Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Sep 6;70(Pt 10):167–169. doi: 10.1107/S160053681401962X

Crystal structure of 1-benzyl-4-(4-chloro­phen­yl)-2-imino-1,2,5,6,7,8,9,10-octa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile

R A Nagalakshmi a, J Suresh a, S Maharani b, R Ranjith Kumar b, P L Nilantha Lakshman c,*
PMCID: PMC4257162  PMID: 25484643

The title compound comprises a 2-imino­pyridine ring fused with a cyclo­octane ring, which adopts a twist boat–chair conformation. Inter­molecular C—H⋯N inter­actions form Inline graphic(14) ring motifs and mol­ecules are further connected by weak C—H⋯π inter­actions.

Keywords: crystal structure, cyclo­octa­[b]pyridine, hydrogen bonding, Schiff bases

Abstract

The title compound, C25H24ClN3, comprises a 2-imino­pyridine ring fused with a cyclo­octane ring, which adopts a twist boat–chair conformation. In the crystal, C—H⋯N inter­actions form R 2 2(14) ring motifs and mol­ecules are further connected by weak C—H⋯π inter­actions. The resulting supra­molecular structure is a two-dimensional framework parallel to the ab plane.

Chemical context  

Schiff bases are compounds carrying an imine or azomethine (—C=N—) functional group. They have gained importance in the medicinal and pharmaceutical fields due to their broad spectrum of biological activity, including anti-inflammatory, analgesic, anti­microbial, anti­convulsant, anti­tubercular (Aboul-Fadl et al., 2003), anti­cancer, anti­oxidant and anti­helminthic, among others. Schiff base derivatives are present in a number of processes, which prompted researchers to design novel heterocyclic/aryl Schiff bases with the aim of developing new environmentally friendly technologies (Bhattacharya et al., 2003). Schiff bases are also used as ligands for catalysts, inter­mediates in organic synthesis, dyes, pigments, and polymer stabilizers (Dhar & Taploo, 1982).graphic file with name e-70-00167-scheme1.jpg

Imino­pyridine complexes can be useful catalysts, and pyridones have been investigated extensively as valuable building blocks for many fused heterocyclic systems (Johns et al., 2003) displaying a wide range of biological and pharmacological activities. They exhibit, for example, anti­proliferative and anti­tubolin activities (Magedov et al., 2008). Many pyridin-2-one and 3-cyano-2-imino­pyridine derivatives also exhibit anti­proliferative activity (McNamara & Cook, 1987). As part of our studies in this area, the title compound was synthesized and we report herein on the mol­ecular and crystal structures of this compound.

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The cyclo­octane ring adopts a twist boat–chair conformation (Wiberg, 2003), as found in similar structures (Vishnupriya et al., 2014a ,b ). As expected, the pyridine ring (atoms C1–C5/N3) is almost planar, with an r.m.s. deviation of 0.002 Å. The chloro­benzene (C31–C36) and phenyl (C13–C18) rings are almost planar, with r.m.s. deviations of 0.005 and 0.004 Å, respectively. The sum of the angles around atom N3 is 359.8°, indicating that atom N3 is sp 2-hybridized. The C2—C38 N2 bond angle of 176.07 (19)° shows the linearity of the cyano group, a feature systematically observed in carbo­nitrile compounds. Nitrile atoms C38 and N2 are displaced from the mean plane of the pyridine ring by 0.0258 (1) and 0.0363 (1) Å, respectively. The imino C1=N1 bond length is 1.286 (2) Å. The imino group is nearly coplanar with the pyridine ring, as indicated by the N1=C1—N3—C5 torsion angle of −178.89 (14)°. The chloro­benzene ring is attached to the pyridine ring with a C2=C3—C31 C36 torsion angle of 100.99 (19)°, indicating a (+)anti­clinal conformation. The C33 C34 C35 bond angle of 121.11 (15)° deviates from 120° due to the presence of the chlorine substituent. The chlorine atom bonded to C34 deviates by 0.0446 (1) Å from the mean plane of the phenyl ring. The chlorine is attached to the benzene ring with a C32 C33 C34—Cl1 torsion angle of 178.95 (13)°. In the pyridine ring, the formal double bonds [C4=C5 = 1.375 (2) and C2=C3 = 1.369 (2) Å] are longer than standard C=C bonds (1.34 Å), while the other bond lengths are slightly shorter than standard C—C and C—N bond lengths, evidencing that there is a homo-conjugation effect for this ring.

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing 20% probability displacement ellipsoids. All H atoms have been omitted for clarity.

Supra­molecular features  

In the crystal, pairs of C—H⋯N inter­actions form Inline graphic(14) ring motifs (Bernstein et al., 1995), and the resulting dimers are further connected through weak C—H⋯π inter­actions involving the phenyl ring as acceptor (Table 1 and Fig. 2). The resulting supra­molecular structure is a two-dimensional framework parallel to the crystallographic ab plane.

Table 1. Hydrogen-bond geometry (Å, °).

Cg1 is the centroid of the phenyl ring.

D—H⋯A D—H H⋯A DA D—H⋯A
C32—H32⋯N1i 0.93 2.55 3.423 (2) 156
C11—H11BCg1ii 0.97 2.91 3.5642 (2) 126

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Partial packing diagram of the title compound. Dashed lines represent inter­molecular hydrogen bonds and C—H⋯π contacts. For clarity, H atoms not involved in hydrogen bonding have been omitted.

Database survey  

Similar structures reported in the literature are 2-meth­oxy-4-(2-meth­oxy­phen­yl)-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyrid­ine-3-carbo­nitrile (Vishnupriya et al., 2014a ) and 4-(2-fluoro­phen­yl)-2-meth­oxy-5,6,7,8,9,10-hexa­hydro­cyclo­octa­[b]pyridine-3-carbo­nitrile (Vishnupriya et al., 2014b ). In the structure reported here, the twisted conformation of the cyclo­octane ring and the planar conformation of the pyridine are similar to those found in the related structures. However, the C=NH functional group present in the title compound allows the formation of C—H⋯N hydrogen bonds, which are not present in the above-cited compounds. In the title compound, the bond lengths in the central pyridine ring span the range 1.369–1.447 Å, which compares well with the ranges observed in the similar structures (1.314–1.400 Å), but these bonds are systematically longer in the title compound, due to the substitution of the pyridine N atom by a benzyl group.

Synthesis and crystallization  

Cyclo­octa­none (1 mmol), 4-chloro­benzaldehyde (1 mmol) and malono­nitrile (1 mmol) were mixed in ethanol (10 ml), and p-toluene­sulfonic acid (0.5 mmol) was added. The reaction mixture was refluxed for 2–3 h. After completion of the reaction (followed by thin-layer chromatography), the mixture was poured into crushed ice and extracted with ethyl acetate. The excess of solvent was removed under reduced pressure and the residue was chromatographed using a petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent, to afford the pure product. The product was recrystallized from ethyl acetate, affording colourless crystals (m.p. 493 K; yield 71%).

Refinement  

C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms, with C—H = 0.93 (aromatic CH) or 0.97 Å (methyl­ene CH2). Imine atom H1 was found in a difference map and refined freely, with the N—H distance restrained to 0.84 (2) Å. Isotropic displacement parameters for H atoms were calculated as U iso(H) = 1.2U eq(C) for CH and CH2 groups, while the U iso factor for H1 was refined. Crystal data, data collection and structure refinement details are summarized in Table 2.

Table 2. Experimental details.

Crystal data
Chemical formula C25H24ClN3
M r 401.92
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c (Å) 10.2319 (3), 10.5228 (3), 11.7767 (4)
α, β, γ (°) 101.088 (2), 107.524 (2), 114.008 (2)
V3) 1029.87 (5)
Z 2
Radiation type Mo Kα
μ (mm−1) 0.20
Crystal size (mm) 0.21 × 0.19 × 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.967, 0.974
No. of measured, independent and observed [I > 2σ(I)] reflections 26728, 3842, 3094
R int 0.027
(sin θ/λ)max−1) 0.606
 
Refinement
R[F 2 > 2σ(F 2)], wR(F 2), S 0.038, 0.105, 1.05
No. of reflections 3842
No. of parameters 266
No. of restraints 2
H-atom treatment H atoms treated by a mixture of independent and constrained refinement
Δρmax, Δρmin (e Å−3) 0.29, −0.33

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 and SHELXL97 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681401962X/bh2503sup1.cif

e-70-00167-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401962X/bh2503Isup2.hkl

e-70-00167-Isup2.hkl (184.5KB, hkl)

CCDC reference: 1021949

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funds through Major Research Project F. No. 42–242/2013 (SR).

supplementary crystallographic information

Crystal data

C25H24ClN3 Z = 2
Mr = 401.92 F(000) = 424
Triclinic, P1 Dx = 1.296 Mg m3
Hall symbol: -P 1 Melting point: 493 K
a = 10.2319 (3) Å Mo Kα radiation, λ = 0.71073 Å
b = 10.5228 (3) Å Cell parameters from 2000 reflections
c = 11.7767 (4) Å θ = 2–31°
α = 101.088 (2)° µ = 0.20 mm1
β = 107.524 (2)° T = 293 K
γ = 114.008 (2)° Block, colourless
V = 1029.87 (5) Å3 0.21 × 0.19 × 0.18 mm

Data collection

Bruker Kappa APEXII diffractometer 3842 independent reflections
Radiation source: fine-focus sealed tube 3094 reflections with I > 2σ(I)
Graphite monochromator Rint = 0.027
Detector resolution: 0 pixels mm-1 θmax = 25.5°, θmin = 2.3°
ω and φ scans h = −12→12
Absorption correction: multi-scan (SADABS; Bruker, 2004) k = −12→12
Tmin = 0.967, Tmax = 0.974 l = −14→14
26728 measured reflections

Refinement

Refinement on F2 Primary atom site location: structure-invariant direct methods
Least-squares matrix: full Secondary atom site location: difference Fourier map
R[F2 > 2σ(F2)] = 0.038 Hydrogen site location: inferred from neighbouring sites
wR(F2) = 0.105 H atoms treated by a mixture of independent and constrained refinement
S = 1.05 w = 1/[σ2(Fo2) + (0.0436P)2 + 0.4103P] where P = (Fo2 + 2Fc2)/3
3842 reflections (Δ/σ)max < 0.001
266 parameters Δρmax = 0.29 e Å3
2 restraints Δρmin = −0.33 e Å3
0 constraints

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.41432 (18) 0.89760 (17) 0.60601 (14) 0.0337 (3)
C2 0.43550 (18) 0.80064 (17) 0.51697 (14) 0.0335 (3)
C3 0.31232 (18) 0.67411 (17) 0.41791 (14) 0.0333 (3)
C4 0.15512 (18) 0.63430 (17) 0.39917 (14) 0.0353 (3)
C5 0.13131 (18) 0.72425 (17) 0.48236 (14) 0.0335 (3)
C6 −0.03192 (19) 0.6888 (2) 0.46876 (16) 0.0423 (4)
H6A −0.0265 0.7273 0.5528 0.051*
H6B −0.0988 0.5812 0.4361 0.051*
C7 −0.1099 (2) 0.7521 (2) 0.38092 (18) 0.0551 (5)
H7A −0.1975 0.7499 0.3983 0.066*
H7B −0.0338 0.8559 0.4038 0.066*
C8 −0.1713 (2) 0.6742 (3) 0.23817 (19) 0.0593 (5)
H8A −0.2427 0.5691 0.2160 0.071*
H8B −0.2325 0.7141 0.1940 0.071*
C9 −0.0483 (2) 0.6871 (2) 0.18839 (19) 0.0578 (5)
H9A 0.0513 0.7749 0.2484 0.069*
H9B −0.0788 0.7029 0.1083 0.069*
C10 −0.0220 (2) 0.5534 (2) 0.16653 (17) 0.0557 (5)
H10A 0.0628 0.5763 0.1392 0.067*
H10B −0.1169 0.4690 0.0970 0.067*
C11 0.0186 (2) 0.50636 (19) 0.28133 (17) 0.0456 (4)
H11A −0.0733 0.4650 0.2993 0.055*
H11B 0.0448 0.4287 0.2603 0.055*
C12 0.2287 (2) 0.95489 (18) 0.66307 (15) 0.0397 (4)
H12A 0.1371 0.9574 0.6102 0.048*
H12B 0.3189 1.0545 0.6960 0.048*
C13 0.20272 (19) 0.91624 (18) 0.77398 (15) 0.0386 (4)
C14 0.0786 (2) 0.9164 (2) 0.79756 (18) 0.0550 (5)
H14 0.0085 0.9357 0.7426 0.066*
C15 0.0579 (3) 0.8877 (3) 0.9030 (2) 0.0687 (7)
H15 −0.0265 0.8871 0.9179 0.082*
C16 0.1608 (3) 0.8603 (2) 0.98475 (19) 0.0672 (6)
H16 0.1475 0.8427 1.0560 0.081*
C17 0.2835 (2) 0.8589 (2) 0.96164 (18) 0.0570 (5)
H17 0.3531 0.8395 1.0171 0.068*
C18 0.3047 (2) 0.88603 (19) 0.85687 (16) 0.0444 (4)
H18 0.3881 0.8841 0.8417 0.053*
C31 0.34478 (18) 0.57918 (17) 0.33174 (15) 0.0352 (3)
C32 0.3811 (2) 0.61741 (19) 0.23496 (17) 0.0434 (4)
H32 0.3887 0.7054 0.2250 0.052*
C33 0.4064 (2) 0.5266 (2) 0.15252 (17) 0.0458 (4)
H33 0.4291 0.5523 0.0868 0.055*
C34 0.39752 (19) 0.39863 (18) 0.16899 (15) 0.0394 (4)
C35 0.3645 (2) 0.3594 (2) 0.26548 (18) 0.0488 (4)
H35 0.3603 0.2728 0.2764 0.059*
C36 0.3376 (2) 0.4497 (2) 0.34654 (17) 0.0472 (4)
H36 0.3143 0.4229 0.4118 0.057*
C38 0.59554 (19) 0.84653 (18) 0.53780 (15) 0.0384 (4)
N1 0.52304 (18) 1.01684 (16) 0.70223 (14) 0.0466 (4)
N2 0.72609 (18) 0.88953 (19) 0.56079 (16) 0.0557 (4)
N3 0.25617 (15) 0.85167 (14) 0.58174 (11) 0.0328 (3)
Cl1 0.42569 (7) 0.28161 (6) 0.06488 (5) 0.06290 (17)
H1 0.612 (2) 1.031 (2) 0.703 (2) 0.063 (6)*

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0364 (8) 0.0339 (8) 0.0297 (8) 0.0161 (7) 0.0126 (6) 0.0147 (7)
C2 0.0346 (7) 0.0360 (8) 0.0313 (8) 0.0174 (7) 0.0139 (6) 0.0156 (6)
C3 0.0372 (8) 0.0341 (8) 0.0315 (8) 0.0188 (7) 0.0147 (7) 0.0148 (7)
C4 0.0340 (8) 0.0334 (8) 0.0342 (8) 0.0153 (7) 0.0123 (7) 0.0103 (7)
C5 0.0348 (8) 0.0348 (8) 0.0318 (8) 0.0170 (7) 0.0133 (6) 0.0154 (7)
C6 0.0387 (9) 0.0476 (10) 0.0403 (9) 0.0205 (8) 0.0198 (7) 0.0125 (8)
C7 0.0475 (10) 0.0707 (13) 0.0534 (11) 0.0388 (10) 0.0184 (9) 0.0181 (10)
C8 0.0463 (11) 0.0748 (14) 0.0540 (12) 0.0336 (10) 0.0132 (9) 0.0229 (10)
C9 0.0490 (11) 0.0732 (14) 0.0458 (10) 0.0252 (10) 0.0167 (9) 0.0278 (10)
C10 0.0427 (10) 0.0670 (13) 0.0362 (9) 0.0196 (9) 0.0110 (8) 0.0034 (9)
C11 0.0360 (9) 0.0398 (9) 0.0466 (10) 0.0141 (7) 0.0141 (8) 0.0030 (8)
C12 0.0460 (9) 0.0373 (9) 0.0376 (9) 0.0256 (8) 0.0151 (7) 0.0101 (7)
C13 0.0387 (8) 0.0359 (8) 0.0334 (8) 0.0168 (7) 0.0141 (7) 0.0028 (7)
C14 0.0465 (10) 0.0593 (12) 0.0484 (11) 0.0274 (9) 0.0172 (9) 0.0002 (9)
C15 0.0530 (12) 0.0728 (14) 0.0585 (13) 0.0171 (11) 0.0346 (11) −0.0048 (11)
C16 0.0625 (13) 0.0677 (14) 0.0382 (10) 0.0069 (11) 0.0264 (10) 0.0034 (10)
C17 0.0534 (11) 0.0595 (12) 0.0379 (10) 0.0146 (9) 0.0149 (9) 0.0155 (9)
C18 0.0399 (9) 0.0479 (10) 0.0389 (9) 0.0179 (8) 0.0162 (7) 0.0127 (8)
C31 0.0320 (8) 0.0351 (8) 0.0345 (8) 0.0160 (7) 0.0117 (7) 0.0099 (7)
C32 0.0541 (10) 0.0374 (9) 0.0494 (10) 0.0248 (8) 0.0291 (8) 0.0203 (8)
C33 0.0572 (11) 0.0464 (10) 0.0460 (10) 0.0272 (9) 0.0319 (9) 0.0211 (8)
C34 0.0371 (8) 0.0394 (9) 0.0397 (9) 0.0203 (7) 0.0152 (7) 0.0090 (7)
C35 0.0627 (11) 0.0458 (10) 0.0535 (11) 0.0357 (9) 0.0273 (9) 0.0245 (9)
C36 0.0631 (11) 0.0526 (11) 0.0452 (10) 0.0362 (9) 0.0304 (9) 0.0270 (8)
C38 0.0372 (8) 0.0421 (9) 0.0357 (8) 0.0188 (7) 0.0153 (7) 0.0162 (7)
N1 0.0411 (8) 0.0414 (8) 0.0408 (8) 0.0139 (7) 0.0126 (7) 0.0049 (7)
N2 0.0407 (9) 0.0659 (11) 0.0566 (10) 0.0236 (8) 0.0201 (7) 0.0214 (8)
N3 0.0374 (7) 0.0333 (7) 0.0289 (6) 0.0190 (6) 0.0136 (5) 0.0112 (5)
Cl1 0.0826 (4) 0.0577 (3) 0.0635 (3) 0.0439 (3) 0.0404 (3) 0.0156 (2)

Geometric parameters (Å, º)

C1—N1 1.286 (2) C12—N3 1.4786 (19)
C1—N3 1.402 (2) C12—C13 1.506 (2)
C1—C2 1.447 (2) C12—H12A 0.9700
C2—C3 1.369 (2) C12—H12B 0.9700
C2—C38 1.430 (2) C13—C14 1.380 (2)
C3—C4 1.419 (2) C13—C18 1.385 (2)
C3—C31 1.490 (2) C14—C15 1.388 (3)
C4—C5 1.375 (2) C14—H14 0.9300
C4—C11 1.508 (2) C15—C16 1.365 (3)
C5—N3 1.379 (2) C15—H15 0.9300
C5—C6 1.504 (2) C16—C17 1.368 (3)
C6—C7 1.533 (3) C16—H16 0.9300
C6—H6A 0.9700 C17—C18 1.377 (2)
C6—H6B 0.9700 C17—H17 0.9300
C7—C8 1.519 (3) C18—H18 0.9300
C7—H7A 0.9700 C31—C32 1.382 (2)
C7—H7B 0.9700 C31—C36 1.382 (2)
C8—C9 1.510 (3) C32—C33 1.385 (2)
C8—H8A 0.9700 C32—H32 0.9300
C8—H8B 0.9700 C33—C34 1.367 (2)
C9—C10 1.527 (3) C33—H33 0.9300
C9—H9A 0.9700 C34—C35 1.369 (2)
C9—H9B 0.9700 C34—Cl1 1.7387 (16)
C10—C11 1.527 (3) C35—C36 1.383 (2)
C10—H10A 0.9700 C35—H35 0.9300
C10—H10B 0.9700 C36—H36 0.9300
C11—H11A 0.9700 C38—N2 1.143 (2)
C11—H11B 0.9700 N1—H1 0.861 (15)
N1—C1—N3 118.60 (15) C10—C11—H11B 109.1
N1—C1—C2 127.15 (15) H11A—C11—H11B 107.8
N3—C1—C2 114.24 (13) N3—C12—C13 115.09 (13)
C3—C2—C38 121.37 (14) N3—C12—H12A 108.5
C3—C2—C1 123.18 (14) C13—C12—H12A 108.5
C38—C2—C1 115.45 (14) N3—C12—H12B 108.5
C2—C3—C4 119.51 (14) C13—C12—H12B 108.5
C2—C3—C31 119.70 (14) H12A—C12—H12B 107.5
C4—C3—C31 120.79 (13) C14—C13—C18 118.66 (17)
C5—C4—C3 118.62 (14) C14—C13—C12 119.81 (16)
C5—C4—C11 121.18 (14) C18—C13—C12 121.48 (15)
C3—C4—C11 119.80 (14) C13—C14—C15 120.3 (2)
C4—C5—N3 121.43 (14) C13—C14—H14 119.9
C4—C5—C6 121.59 (14) C15—C14—H14 119.9
N3—C5—C6 116.98 (13) C16—C15—C14 120.32 (19)
C5—C6—C7 114.83 (14) C16—C15—H15 119.8
C5—C6—H6A 108.6 C14—C15—H15 119.8
C7—C6—H6A 108.6 C15—C16—C17 119.81 (19)
C5—C6—H6B 108.6 C15—C16—H16 120.1
C7—C6—H6B 108.6 C17—C16—H16 120.1
H6A—C6—H6B 107.5 C16—C17—C18 120.5 (2)
C8—C7—C6 116.81 (16) C16—C17—H17 119.8
C8—C7—H7A 108.1 C18—C17—H17 119.8
C6—C7—H7A 108.1 C17—C18—C13 120.46 (17)
C8—C7—H7B 108.1 C17—C18—H18 119.8
C6—C7—H7B 108.1 C13—C18—H18 119.8
H7A—C7—H7B 107.3 C32—C31—C36 118.56 (15)
C9—C8—C7 116.28 (16) C32—C31—C3 121.06 (14)
C9—C8—H8A 108.2 C36—C31—C3 120.38 (14)
C7—C8—H8A 108.2 C31—C32—C33 120.92 (15)
C9—C8—H8B 108.2 C31—C32—H32 119.5
C7—C8—H8B 108.2 C33—C32—H32 119.5
H8A—C8—H8B 107.4 C34—C33—C32 119.21 (16)
C8—C9—C10 115.62 (18) C34—C33—H33 120.4
C8—C9—H9A 108.4 C32—C33—H33 120.4
C10—C9—H9A 108.4 C33—C34—C35 121.11 (15)
C8—C9—H9B 108.4 C33—C34—Cl1 119.88 (13)
C10—C9—H9B 108.4 C35—C34—Cl1 119.00 (13)
H9A—C9—H9B 107.4 C34—C35—C36 119.39 (16)
C9—C10—C11 115.86 (15) C34—C35—H35 120.3
C9—C10—H10A 108.3 C36—C35—H35 120.3
C11—C10—H10A 108.3 C31—C36—C35 120.79 (16)
C9—C10—H10B 108.3 C31—C36—H36 119.6
C11—C10—H10B 108.3 C35—C36—H36 119.6
H10A—C10—H10B 107.4 N2—C38—C2 176.07 (19)
C4—C11—C10 112.58 (15) C1—N1—H1 107.2 (15)
C4—C11—H11A 109.1 C5—N3—C1 123.00 (13)
C10—C11—H11A 109.1 C5—N3—C12 120.87 (13)
C4—C11—H11B 109.1 C1—N3—C12 115.95 (13)
N1—C1—C2—C3 178.97 (16) C15—C16—C17—C18 0.5 (3)
N3—C1—C2—C3 −0.5 (2) C16—C17—C18—C13 0.5 (3)
N1—C1—C2—C38 −1.8 (2) C14—C13—C18—C17 −0.9 (3)
N3—C1—C2—C38 178.71 (13) C12—C13—C18—C17 176.46 (16)
C38—C2—C3—C4 −178.72 (14) C2—C3—C31—C32 −79.6 (2)
C1—C2—C3—C4 0.4 (2) C4—C3—C31—C32 100.90 (19)
C38—C2—C3—C31 1.8 (2) C2—C3—C31—C36 100.99 (19)
C1—C2—C3—C31 −179.06 (13) C4—C3—C31—C36 −78.5 (2)
C2—C3—C4—C5 −0.5 (2) C36—C31—C32—C33 1.4 (3)
C31—C3—C4—C5 179.02 (14) C3—C31—C32—C33 −177.97 (15)
C2—C3—C4—C11 172.41 (14) C31—C32—C33—C34 −1.1 (3)
C31—C3—C4—C11 −8.1 (2) C32—C33—C34—C35 −0.1 (3)
C3—C4—C5—N3 0.6 (2) C32—C33—C34—Cl1 178.95 (13)
C11—C4—C5—N3 −172.17 (14) C33—C34—C35—C36 0.9 (3)
C3—C4—C5—C6 −179.76 (14) Cl1—C34—C35—C36 −178.19 (14)
C11—C4—C5—C6 7.5 (2) C32—C31—C36—C35 −0.7 (3)
C4—C5—C6—C7 −88.02 (19) C3—C31—C36—C35 178.75 (16)
N3—C5—C6—C7 91.64 (18) C34—C35—C36—C31 −0.5 (3)
C5—C6—C7—C8 74.9 (2) C3—C2—C38—N2 −174 (3)
C6—C7—C8—C9 −67.4 (3) C1—C2—C38—N2 7 (3)
C7—C8—C9—C10 99.1 (2) C4—C5—N3—C1 −0.7 (2)
C8—C9—C10—C11 −55.1 (2) C6—C5—N3—C1 179.62 (13)
C5—C4—C11—C10 88.34 (19) C4—C5—N3—C12 174.19 (14)
C3—C4—C11—C10 −84.35 (19) C6—C5—N3—C12 −5.5 (2)
C9—C10—C11—C4 −52.2 (2) N1—C1—N3—C5 −178.89 (14)
N3—C12—C13—C14 −132.69 (16) C2—C1—N3—C5 0.6 (2)
N3—C12—C13—C18 49.9 (2) N1—C1—N3—C12 6.0 (2)
C18—C13—C14—C15 0.4 (3) C2—C1—N3—C12 −174.52 (12)
C12—C13—C14—C15 −177.01 (17) C13—C12—N3—C5 86.24 (17)
C13—C14—C15—C16 0.5 (3) C13—C12—N3—C1 −98.50 (16)
C14—C15—C16—C17 −1.0 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of the phenyl ring.

D—H···A D—H H···A D···A D—H···A
C32—H32···N1i 0.93 2.55 3.423 (2) 156
C11—H11B···Cg1ii 0.97 2.91 3.5642 (2) 126

Symmetry codes: (i) −x+1, −y+2, −z+1; (ii) −x, −y+1, −z+1.

References

  1. Aboul-Fadl, T., Mohammed, F. A.-H. & Hassan, E. A.-S. (2003). Arch. Pharm. Res. 26, 778–784. [DOI] [PubMed]
  2. Bernstein, J., Davis, R. E., Shimoni, L. & Chang, N.-L. (1995). Angew. Chem. Int. Ed. Engl. 34, 1555–1573.
  3. Bhattacharya, A., Purohit, V. C. & Rinaldi, F. (2003). Org. Process Res. Dev. 7, 254–258.
  4. Bruker (2004). APEX2, SAINT and SADABS Bruker AXS Inc., Madison, Wisconsin, USA.
  5. Dhar, D. N. & Taploo, C. L. (1982). J. Sci. Ind. Res. 41, 501–506.
  6. Johns, B. A., Gudmundsson, K. S., Turner, E. M., Allen, S. H., Jung, D. K., Sexton, C. J., Boyd, F. L. Jr & Peel, M. R. (2003). Tetrahedron, 59, 9001–9011.
  7. Magedov, I. V., Manpadi, M., Ogasawara, M. A., Dhawan, A. S., Rogelj, S., Van Slambrouck, S., Steelant, W. F. A., Evdokimov, N. M., Unglinskii, P. Y., Elias, E. M., et al. (2008). J. Med. Chem. 51, 2561–2570. [DOI] [PMC free article] [PubMed]
  8. McNamara, D. J. & Cook, P. D. (1987). J. Med. Chem. 30, 340–347. [DOI] [PubMed]
  9. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  10. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  11. Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014a). Acta Cryst. E70, o656. [DOI] [PMC free article] [PubMed]
  12. Vishnupriya, R., Suresh, J., Maharani, S., Kumar, R. R. & Lakshman, P. L. N. (2014b). Acta Cryst. E70, o872. [DOI] [PMC free article] [PubMed]
  13. Wiberg, K. B. (2003). J. Org. Chem. 68, 9322–9329. [DOI] [PubMed]

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S160053681401962X/bh2503sup1.cif

e-70-00167-sup1.cif (21.6KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S160053681401962X/bh2503Isup2.hkl

e-70-00167-Isup2.hkl (184.5KB, hkl)

CCDC reference: 1021949

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES