence, captions words are moved to the highest level in the correspondence hierarchy, 

and a factored, flat cLDA model is used to generate protein entities from the topic indicators 

used in generating the figure’s words. As we made explicit in the above generative process, 

the partial figures share the same set of topic’s parameters (β1:K, Ω1:K) with those parameters 

used to generate the full figures. Extending the collapsed Gibbs sampling algorithm from 

Sec. 4 is straightforward and omitted for space limitations.

To balance the contribution of partial and full figures to the learnt topics, we first extract the 

word and protein vocabularies using only the full figures. We then project the partial figures 

over this vocabulary (i.e we remove words and protein mentions that do not occure in the 

vocabulay extracted from the full figures). Finally, we keep partial figures that retain at least 

one protein annotation, and train the topic model using both full and partial figures. To 

evaluate the utility of partial figures, we used the protein annotation task of Sec. 5.3 (note 

that the test figures in this task are full figures, but the training set contains both full and 

partial figures). In this task, a test figure is annotated based on its text and image features. 

As shown in Fig. 8.(a), the performance increases as the ratio of partial figures in the 

training set increases . This behavior should be expected because the annotation is based on 

both the text and image features of the test figure. However, interestingly, we found that the 

annotation quality also increases if we annotate the test figures after observing only its 

image features as shown in Fig. 8.(b). This shows that, during training, the model was able 

to transfer text-protein correlations form the partial figures to image-protein correlations via 

the triplet topic representations.

7. CONCLUSIONS AND DISCUSSION

In this paper we addressed the problem of modeling structurally and multimodally annotated 

biological figures for visualization and retrieval tasks. We presented the structured 

correspondence LDA model that addresses all the challenges posed by these figures. We 

illustrated the usefulness of our models using various visualization and retrieval tasks. 

Recent extensions to LDA and cLDA bear resemblances to some features in the models 

presented in this paper, such as [15] in its ability to model entities, and [2, 9] in their abilities 

to model many-many annotations. However, our goal in this paper was mainly focused on 

modeling biological figures with an eye towards building a model that can be useful in 

various domains were modeling uncertain hierarchical, scoped associations is required. In 
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the future, we plan to extend our model to incorporate other sources of hierarchal 

correspondences like modeling the association between figures and the text of their 

containing papers.
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Figure 1. 
Overview of our approach, please refer to Section 2 for more details. (Best viewed in color)
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Figure 2. 
The cLDA and struct-cLDA Models. Shaded circles represent observed variables and their 

colors denote modality (blue for words, red for protein entities, and cyan for image features), 

unshaded circles represent hidden variables, diamonds represent model parameters, and 

plates represent replications. Some super/subscripts are removed for clarity—see text for 

explanation.
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Figure 3. 
Illustrative three topics from a 20-topics run of the struct-cLDA model. See Section 5.1 for 

more details.
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Figure 4. 
Illustrating topic decomposition and structured browsing. A biological figure tagged with its 

topic decomposition at different granularities: each panel (top-right), caption words (second 

row), and the whole figure (bottom-left). In tagging the caption, light grey colors are used 

for words that were removed during pre-processing stages, and dark grey colors are used for 

background words. Some topics are illustrated at the bottom row. (best viewed in color)
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Figure 5. 
Understating model’s features contributions: (a) Convergence (b) Time per iteration and (c) 

Perplexity
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Figure 6. 
Evaluating protein annotation quality based on observing text and image features (Lower 

better)
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Figure 7. 
Illustrating figure retrieval performance. Each column depicts the result for a give query 

written on its top with the number of true positives written in parenthesis (the size of the test 

set is 131 figures). The figure shows comparisons between struct-cLDA and LSI. The 

horizontal lines are the average precision for each model. (Better viewed in color)
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Figure 8. 
Illustrating the utility of using partial figures as a function of its ratio in the training set. The 

task is protein annotation based on (a) Figure’s image and text and (b) Image content of the 

figure only
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