Skip to main content
Acta Crystallographica Section E: Structure Reports Online logoLink to Acta Crystallographica Section E: Structure Reports Online
. 2014 Nov 19;70(Pt 12):525–527. doi: 10.1107/S1600536814024878

Crystal structure of 2-benzyl­amino-4-(4-meth­oxy­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclo­hepta­[b]pyridine-3-carbo­nitrile

R A Nagalakshmi a, J Suresh a, S Maharani b, R Ranjith Kumar b, P L Nilantha Lakshman c,*
PMCID: PMC4257429  PMID: 25552983

The title compound comprises a 2-amino­pyridine ring fused with a cyclo­heptane ring, which adopts a chair conformation. In the crystal, mol­ecules are linked via pairs of N—H⋯Nnitrile hydrogen bonds, forming inversion dimers which enclose Inline graphic(14) ring motifs

Keywords: crystal structure, cyclo­hepta­pyridine, carbo­nitrile, hydrogen bonding, C—H⋯π inter­actions, slipped parallel π–π inter­actions

Abstract

The title compound, C25H25N3O, comprises a 2-amino­pyridine ring fused with a cyclo­heptane ring, which adopts a chair conformation. The central pyridine ring (r.m.s. deviation = 0.013 Å) carries three substituents, viz. a benzyl­amino group, a meth­oxy­phenyl ring and a carbo­nitrile group. The N atom of the carbo­nitrile group is significantly displaced [by 0.2247 (1) Å] from the plane of the pyridine ring, probably due to steric crowding involving the adjacent substituents. The phenyl and benzene rings are inclined to one another by 58.91 (7)° and to the pyridine ring by 76.68 (7) and 49.80 (6)°, respectively. In the crystal, inversion dimers linked by pairs of N—H⋯Nnitrile hydrogen bonds generate R 2 2(14) loops. The dimers are linked by C—H⋯π and slipped parallel π–π inter­actions [centroid–centroid distance = 3.6532 (3) Å] into a three-dimensional structure.

Chemical context  

The pyridine nucleus is prevalent in numerous natural products and extremely important in the chemistry of bio­log­ical systems (Bringmann et al., 2004). 3-Cyano­pyridine or pyridine-3-carbo­nitrile derivatives attract particular attention for their wide-spectrum biological activity along with their importance and utility as inter­mediates in the preparation of a variety of heterocyclic compounds (Shishoo et al., 1983; Doe et al., 1990). 3-Cyano­pyridines with different alkyl and ar­yl/heteroaryl groups have been found to have a number of biological properties including anti­tubercular, anti­microbial, anti­cancer, A2A adenosine receptor antagonists (Mantri et al., 2008), anti­hypertensive (Krauze et al., 1985), anti­histaminic (Quintela et al., 1997), anti-inflammatory, analgesic and anti­pyretic (Manna et al., 1999) properties. Our inter­est in the preparation of pharmacologically active 3-cyano­pyridines led us to synthesise the title compound and the X-ray crystal structure determination was undertaken in order to establish its conformation.graphic file with name e-70-00525-scheme1.jpg

Structural commentary  

The mol­ecular structure of the title compound is shown in Fig. 1. The pyridine ring is connected to a benzene ring by a –CH2—NH2– chain. The cyclo­heptane ring adopts a chair conformation with puckering parameters Q2 = 0.4634 (15) Å, ϕ2 = 304.24 (18)° and Q3 = 0.6481 (16) Å and ϕ3 = 284.37 (12)°. The phenyl (C22–C27) and benzene (C31–C36) rings are inclined to one another by 58.91 (7)° and to the pyridine (N3/C2–C6) ring by 76.68 (7) and 49.80 (6)°, respectively. The N atom of the carbo­nitrile group, N1, is significantly displaced by 0.2247 (1) Å from the plane of the pyridine ring, perhaps due to steric crowding. The shortening of the C—N distance [C5—N3 = 1.3390 (14) Å] and the opening of the N3—C5—C4 angle to 124.47 (10)° may be attributed to the size of the substituent at C1, and correlates well with the values observed in a similar structure (Çelik et al., 2013). There is conjugation between the donor (NH) and the acceptor (CN) groups via the C2—C6 bond. Thus the C6—N2 distance of 1.3502 (14) Å is shorter than the average conjugated C—N single bond, 1.370 (1) Å, found in the Cambridge Structural Database (Version 5.35; Groom & Allen, 2014). Steric hindrances rotate the benzene ring out of the plane of the central pyridine ring by 49.80 (6)°. This twist may be due to the non-bonded inter­actions between one of the ortho H atoms of the benzene ring and atom H7B of the cyclo­heptane ring. As a result of the π–π conjugation of atom O1, the O1—C34 bond length of 1.3618 (15) Å is significantly shorter than the O1—C37 distance of 1.410 (2) Å. An enlarge­ment of bond angle [C33—C34—O1 = 124.34 (13)°] on one side and a narrowing of bond angle [C35—C34—O1 = 116.29 (12)°] on the other side of the benzene ring may be due to the steric repulsion between the aromatic rings and the methyl group, as found in a similar structure (Tokuno et al., 1986).

Figure 1.

Figure 1

The mol­ecular structure of the title compound, showing the atom labelling. Displacement ellipsoids are drawn at the 50% probability level.

Supra­molecular features  

In the crystal, mol­ecules are linked via pairs of N—H⋯Nnitrile inter­actions, forming inversion dimers which enclose Inline graphic(14) ring motifs. The dimers are connected through weak C—H⋯π inter­actions involving the CN group as acceptor (Table 1). They are further connected by slipped parallel π–π stacking inter­actions involving the pyridine rings of inversion-related mol­ecules [Cg1⋯Cg1i = 3.6532 (7), normal distance = 3.5920 (5), slippage = 0.667 Å; Cg1 is the centroid of the N3/C2–C6 ring; symmetry code: (i) −x + 1, −y + 1, −z + 1], as shown in Fig. 2.

Table 1. Hydrogen-bond geometry (, ).

Cg1 is the centroid of pyridine ring N3/C2C6.

DHA DH HA D A DHA
N2H2N1i 0.86 2.28 3.0168(15) 145
C35H35Cg1ii 0.93 2.99 3.5559(14) 121

Symmetry codes: (i) Inline graphic; (ii) Inline graphic.

Figure 2.

Figure 2

Partial packing diagram for the title compound, viewed along the c axis. Dashed lines represent inter­molecular hydrogen bonds and C—H⋯π contacts (see Table 1 for details; H atoms not involved in hydrogen bonding have been omitted for clarity).

Database survey  

In the title compound, the chair conformation of the cyclo­octane ring and the planar conformation of the pyridine are similar to those found in the related structure 2-(4-bromo­phen­yl)-4-(4-meth­oxy­phen­yl)-6,7,8,9-tetra­hydro-5H-cyclohepta­[b]pyridine (Çelik et al., 2013). However, the C6—N2H and C1 N1 groups whose presence in the title compound allows the formation of N—H⋯N hydrogen bonds, are not present in the above-cited compound. In the title compound, C—C bonds involving atom C2, which is substituted by the C1 N1 group [C2—C3 = 1.4024 (15) and C2—C6 = 1.4076 (16) Å] are systematically longer than those found in the related structure [1.392 (4) and 1.378 (4) Å, respectively]. In the title compound, steric hindrance rotates the 4-meth­oxy­phenyl ring (C31–C36) and the phenyl ring (C22–C27), which are inclined to the plane of the central pyridine ring by 49.80 (6) and 76.68 (7)°, respectively. In the related structure (Çelik et al., 2013), the 4-bromo­phenyl ring is almost coplanar with the pyridine ring, making a dihedral angle of 8.27 (16)° while the 4-meth­oxy­phenyl ring is inclined to the pyridine ring by 58.63 (15)°, compared with 49.80 (6)° in the title compound.

Synthesis and crystallization  

A mixture of cyclo­hepta­none (1 mmol), 4-meth­oxy aldehyde (1 mmol) and malono­nitrile (1 mmol) and benzyl­amine (1mmol) was taken in ethanol (10 ml) to which p-TSA (1.0 mmol) was added. The reaction mixture was heated under reflux for 2–3 h. On completion of the reaction, checked by thin-layer chromatography (TLC), the mixture was poured into crushed ice and extracted with ethyl acetate. The excess solvent was removed under vacuum and the residue was subjected to column chromatography using petroleum ether/ethyl acetate mixture (97:3 v/v) as eluent to afford pure product. The product was recrystallized from ethyl acetate, affording colourless crystals of the title compound. (m.p. 415 K; yield 75%).

Refinement  

Crystal data, data collection and structure refinement details are summarized in Table 2. The NH and C-bound H atoms were placed in calculated positions and allowed to ride on their carrier atoms: N—H = 0.86 and C—H = 0.93–0.97 Å, with U iso(H) = 1.5U eq(C) for methyl H atoms and 1.2U eq(N,C) for other H atoms. The DELU restraint was applied.

Table 2. Experimental details.

Crystal data
Chemical formula C25H25N3O
M r 383.48
Crystal system, space group Triclinic, P Inline graphic
Temperature (K) 293
a, b, c () 8.8509(2), 9.6364(3), 12.9090(4)
, , () 72.779(2), 81.033(1), 76.457(1)
V (3) 1017.97(5)
Z 2
Radiation type Mo K
(mm1) 0.08
Crystal size (mm) 0.21 0.19 0.18
 
Data collection
Diffractometer Bruker Kappa APEXII
Absorption correction Multi-scan (SADABS; Bruker, 2004)
T min, T max 0.967, 0.974
No. of measured, independent and observed [I > 2(I)] reflections 22986, 3798, 3177
R int 0.023
(sin /)max (1) 0.606
 
Refinement
R[F 2 > 2(F 2)], wR(F 2), S 0.035, 0.096, 1.05
No. of reflections 3798
No. of parameters 263
No. of restraints 1
H-atom treatment H-atom parameters constrained
max, min (e 3) 0.14, 0.13

Computer programs: APEX2 and SAINT (Bruker, 2004), SHELXS97 and SHELXL2014 (Sheldrick, 2008) and PLATON (Spek, 2009).

Supplementary Material

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814024878/su5014sup1.cif

e-70-00525-sup1.cif (866.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024878/su5014Isup2.hkl

e-70-00525-Isup2.hkl (208.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024878/su5014Isup3.cml

CCDC reference: 1033842

Additional supporting information: crystallographic information; 3D view; checkCIF report

Acknowledgments

JS and RAN thank the management of The Madura College (Autonomous), Madurai, for their encouragement and support. RRK thanks the University Grants Commission, New Delhi, for funding through Major Research Project F. No. 42–242/2013 (SR).

supplementary crystallographic information

Crystal data

C25H25N3O Z = 2
Mr = 383.48 F(000) = 408
Triclinic, P1 Dx = 1.251 Mg m3
a = 8.8509 (2) Å Mo Kα radiation, λ = 0.71073 Å
b = 9.6364 (3) Å Cell parameters from 2000 reflections
c = 12.9090 (4) Å θ = 2–31°
α = 72.779 (2)° µ = 0.08 mm1
β = 81.033 (1)° T = 293 K
γ = 76.457 (1)° Block, colourless
V = 1017.97 (5) Å3 0.21 × 0.19 × 0.18 mm

Data collection

Bruker Kappa APEXII diffractometer 3177 reflections with I > 2σ(I)
Radiation source: fine-focus sealed tube Rint = 0.023
φ & ω scans θmax = 25.5°, θmin = 2.3°
Absorption correction: multi-scan (SADABS; Bruker, 2004) h = −10→10
Tmin = 0.967, Tmax = 0.974 k = −11→11
22986 measured reflections l = −15→15
3798 independent reflections

Refinement

Refinement on F2 Hydrogen site location: inferred from neighbouring sites
Least-squares matrix: full H-atom parameters constrained
R[F2 > 2σ(F2)] = 0.035 w = 1/[σ2(Fo2) + (0.0427P)2 + 0.190P] where P = (Fo2 + 2Fc2)/3
wR(F2) = 0.096 (Δ/σ)max < 0.001
S = 1.05 Δρmax = 0.14 e Å3
3798 reflections Δρmin = −0.13 e Å3
263 parameters Extinction correction: SHELXL2014 (Sheldrick, 2008), Fc*=kFc[1+0.001xFc2λ3/sin(2θ)]-1/4
1 restraint Extinction coefficient: 0.028 (3)

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (Å2)

x y z Uiso*/Ueq
C1 0.22942 (13) 0.36297 (13) 0.46578 (10) 0.0409 (3)
C2 0.36435 (12) 0.33965 (12) 0.52093 (9) 0.0347 (3)
C3 0.51117 (12) 0.26601 (11) 0.48631 (9) 0.0339 (3)
C4 0.63263 (12) 0.23924 (12) 0.55100 (9) 0.0365 (3)
C5 0.60042 (13) 0.28670 (12) 0.64557 (10) 0.0375 (3)
C6 0.34347 (13) 0.38756 (12) 0.61609 (9) 0.0356 (3)
C7 0.79452 (13) 0.15737 (14) 0.52501 (11) 0.0445 (3)
H7A 0.8695 0.2157 0.5264 0.053*
H7B 0.8032 0.1463 0.4519 0.053*
C8 0.83483 (15) 0.00402 (15) 0.60507 (12) 0.0528 (3)
H8A 0.7422 −0.0390 0.6253 0.063*
H8B 0.9128 −0.0595 0.5689 0.063*
C9 0.89589 (17) 0.00700 (17) 0.70713 (13) 0.0653 (4)
H9A 0.9892 0.0490 0.6864 0.078*
H9B 0.9259 −0.0942 0.7509 0.078*
C10 0.78190 (17) 0.09421 (16) 0.77684 (12) 0.0589 (4)
H10A 0.8313 0.0874 0.8406 0.071*
H10B 0.6919 0.0477 0.8018 0.071*
C11 0.72484 (15) 0.25800 (14) 0.72061 (11) 0.0495 (3)
H11A 0.6845 0.3103 0.7759 0.059*
H11B 0.8132 0.2987 0.6791 0.059*
C21 0.16754 (15) 0.51651 (14) 0.74336 (11) 0.0471 (3)
H21A 0.1077 0.6172 0.7243 0.057*
H21B 0.2642 0.5190 0.7687 0.057*
C22 0.07695 (14) 0.42293 (14) 0.83428 (10) 0.0438 (3)
C23 −0.06616 (17) 0.48310 (19) 0.87858 (13) 0.0618 (4)
H23 −0.1098 0.5826 0.8503 0.074*
C24 −0.1451 (2) 0.3967 (3) 0.96458 (15) 0.0812 (5)
H24 −0.2414 0.4385 0.9943 0.097*
C25 −0.0834 (2) 0.2504 (3) 1.00645 (14) 0.0873 (6)
H25 −0.1366 0.1929 1.0650 0.105*
C26 0.0576 (2) 0.1889 (2) 0.96175 (15) 0.0814 (5)
H26 0.0996 0.0888 0.9893 0.098*
C27 0.13711 (18) 0.27461 (17) 0.87634 (12) 0.0608 (4)
H27 0.2329 0.2319 0.8465 0.073*
C31 0.52942 (12) 0.22205 (12) 0.38341 (9) 0.0358 (3)
C32 0.47550 (14) 0.32373 (13) 0.29000 (10) 0.0411 (3)
H32 0.4308 0.4205 0.2920 0.049*
C33 0.48591 (15) 0.28606 (14) 0.19354 (10) 0.0464 (3)
H33 0.4488 0.3569 0.1317 0.056*
C34 0.55151 (14) 0.14306 (15) 0.18936 (11) 0.0457 (3)
C35 0.60779 (15) 0.03992 (14) 0.28153 (11) 0.0494 (3)
H35 0.6533 −0.0565 0.2790 0.059*
C36 0.59703 (14) 0.07863 (13) 0.37677 (10) 0.0432 (3)
H36 0.6356 0.0078 0.4382 0.052*
C37 0.4929 (2) 0.1922 (2) 0.00758 (13) 0.0789 (5)
H37A 0.5107 0.1452 −0.0505 0.118*
H37B 0.3827 0.2179 0.0267 0.118*
H37C 0.5360 0.2803 −0.0158 0.118*
N1 0.11429 (13) 0.38506 (15) 0.42880 (11) 0.0609 (3)
N2 0.20363 (12) 0.46344 (12) 0.64721 (8) 0.0466 (3)
H2 0.1297 0.4817 0.6061 0.056*
N3 0.46071 (11) 0.35839 (10) 0.67815 (8) 0.0389 (2)
O1 0.56525 (13) 0.09400 (12) 0.09900 (8) 0.0639 (3)

Atomic displacement parameters (Å2)

U11 U22 U33 U12 U13 U23
C1 0.0330 (6) 0.0428 (7) 0.0465 (7) −0.0009 (5) −0.0026 (5) −0.0170 (5)
C2 0.0319 (5) 0.0311 (5) 0.0385 (6) −0.0031 (4) −0.0034 (4) −0.0082 (5)
C3 0.0323 (6) 0.0271 (5) 0.0391 (6) −0.0052 (4) −0.0001 (5) −0.0062 (4)
C4 0.0305 (6) 0.0319 (6) 0.0435 (7) −0.0044 (4) −0.0015 (5) −0.0070 (5)
C5 0.0348 (6) 0.0307 (6) 0.0449 (7) −0.0055 (5) −0.0063 (5) −0.0068 (5)
C6 0.0329 (6) 0.0307 (6) 0.0392 (6) −0.0025 (4) −0.0018 (5) −0.0072 (5)
C7 0.0293 (6) 0.0477 (7) 0.0522 (7) −0.0033 (5) −0.0003 (5) −0.0122 (6)
C8 0.0375 (7) 0.0459 (7) 0.0657 (9) 0.0053 (5) −0.0003 (6) −0.0139 (6)
C9 0.0504 (8) 0.0565 (9) 0.0750 (10) 0.0083 (7) −0.0177 (7) −0.0054 (8)
C10 0.0580 (8) 0.0564 (8) 0.0558 (9) 0.0014 (7) −0.0214 (7) −0.0070 (7)
C11 0.0437 (7) 0.0491 (7) 0.0576 (8) −0.0049 (6) −0.0165 (6) −0.0147 (6)
C21 0.0447 (7) 0.0457 (7) 0.0514 (8) −0.0041 (5) 0.0035 (6) −0.0218 (6)
C22 0.0416 (6) 0.0521 (7) 0.0424 (7) −0.0079 (5) −0.0061 (5) −0.0198 (6)
C23 0.0473 (8) 0.0730 (10) 0.0633 (9) −0.0085 (7) 0.0044 (7) −0.0234 (8)
C24 0.0555 (9) 0.1198 (17) 0.0688 (11) −0.0296 (10) 0.0128 (8) −0.0266 (11)
C25 0.0843 (13) 0.1211 (17) 0.0583 (10) −0.0573 (13) −0.0036 (9) 0.0001 (11)
C26 0.0897 (13) 0.0735 (11) 0.0731 (11) −0.0277 (10) −0.0196 (10) 0.0070 (9)
C27 0.0603 (9) 0.0583 (9) 0.0593 (9) −0.0069 (7) −0.0090 (7) −0.0114 (7)
C31 0.0298 (5) 0.0352 (6) 0.0416 (6) −0.0066 (4) 0.0021 (5) −0.0121 (5)
C32 0.0416 (6) 0.0363 (6) 0.0458 (7) −0.0043 (5) −0.0034 (5) −0.0146 (5)
C33 0.0480 (7) 0.0489 (7) 0.0423 (7) −0.0089 (6) −0.0038 (5) −0.0133 (6)
C34 0.0421 (7) 0.0531 (7) 0.0489 (7) −0.0151 (6) 0.0079 (5) −0.0262 (6)
C35 0.0503 (7) 0.0394 (7) 0.0584 (8) −0.0057 (5) 0.0074 (6) −0.0219 (6)
C36 0.0415 (6) 0.0364 (6) 0.0475 (7) −0.0043 (5) 0.0033 (5) −0.0117 (5)
C37 0.0974 (13) 0.0970 (13) 0.0560 (10) −0.0224 (11) −0.0081 (9) −0.0384 (10)
N1 0.0385 (6) 0.0780 (9) 0.0695 (8) 0.0018 (6) −0.0126 (6) −0.0316 (7)
N2 0.0364 (5) 0.0562 (6) 0.0435 (6) 0.0055 (5) −0.0036 (4) −0.0196 (5)
N3 0.0380 (5) 0.0348 (5) 0.0433 (6) −0.0025 (4) −0.0067 (4) −0.0119 (4)
O1 0.0726 (7) 0.0731 (7) 0.0567 (6) −0.0153 (5) 0.0037 (5) −0.0381 (5)

Geometric parameters (Å, º)

C1—N1 1.1407 (16) C21—H21B 0.9700
C1—C2 1.4242 (16) C22—C23 1.3763 (19)
C2—C3 1.4024 (15) C22—C27 1.377 (2)
C2—C6 1.4076 (16) C23—C24 1.377 (2)
C3—C4 1.3935 (16) C23—H23 0.9300
C3—C31 1.4848 (16) C24—C25 1.363 (3)
C4—C5 1.3935 (17) C24—H24 0.9300
C4—C7 1.5052 (15) C25—C26 1.368 (3)
C5—N3 1.3390 (14) C25—H25 0.9300
C5—C11 1.5029 (16) C26—C27 1.373 (2)
C6—N3 1.3367 (15) C26—H26 0.9300
C6—N2 1.3502 (14) C27—H27 0.9300
C7—C8 1.5307 (17) C31—C32 1.3794 (17)
C7—H7A 0.9700 C31—C36 1.3936 (16)
C7—H7B 0.9700 C32—C33 1.3809 (17)
C8—C9 1.510 (2) C32—H32 0.9300
C8—H8A 0.9700 C33—C34 1.3778 (18)
C8—H8B 0.9700 C33—H33 0.9300
C9—C10 1.517 (2) C34—O1 1.3618 (15)
C9—H9A 0.9700 C34—C35 1.3800 (19)
C9—H9B 0.9700 C35—C36 1.3704 (18)
C10—C11 1.5283 (18) C35—H35 0.9300
C10—H10A 0.9700 C36—H36 0.9300
C10—H10B 0.9700 C37—O1 1.410 (2)
C11—H11A 0.9700 C37—H37A 0.9600
C11—H11B 0.9700 C37—H37B 0.9600
C21—N2 1.4422 (16) C37—H37C 0.9600
C21—C22 1.5007 (18) N2—H2 0.8600
C21—H21A 0.9700
N1—C1—C2 174.35 (13) C22—C21—H21B 108.9
C3—C2—C6 120.54 (10) H21A—C21—H21B 107.7
C3—C2—C1 122.31 (10) C23—C22—C27 118.53 (13)
C6—C2—C1 117.08 (10) C23—C22—C21 121.14 (12)
C4—C3—C2 117.51 (10) C27—C22—C21 120.32 (12)
C4—C3—C31 123.69 (10) C22—C23—C24 120.32 (16)
C2—C3—C31 118.80 (10) C22—C23—H23 119.8
C3—C4—C5 118.10 (10) C24—C23—H23 119.8
C3—C4—C7 122.90 (11) C25—C24—C23 120.59 (17)
C5—C4—C7 118.97 (10) C25—C24—H24 119.7
N3—C5—C4 124.47 (10) C23—C24—H24 119.7
N3—C5—C11 114.61 (11) C24—C25—C26 119.55 (16)
C4—C5—C11 120.92 (10) C24—C25—H25 120.2
N3—C6—N2 118.40 (10) C26—C25—H25 120.2
N3—C6—C2 121.02 (10) C25—C26—C27 120.14 (17)
N2—C6—C2 120.58 (10) C25—C26—H26 119.9
C4—C7—C8 112.62 (10) C27—C26—H26 119.9
C4—C7—H7A 109.1 C26—C27—C22 120.86 (15)
C8—C7—H7A 109.1 C26—C27—H27 119.6
C4—C7—H7B 109.1 C22—C27—H27 119.6
C8—C7—H7B 109.1 C32—C31—C36 117.32 (11)
H7A—C7—H7B 107.8 C32—C31—C3 120.14 (10)
C9—C8—C7 113.46 (12) C36—C31—C3 122.52 (11)
C9—C8—H8A 108.9 C31—C32—C33 121.92 (11)
C7—C8—H8A 108.9 C31—C32—H32 119.0
C9—C8—H8B 108.9 C33—C32—H32 119.0
C7—C8—H8B 108.9 C34—C33—C32 119.68 (12)
H8A—C8—H8B 107.7 C34—C33—H33 120.2
C8—C9—C10 115.00 (11) C32—C33—H33 120.2
C8—C9—H9A 108.5 O1—C34—C33 124.34 (13)
C10—C9—H9A 108.5 O1—C34—C35 116.29 (12)
C8—C9—H9B 108.5 C33—C34—C35 119.38 (12)
C10—C9—H9B 108.5 C36—C35—C34 120.43 (11)
H9A—C9—H9B 107.5 C36—C35—H35 119.8
C9—C10—C11 115.37 (13) C34—C35—H35 119.8
C9—C10—H10A 108.4 C35—C36—C31 121.27 (12)
C11—C10—H10A 108.4 C35—C36—H36 119.4
C9—C10—H10B 108.4 C31—C36—H36 119.4
C11—C10—H10B 108.4 O1—C37—H37A 109.5
H10A—C10—H10B 107.5 O1—C37—H37B 109.5
C5—C11—C10 114.29 (11) H37A—C37—H37B 109.5
C5—C11—H11A 108.7 O1—C37—H37C 109.5
C10—C11—H11A 108.7 H37A—C37—H37C 109.5
C5—C11—H11B 108.7 H37B—C37—H37C 109.5
C10—C11—H11B 108.7 C6—N2—C21 125.66 (11)
H11A—C11—H11B 107.6 C6—N2—H2 117.2
N2—C21—C22 113.29 (10) C21—N2—H2 117.2
N2—C21—H21A 108.9 C6—N3—C5 118.31 (10)
C22—C21—H21A 108.9 C34—O1—C37 117.32 (12)
N2—C21—H21B 108.9
C6—C2—C3—C4 1.68 (15) C23—C24—C25—C26 −0.7 (3)
C1—C2—C3—C4 −175.20 (10) C24—C25—C26—C27 0.9 (3)
C6—C2—C3—C31 −177.87 (10) C25—C26—C27—C22 −0.1 (3)
C1—C2—C3—C31 5.26 (16) C23—C22—C27—C26 −1.1 (2)
C2—C3—C4—C5 0.20 (15) C21—C22—C27—C26 177.95 (14)
C31—C3—C4—C5 179.73 (10) C4—C3—C31—C32 −130.14 (12)
C2—C3—C4—C7 178.13 (10) C2—C3—C31—C32 49.38 (14)
C31—C3—C4—C7 −2.35 (17) C4—C3—C31—C36 51.31 (16)
C3—C4—C5—N3 −0.95 (17) C2—C3—C31—C36 −129.17 (12)
C7—C4—C5—N3 −178.96 (10) C36—C31—C32—C33 0.64 (17)
C3—C4—C5—C11 178.41 (10) C3—C31—C32—C33 −177.98 (10)
C7—C4—C5—C11 0.40 (16) C31—C32—C33—C34 0.14 (19)
C3—C2—C6—N3 −3.01 (16) C32—C33—C34—O1 178.99 (11)
C1—C2—C6—N3 174.02 (10) C32—C33—C34—C35 −0.84 (18)
C3—C2—C6—N2 177.46 (10) O1—C34—C35—C36 −179.08 (11)
C1—C2—C6—N2 −5.51 (16) C33—C34—C35—C36 0.76 (19)
C3—C4—C7—C8 −109.94 (13) C34—C35—C36—C31 0.04 (19)
C5—C4—C7—C8 67.96 (14) C32—C31—C36—C35 −0.73 (17)
C4—C7—C8—C9 −84.84 (14) C3—C31—C36—C35 177.86 (11)
C7—C8—C9—C10 62.48 (17) N3—C6—N2—C21 −0.36 (18)
C8—C9—C10—C11 −59.44 (18) C2—C6—N2—C21 179.18 (11)
N3—C5—C11—C10 113.46 (13) C22—C21—N2—C6 −102.67 (14)
C4—C5—C11—C10 −65.96 (16) N2—C6—N3—C5 −178.20 (10)
C9—C10—C11—C5 78.27 (16) C2—C6—N3—C5 2.26 (16)
N2—C21—C22—C23 −122.40 (13) C4—C5—N3—C6 −0.30 (16)
N2—C21—C22—C27 58.62 (16) C11—C5—N3—C6 −179.69 (10)
C27—C22—C23—C24 1.3 (2) C33—C34—O1—C37 −6.89 (19)
C21—C22—C23—C24 −177.67 (14) C35—C34—O1—C37 172.95 (13)
C22—C23—C24—C25 −0.5 (3)

Hydrogen-bond geometry (Å, º)

Cg1 is the centroid of pyridine ring N3/C2–C6.

D—H···A D—H H···A D···A D—H···A
N2—H2···N1i 0.86 2.28 3.0168 (15) 145
C35—H35···Cg1ii 0.93 2.99 3.5559 (14) 121

Symmetry codes: (i) −x, −y+1, −z+1; (ii) −x+1, −y, −z+1.

References

  1. Bringmann, G., Reichert, Y. & Kane, V. V. (2004). Tetrahedron, 60, 3539–3574.
  2. Bruker (2004). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
  3. Çelik, Í., Akkurt, M., Gezegen, H. & Kazak, C. (2013). Acta Cryst. E69, o956. [DOI] [PMC free article] [PubMed]
  4. Doe, K., Avasthi, K., Pratap, R., Bakuni, D. S. & Joshi, M. N. (1990). Indian J. Chem. Sect. B, 29, 459–463.
  5. Groom, C. R. & Allen, F. H. (2014). Angew. Chem. Int. Ed. 53, 662–671. [DOI] [PubMed]
  6. Krauze, A., Vitolina, R., Zarins, G., Pelcers, J., Kalme, Z., Kimenis, A. & Duburs, G. (1985). Khim. Farm. Zh. 19, 540–545.
  7. Manna, F., Chimenti, F., Bolasco, A., Bizzarri, B., Filippelli, W., Filippelli, A. & Gagliardi, L. (1999). Eur. J. Med. Chem. 34, 245–254.
  8. Mantri, M., de Graaf, O., van Veldhoven, J., Göblyös, A., von Frijtag Drabbe Künzel, J. K., Mulder-Krieger, T., Link, R., de Vries, H., Beukers, M. W., Brussee, J. & IJzerman, A. P. (2008). J. Med. Chem. 51, 4449–4455. [DOI] [PubMed]
  9. Quintela, J. M., Peinador, C., Botana, L., Estévez, M. & Riguera, R. (1997). Bioorg. Med. Chem. 5, 1543–1553. [DOI] [PubMed]
  10. Sheldrick, G. M. (2008). Acta Cryst. A64, 112–122. [DOI] [PubMed]
  11. Shishoo, C. J., Devani, M. B., Bhadti, V. S., Ananthan, S. & Ullas, G. V. (1983). Tetrahedron Lett. 24, 4611–4612.
  12. Spek, A. L. (2009). Acta Cryst. D65, 148–155. [DOI] [PMC free article] [PubMed]
  13. Tokuno, K., Matsui, M., Miyoshi, F., Asao, Y., Ohashi, T. & Kihara, K. (1986). Acta Cryst. C42, 85–88.

Associated Data

This section collects any data citations, data availability statements, or supplementary materials included in this article.

Supplementary Materials

Crystal structure: contains datablock(s) global, I. DOI: 10.1107/S1600536814024878/su5014sup1.cif

e-70-00525-sup1.cif (866.7KB, cif)

Structure factors: contains datablock(s) I. DOI: 10.1107/S1600536814024878/su5014Isup2.hkl

e-70-00525-Isup2.hkl (208.4KB, hkl)

Supporting information file. DOI: 10.1107/S1600536814024878/su5014Isup3.cml

CCDC reference: 1033842

Additional supporting information: crystallographic information; 3D view; checkCIF report


Articles from Acta Crystallographica Section E: Structure Reports Online are provided here courtesy of International Union of Crystallography

RESOURCES