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Abstract

Amblyomin-X is a Kunitz-type recombinant protein identified from the transcriptome

of the salivary glands of the tick Amblyomma cajennense and has anti-coagulant

and antitumoral activity. The supposed primary target of this molecule is the

proteasome system. Herein, we elucidated intracellular events that are triggered by

Amblyomin-X treatment in an attempt to provide new insight into how this serine

protease inhibitor, acting on the proteasome, could be comparable with known

proteasome inhibitors. The collective results showed aggresome formation after

proteasome inhibition that appeared to occur via the non-exclusive ubiquitin

pathway. Additionally, Amblyomin-X increased the expression of various chains of

the molecular motor dynein in tumor cells, modulated specific ubiquitin linkage

signaling and inhibited autophagy activation by modulating mTOR, LC3 and

AMBRA1 with probable dynein involvement. Interestingly, one possible role for

dynein in the mechanism of action of Amblyomin-X was in the apoptotic response

and its crosstalk with autophagy, which involved the factor Bim; however, we

observed no changes in the apoptotic response related to dynein in the

experiments performed. The characteristics shared among Amblyomin-X and

known proteasome inhibitors included NF-kB blockage and nascent polypeptide-

dependent aggresome formation. Therefore, our study describes a Kunitz-type

protein that acts on the proteasome to trigger distinct intracellular events compared

to classic known proteasome inhibitors that are small-cell-permeable molecules. In

investigating the experiments and literature on Amblyomin-X and the known

proteasome inhibitors, we also found differences in the structures of the molecules,

intracellular events, dynein involvement and tumor cell type effects. These findings

also reveal a possible new target for Amblyomin-X, i.e., dynein, and may serve as a

tool for investigating tumor cell death associated with proteasome inhibition.
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Introduction

Tumor cells exhibit several processes to maintain tumor mass as well as tumor cell

proliferation, survival and metastasis capacity. These properties include the

activation and inhibition of many different signaling pathways, such as death

receptor suppression [1], nuclear factor-kappa B (NF-kB) activation [2], growth

receptor signaling induction [3], procoagulant stimulation [4] and enhanced

proteasomal activity [5, 6]. The ubiquitin-proteasome system (UPS) has emerged

as a potential target for new chemotherapeutic agents [7]. The proteasome system

has arisen as an important target due to its function in regulating a large number

of cellular processes, such as the cell cycle [8] and the proteolysis of components

of the NF-kB pathway [9].

The proteasome is a protein complex that is responsible for targeting major

intracellular proteins for degradation [10]. However, the proteins targeted for

degradation are marked with ubiquitin molecules by a series of specific enzyme

reactions that involve one of ubiquitin’s seven specific exposed lysine (K) residues;

these residues are recognized by the proteasome [10]. One example is the K48

linkage of polyubiquitin, which targets protein substrates for UPS clearance [11].

Through K63 linkage, ubiquitin plays a role in aggresome formation, autophagy,

endosomal trafficking, NF-kB signaling and DNA repair [11]. Thus, the cell has a

specialized protein clearance flow that, in proteasome inhibition, induces the

formation of protein aggregates that are organized into dynamic structures,

aggresomes [11], that then activate autophagy [12]. High-molecular-weight

protein aggregates can be excluded from the cell via this mechanism [12].

To eliminate the cytotoxic aggresomes after proteasome inhibition, these

protein structures must be transported to a perinuclear region called the

Microtubule Organizing Center (MTOC) by a molecular motor called dynein

[12]. In the MTOC, the aggresomes are vesiculated by microtubule associated

protein 1 light chain 3B (LC3B)-positive autophagosome membranes and fused

with lysosomes for clearance via autophagy [13, 14]. There are two pathways in

which dynein can transport aggresomes: (i) exclusive K63-polyubiquitinated

protein aggregates linked to histone deacetylase 6 (HDAC6) [15] or (ii) the non-

exclusive polyubiquitinated proteins mediated by the transfer of substrate from

the chaperone heat shock protein 70 kDa (Hsp70) to BCl2-associated athanogene

3 (Bag3) [16]. Furthermore, despite its function in aggresome formation, dynein

cytoplasmic 1 is the most abundant form among dyneins and is found in nearly all

cells. Dynein cytoplasmic 1 is composed of one dimerized heavy chain (HC1), two

intermediate chains (IC1 and IC2), two light-intermediate chains (LIC1 and

LIC2) and six light chains (LC8-1, LC8-2, TcTex1, TcTex3, Roadblock1 and

Roadblock2), which are all encoded by different genes [17]. This motor protein

plays important roles beyond aggresome pathway function, for example in the
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transport of endosomes [18], autophagosomes and lysosomes [19, 20] and in the

translocation of NF-kB dimer to the nucleus [21].

In this context, our group has been developing an antitumor molecule called

Amblyomin-X (Ambly) [22]. The recombinant protein is a 15 kDa Kunitz-type

serine protease inhibitor protein derived from a cDNA library construction of the

salivary glands of the tick Amblyomma cajennense that has anti-coagulant

properties [22, 23]. This molecule’s Kunitz-type domain is similar to that of the

endogenous tissue factor pathway inhibitor (TFPI) [22] and can reduce tumor

growth and metastasis in vivo [23]. This protein also showed pro-apoptotic effects

in tumor cells [23, 24, 25]. Another interesting aspect of the recombinant protein

was its ability to upregulate the gene and protein expression of the dynein LIC2

chain in a microarray analysis and to preferentially inhibit the trypsin-like activity

of the proteasome in tumor cells [24].

This study was intended to investigate common intracellular events linked to

the supposed main target of Amblyomin-X (the proteasome) in the microenvir-

onment of two different tumor cells: (i) human melanoma (SK-MEL-28) and (ii)

human pancreas adenocarcinoma (MIA PaCa-2). Amblyomin-X exerted pro-

apoptotic effects in both [24]. Some effects of Amblyomin-X were induced

through its action on the proteasome; these effects were distinct from those of

known proteasome inhibitors, as demonstrated by investigating intracellular

protein quality control and dynein transport functions. However, some of the

functions of Amblyomin-X related to aggresome formation and NF-kB function

are shared by known proteasome inhibitors.

This study provides new insights into the molecular mechanism of action of

Amblyomin-X, which is a promising candidate to treat tumor malignances. Our

data provide points of comparison between this protein, which primarily acts in

the proteasome, and known proteasome inhibitors that are small-cell-permeable

molecules. This study also supports the utility of this multifaceted protein by

investigating new strategies to enhance pharmacological effects in malignant cells.

Materials and Methods

Amblyomin-X preparation

The recombinant molecule was obtained as described elsewhere [22].

Cell Culture

The MIA PaCa-2 and SK-MEL-28 human tumor cell lines were purchased from

American Type Culture Collection (ATCC) and cultured as reported elsewhere

[24].

Antibodies

The following antibodies were used in this work: primary antibodies to b-actin,

NFKB1, LC3B, and LIC2 and secondary antibody conjugated to horseradish
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peroxidase (HRP) (Abcam, Cambridge, UK); primary antibodies to HC1, LC8-1/

2, mTOR, AMBRA1 and Bim (Santa Cruz Biotechnology Inc., Santa Cruz, CA);

primary antibody to GAPDH (Sigma, St Louis, MO); K48-FITC and K63-Alexa

Fluor 647 conjugated antibodies (Merck Millipore, Darmstadt, Germany);

secondary antibodies to FITC, Alexa Fluor 647, Alexa Fluor 533 and Alexa Fluor

488, isotype control IgG1 conjugated with Alexa Fluor 647 and isotype control

IgG1 conjugated with FITC were also purchased from Invitrogen Life

Technologies Inc., USA.

Cell viability assay

The 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay

was used to measure the viability of AmblyominX-treated and non-treated cells

and positive controls as described elsewhere [24].

Gene expression

Gene expression was evaluated via quantitative real-time polymerase chain

reaction (qPCR) using specific validated primers designed by the Primer Express

3.0 software (Applied Biosystems, Foster City, CA, USA) after the alignment of all

isoforms to each target when needed.

The cells were cultured and treated, and the total RNA was extracted using an

RNeasy Mini kit (Qiagen N.V. Netherlands) and quantified using a Nanodrop

2000 spectrophotometer (Thermo Scientific, USA). RNA integrity was verified via

separation in a 2% agarose gel with 106 3-(N-morpholino) propanesulfonic acid

(MOPS), diethylpyrocarbonate (DPEC)-treated water and 37% formaldehyde and

visualized using etidium bromide (1 mg/mL). Next, the RNA was treated with

DNase I Amplification Grade kit (Invitrogen Life Technologies Inc., USA) and

then used in first-strand cDNA synthesis via SuperScript III First-Strand Synthesis

kit (Invitrogen Life Technologies Inc.). The cDNA was used in a SYBR green-

based reaction with SYBR green Master Mix kit (Applied Biosystems, Foster City,

CA, USA) in a Step One Plus thermal cycler (Applied Biosystems, Foster City, CA,

USA). RNA levels were normalized to glyceraldehyde 3-phosphate dehydrogenase

(GAPDH) and quantified using the Pfaffl method [26]. The melting curve was

also verified for each target and negative control.

No positive controls, such as proteasome inhibitors, were used here due to the

lack of information regarding their action on the gene expression of dynein chains

and other targets related to intracellular protein quality control. The analysis

compared Amblyomin-X-treated with non-treated cells.

Western blotting analysis

Protein concentrations in whole-cell lysates were quantified via bicinchoninic acid

(BCA) assay using a Pierce Microplate BCA Protein Assay kit (Thermo Scientific,

USA). Protein expression was verified via separation in 7.5% (HC1), 10% (LIC2,

mTOR, AMBRA1, b-actin and NFKB1) or 12.5% SDS-polyacrylamide gels (LC3,
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LC8-1/2 and Bim). The proteins were transferred to a polyvinylidene fluoride

(PVDF) membrane. The samples were blocked with 5% bovine serum albumin

(BSA) in tris-buffered saline with tween 20 (TBS-T) for 1 h and then incubated

with the respective primary antibodies using GAPDH as an endogenous control

followed by HRP secondary antibody incubation. Proteins were revealed via

chemiluminescence with a homemade recipe (Tris 1.5 M pH 8.9, p-coumaric acid

20 mM, luminol 125 mM and hydrogen peroxide 30% in water).

Western blotting images were captured using an ImageQuant LAS 4000 (GE

Healthcare, USA) and minimally processed (equally for all samples) using

Windows Live software for Windows7 (Microsoft, Redmond, WA, USA). No

positive controls, such as proteasome inhibitors, were used in the protein

expression analysis due to the lack of information regarding their action on

dynein. The analysis compared Amblyomin-X-treated with non-treated cells. The

positive controls used for other targets were MG-132 and rapamycin (only for

mTOR, AMBRA1 and LC3).

Aggresome assay

Aggresome formation was visualized via fluorescence microscopy under an

Olympus BX51 microscope with an Olympus XM10 camera (Olympus, Japan)

and quantified via flow cytometry using a BD FACSCanto II cytometer (BD

Biosciences, San Jose, CA, USA) following the instructions of the ProteoStat

Aggresome Detection kit (Enzo Life Science Inc., Farmingdale, NY, USA).

According to the commercial kit used, aggresome formation is declared when the

arbitrary units exceed by 25 units, such as the provided proteasome inhibitor,

MG-132 do.

Aggresomes were characterized using transmission electron microscopy. The

cells were cultured in 25 cm2 flasks and collected with a scraper following drug

incubation. The cells were gently harvested and fixed with 2.5% glutaraldehyde for

3 h at room temperature followed by 4 C̊. The samples were then postfixed with

1% osmium tetroxide for 2 h at 4 C̊. The cells were stained with 2% aqueous

uranyl acetate for 2 h at 4 C̊ in the dark, dehydrated through a series of acetone

and propylene oxide and then embedded in epoxy resin with methanol (1:1). The

resin was sectioned, and the samples were analyzed in an LEO 906 E transmission

electron microscopy (Zeiss, Germany) and photographed with a Mega View III

camera (Zeiss, Germany) with ITEM Olympus Soft Imaging Solutions software.

MG-132 was used as the positive control.

Aggresome signaling was analyzed by quantifying intracellular HDAC6 and

Bag3 protein concentration via enzyme-linked immuno sorbent assay (ELISA)

with HDAC6 ELISA and Bag3 ELISA kits (USCN Life Science Inc., Wuhan,

China) according to the manufacturer’s instructions. No positive controls, such as

proteasome inhibitors, were used due to the lack of information regarding their

action at these protein levels. The analysis compared Amblyomin-X-treated and

non-treated cells.
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Autophagy assay

Immunofluorescence was measured using a specific antibody to LC3B-positive

autophagosome vesicles. Cells were grown on sterile coverslips and fixed with 4%

paraformaldehyde for 15 min at room temperature, washed and permeabilized

with 0.5% Triton X-100/0.6% EDTA 0.5 M pH 8.0 for 15 min at room

temperature. The samples were blocked with 1% BSA for 30 min at room

temperature and then incubated with primary antibody overnight at 4 C̊. The cells

were then incubated with secondary antibody for 1 h at room temperature in the

dark, and the coverslips were removed from the plate and mounted on glass slides

with one drop of Vecta Shield anti-fade reagent (Vecta Labs, Burlingame, CA,

USA). Western blotting was also employed to verify LC3 conversion (I to II) as

described above. The secondary antibody was tested alone to verify that it did not

autofluoresce. MG-132 and rapamycin were used as positive controls.

An acidic vesicle assay was also employed. This method was based on non-

specific acridine orange stain, which exhibits bright green fluorescence in the

cytoplasm and nucleus and bright red fluorescence in acidic vesicles, such as

lysosomes. The cells were grown on coverslips and incubated with acridine orange

(1 mg/mL) in the dark for 15 min at room temperature and then fixed with 4%

paraformaldehyde for 20 min in the dark at room temperature. The coverslips

were mounted in the same manner, and the samples were analyzed under a Zeiss

LSMS10 fluorescence microscope (Zeiss, Germany) under 488 nm laser irradia-

tion and acquired using Zeiss LSMS10 3.2.1 software (Zeiss, Germany). MG-132

and rapamycin were used as positive controls.

Ubiquitin signaling

The cells were cultured and collected in cytometer tubes with trypsin/EDTA

(0.25%/0.53 M) and incubated in 4% paraformaldehyde for 30 min on ice. The

samples were then washed and ressuspended in permeabilizing solution (0.5%

Triton-X 100/0.6% EDTA 0.5 M pH8.0) and incubated for 30 min on ice. The

samples were washed and incubated with anti-K48 or anti-K63 antibody for

45 min on ice and then analyzed in a FACS Cantho II flow cytometer (BD

Biosciences, San Jose, CA, USA) using FACS Diva 6.3.1 software (BD Biosciences).

The data were analyzed in FlowJo (Trestar, CA, USA), and graph bars were

constructed based on the mean fluorescence intensity obtained from histograms.

No positive controls, such as proteasome inhibitors, were used due to the lack of

information regarding their action at these ubiquitin levels. The analysis

compared Amblyomin-X-treated and non-treated cells.

Confocal microscopy

Cells were grown on sterile coverslips, fixed with 4% paraformaldehyde for

15 min at room temperature, washed and permeabilized with 0.5% Triton X-100/

0.6% EDTA 0.5 M pH 8.0 for 15 min at room temperature. The samples were

blocked with 1% BSA for 30 min at room temperature and then incubated with
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primary antibodies overnight at 4 C̊. The cells were then incubated with secondary

antibodies for 1 h at room temperature in the dark, and the coverslips were

removed from the plate and mounted in glass slides with one drop of Vecta Shield

anti-fade reagent (Vecta Labs, Burlingame, CA, USA). The images were analyzed

with a Zeiss LSMS 510 confocal microscope (Zeiss, Germany) and LSM Image

software (Zeiss, Germany). No positive controls, such as proteasome inhibitors,

were used due to the lack of information regarding their action on dynein-target

interaction. The analysis compared Amblyomin-X-treated and non-treated cells.

The secondary antibodies were verified to lack autofluorescence.

Statistical analysis

Inference studies were carried out using two-way ANOVA analysis followed by

Bonferroni’s post-hoc test in GraphPad Prism 5.0 software (GraphPad Software

Inc., San Diego, CA). Statistical significance was set at p#0.05.

Results

Amblyomin-X induces different gene expression of dynein and

targets related to protein quality control between tumor cell lines

To explore other dynein-related changes beyond the gene overexpression of the

dynein LIC2 chain observed via microarray analysis [24], we investigated other

dynein chains using qPCR. In SK-MEL-28 cells, only dynein LIC2 and LC8-2 and

two components of a dynein regulator, dynactin (p150Glued and dynamitin)

[27, 30], could be assessed using this method due to a constitutively low

amplification of the other chains (Fig. 1A, 1B and 1C). We observed increased

mRNA expression of LIC2 after 4 h and increased LIC2, LC8-2 and p150Glued

after 24 h of Amblyomin-X treatment (Fig. 1B and 1C). In MIA PaCa-2 cells, the

only chain that we could not analyze was Roadblock2 (Fig. 1A, 1B and 1C). In

this cell type, we observed an increased mRNA expression of some chains after 2 h

and 4 h (Fig. 1A and 1B) and most of the chains after 24 h of Amblyomin-X

treatment (Fig. 1C); however, no changes were observed in dynactin components

after any treatment duration (Fig. 1A, 1B and 1C). The amount of cDNA

template was increased in the targets with low amplification; however, this

increase was not sufficient to calculate the mRNA levels (or the GAPDH curve was

displaced too far to the left), thus making the gene expression calculation

impossible (data not shown).

We next examined the mRNA levels of targets related to intracellular protein

quality control: the chaperone Hsp70, which is involved in the non-exclusive

ubiquitin aggresome formation pathway [28]; the E2-conjugating K63-specific

enzyme Ubc13 [29]; and the mitogen-activated protein kinase (MAPK) MEKK1,

which is involved in aggresome particle recruitment without requiring its kinase

function [11]. The most abundant subunit of the transcription factor NF-kB

(NFKB1) acts as a dimer (primarily with the RelA subunit) [31]. The proteasome
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inhibitors already described, reduce the transcriptional function of the NF-kB

[32]. Therefore, NFKB1 was also analyzed to evaluate NF-kB activity in

Amblyomin-X-treated cells. Finally, b-actin was used as a target because

preliminary tests revealed mRNA changes in the tumor cell lines after

Amblyomin-X treatment (data not shown).

The qPCR analysis showed that neither MEKK1 nor NFKB1 could be assessed

using this method in SK-MEL-28 cells (Fig. 1D). However, b-actin and Ubc13

were upregulated in this cell line, especially after 24 h of Amblyomin-X treatment

(Fig. 1D). Hsp70 and Ubc13 were changed after 2 h (Fig. 1D). In MIA PaCa-2

cells, only Ubc13 and NFKB1 were increased, especially after 24 h of treatment

with the recombinant protein (Fig. 1D). Ubc13 was upregulated starting at 2 h (

Fig. 1D).

Figure 1. Gene expression of dynein and targets related to intracellular protein quality control induced by Amblyomin-X. qPCR analysis of dynein
chains and two chains of dynactin (p150Glued and dynamitin) with Ambly induction (A) 2 h, (B) 4 h and (C) 24 h. qPCR analysis of targets related to
intracellular protein quality control with Ambly induction (D) for 2 h, 4 h and 24 h. Cultured cells were treated with vehicle (phosphate buffered saline, PBS)
or 0.5 mM Ambly for 2 h, 4 h or 24 h. The results were calculated related to the control (vehicle) and are expressed as the means ¡ standard error of fold
increase over control (considered as 1) in arbitrary units. Three independent experiments were performed. The criteria and representation of statistical
significance were set as *p#0.05, **p#0.01, ***p#0.001 or ns (non-significant).

doi:10.1371/journal.pone.0111907.g001
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Dynein, NFKB1 and b-actin protein expression changes induced

by Amblyomin-X

Next, we investigated protein expression levels via a western blotting analysis of

dynein. Three chains were analyzed: (i) HC1, as this protein is the ATP-dependent

molecular motor that anchors the intermediate and light intermediate chains [20];

(ii) LIC2, which was overexpressed in microarray analysis [24] and in qPCR

experiments; and (iii) LC8-1 and LC8-2 because we observed changes in LC8-2

mRNA in both tumor cell lines and in LC8-1 mRNA in MIA PaCa-2 cells

(Fig. 1A, 1B and 1C). The NFKB1 subunit of the NF-kB transcription factor and

b-actin were also evaluated.

Both tumor cell lines treated with Amblyomin-X showed increased HC1 after

2 h, 4 h and 24 h (Fig. 2A and 2B). Additionally, LIC2 was preferentially

overexpressed after 4 h and 24 h (Fig. 2A and 2B) and LC8-1/2 after 2 h, 4 h and

24 h (Fig. 2A and 2B).

Interestingly, although we could not quantify NFKB1 gene expression in SK-

MEL-28 cells via qPCR (Fig. 1D), the two tumor cell lines treated with

Amblyomin-X showed a block in the proteolysis of the NFKB1 subunit p105 after

24 h of treatment (Fig. 2C).

Amblyomin-X treatment in MIA PaCa-2 cells also showed increased NFKB1

subunit protein expression after 4 h and 24 h reflecting a block of the proteolysis

of p105 into active p50 (Fig. 2D).

Finally, we noticed that in SK-MEL-28 cells, b-actin slightly increased after 24 h

of Amblyomin-X treatment (Fig. 2C), which was not observed in MIA PaCa-2

cells (Fig. 2D).

Aggresome formation induced by Amblyomin-X after proteasome

inhibition

In previous studies, our group demonstrated the inhibition of both the trypsin-

and chymotrypsin-like activities of the proteasome in MIA PaCa-2 and SK-MEL-

28 cells after 24 h of Amblyomin-X treatment [24]. Thus, in this work, we aimed

to visualize and quantify the aggresome formation induced by Amblyomin-X

alone and by inhibiting protein synthesis with cycloheximide (CHX) [33]. We also

used a known proteasome inhibitor, MG-132, as a positive control because

proteasome inhibitors are expected to induce aggresome formation [11].

Our data showed aggresome formation after proteasome inhibition induced by

the recombinant protein treatment in both tumor cells lines (Fig. 3A and 3B).

Aggresome formation was also blocked when the cells were pretreated with CHX (

Fig. 3A and 3B). Cell viability was decreased in both tumor cell lines only when

treated with Amblyomin-X alone or with MG-132 (Fig. 3C).

Using transmission electron microscopy, we next characterized the type of

aggresomes that formed. Aggresomes occur in two forms: spherical and ribbon-

like [11]. Both types can be composed of different substrates, such as

multispanning transmembrane proteins, secretory proteins and cytosolic proteins

[11]. The structure varies depending on the aggregating substrate and the cell type
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[11]. Our results showed that Amblyomin-X induced spherical-type aggresome

formation in MIA PaCa-2 cells (Fig. 4A), and ribbon-type formation in SK-Mel-

28 cells (Fig. 4A) as did MG-132 (Fig. 4A).

To investigate which pathway of aggresome formation is involved in the

Amblyomin-X mechanism of action, we assessed the intracellular protein levels of

both HDAC6 and Bag3 using ELISA. HDAC6 did not change after Amblyomin-X

treatment (Fig. 4B), but Bag3 increased; this occurred in both tumor cell lines

(Fig. 4C).

Ubiquitin profile and autophagy dysfunction induced by

Amblyomin-X

Amblyomin-X induces the accumulation of polyubiquitinated proteins after

proteasome inhibition [24]. Due to the results of linkage studies on ubiquitin K48

and K63 (which associated aggresome formation with other cell aspects), we

performed a flow cytometry analysis using specific conjugated antibodies against

polyubiquitinated K48 and K63 to identify the polyubiquitin profile after

Amblyomin-X treatment.

The K48 profile did not change in either tumor cell line after treatment with the

recombinant molecule (Fig. 5A). Interestingly, both tumor cell types treated with

Amblyomin-X had increased polyubiquitinated K63 proteins (Fig. 5A).

Proteasome inhibitors are expected to induce autophagy [32]; thus, our next

investigation was performed in three steps. First, we performed immunofluor-

escence experiments labeling LC3 with a specific antibody and secondary FITC

antibody to verify autophagic membrane formation. This can be visualized via

Figure 2. Protein expression of dynein, NFKB1 and b-actin induced by Amblyomin-X. Representative western blots of whole-cell lysates of (A) dynein
chains in SK-MEL-28 cells, (B) dynein chains in MIA PaCa-2 cells, (C) NFKB1 and b-actin in SK-MEL-28 cells and (D) NFKB1 and b-actin in MIA PaCa-2
cells. Cultured cells were treated with vehicle (PBS), 0.5 mM Ambly for 2 h, 4 h or 24 h or 5 mM MG-132 (NFKB1 and b-actin). Images are representative of
three independent experiments.

doi:10.1371/journal.pone.0111907.g002
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diffuse fluorescence throughout the cytoplasm. The findings revealed that

Amblyomin-X did not induce diffuse fluorescence in either of the tumor cell lines

even after 48 h of treatment (Fig. 5B). The same as observed with the positive

controls [the proteasome inhibitor MG-132 and the inhibitor of mTOR

rapamycin] [41] (Fig. 5B).

The second assay was performed to analyze the autophagy pathway. Autophagy

vesicles are acidic [34]; we verified the formation of acidic vesicles using acridine

orange. This is a non-specific compound that becomes protonated in acidic

vesicles, to form aggregates that exhibit bright red fluorescence, whereas the

cytoplasm and nucleus show dominant green fluorescence [34]. The results

showed that Amblyomin-X did not induce an increase in red-labeled acidic

Figure 3. Aggresome formation induced by Amblyomin-X. Cultured cells were treated with vehicle (PBS), 0.5 mM Ambly for 24 h, 5 mMMG-132 for 24 h,
3.5 mM CHX for 2 h or 0.5 mM Ambly for 24 h after pretreatment with 3.5 mM CHX for 2 h (CHX/Ambly). (A) Fluorescence microscopy analysis of
aggresomes. Aggresomes were labeled with a commercial kit in red and nuclei were stained with Hoechst 33342 in blue. Images are representative of five
fields from each experiment (n53). (B) Mean fluorescence intensity obtained from histograms of flow cytometry analysis of aggresomes. Results are
reported as the means ¡ standard error of agressome propensity factor (APF) in arbitrary units calculated according to the manufacturer’s instructions.
Three independent experiments were performed. The criteria and representation of statistical significance were set as *p#0.05, **p#0.01, ***p#0.001 or ns
(non-significant). (C) Cell viability assay of tumor cells treated with the compounds used in the aggresome analysis. Results are reported as the means ¡

standard error of three independent experiments. The criteria and representation of statistical significance were set as *p#0.05, **p#0.01, ***p#0.001 or ns
(non-significant).

doi:10.1371/journal.pone.0111907.g003
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vesicles in either of the cell lines analyzed (in contrast to the positive controls)

even at 48 h and 72 h after Amblyomin-X treatment (Fig. 5C). Interestingly, both

of the cell lines that were pretreated with rapamycin and then treated with

Amblyomin-X acidic vesicle normalization (Fig. 5C).

We also performed a cell viability assay, which showed decreased viability in

both tumor cell lines when treated with Amblyomin-X (24 h, 48 h and 72 h),

MG-132, rapamycin and rapamycin/Ambly (Fig. 5D). Our data showed no

differences in cell viability between treatment with rapamycin and rapamycin/

Ambly (Fig. 5D).

To confirm these results, we used a western blotting analysis of LC3 to verify

the conversion of LC3-I into LC3-II, which would indicate autophagic membrane

formation [13, 14]. The recombinant protein could not induce conversion of the

molecule after 24 h of treatment in either of the cell lines studied (in contrast to

the positive control). (Fig. 6A and 6B).

Because mammalian target of rapamycin (mTOR) works as a negative regulator

of autophagy [42], we decided to evaluate its protein expression. We observed that

Amblyomin-X induced the overexpression of mTOR after 2 h, 4 h and 24 h of

treatment (Fig. 6A and 6B). We also measured activating molecule in Beclin-1-

Figure 4. Characterization of aggresomes induced by Amblyomin-X. (A) Transmission electron microscopy analysis. Cultured cells were treated with
vehicle (PBS), 0.5 mM Ambly for 24 h or 5 mM MG-132 for 24 h. Formed aggresomes are indicated by red arrows. Images are representative of five fields
from each experiment (n53). Quantification of (B) HDAC6 and (C) Bag3 via ELISA. Cultured cells were treated with vehicle (PBS) or 0.5 mM Ambly for 24 h.
Results are reported as the means ¡ standard error of three independent experiments. The criteria and representation of statistical significance were set as
*p#0.05, **p#0.01, ***p#0.001 or ns (non-significant).

doi:10.1371/journal.pone.0111907.g004
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regulated autophagy (AMBRA1). This target is an activator of autophagy but is

inactive when bound to dynein [38, 43]. Interestingly, Amblyomin-X decreased

protein expression of AMBRA1 after 2 h, 4 h and 24 h of treatment in both cell

lines (Fig. 6A and 6B).

We finally investigated the pro-apoptotic factor Bcl-2-like protein 11 (Bim),

which is inactive when bound to dynein [38, 43] and can act as an inhibitor of

Figure 5. K-linkage profile and visualization of autophagy steps in the mechanism of action of Amblyomin-X. (A) Mean fluorescence intensity
obtained from histograms of flow cytometry analysis of K48 and K63 linkage. Cultured cells were treated with vehicle (PBS) or 0.5 mM Ambly for 24 h.
Results are expressed as the means ¡ standard error in arbitrary units of three independent experiments. The criteria and representation of statistical
significance were set as *p#0.05, **p#0.01, ***p#0.001 or ns (non-significant). (B) Immunofluorescence analysis of autophagic membrane formation.
Cultured cells were treated with vehicle (PBS), 5 mM MG-132 for 24 h, 0.2 mM rapamycin for 16 h or 0.5 mM Ambly for 24 h or 48 h. LC3 was stained with
FITC and is represented in diffused green fluorescence in the cytoplasm, while the nucleus was stained with DAPI and is represented in blue. Images are
representative of five fields from each experiment (n53). (C) Fluorescence microscopy analysis using acridine orange stain. Cultured cells were treated with
vehicle (PBS), 5 mM MG-132 for 24 h, 0.2 mM rapamycin for 16 h, 0.5 mM Ambly for 24 h pretreated with 0.2 mM rapamycin for 16 h (rapa/Ambly) or 0.5 mM
Ambly for 24 h, 48 h or 72 h. Bright red fluorescence indicates acidic vesicles, while green fluorescence indicates the cytoplasm and nucleus. White arrows
indicate the zoomed area located in the upper right position of the image. Images are representative of five fields from each experiment (n53). (D) Cell
viability assay of tumor cells treated with the compounds used in autophagy visualization. Results are reported as the means ¡ standard error of three
independent experiments. The criteria and representation of statistical significance were set as *p#0.05, **p#0.01, ***p#0.001 or ns (non-significant).

doi:10.1371/journal.pone.0111907.g005
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autophagy by recruiting coiled-coil myosin-like BCL-2 interacting protein

(Beclin-1) and consequently AMBRA1 to dynein [39, 45]. We observed that

Amblyomin-X induced no changes in the protein expression of this target in

either tumor cell line (Fig. 6C and 6D).

Our next step was to investigate the co-localization of dynein chains to those

targets. First, we analyzed the HC1/mTOR interaction because dynein participates

in mTOR co-localization [44]; we observed an increased co-localization of the

targets in both tumor cell lines (Fig. 6E). Second, the interaction between LC8-1/2

and AMBRA1 was also investigated; we found that Amblyomin-X induced the co-

localization of these two proteins only in MIA PaCa-2 cells (Fig. 6F). Finally, we

analyzed the interaction between LC8-1/2 and Bim and observed no changes in

their localization in either tumor cell line (Fig. 6G).

Figure 6. Relationship between autophagy marker expression and dynein in the mechanism of action of Amblyomin-X. Representative western
blots of whole-cell lysates of cultured cells treated with vehicle (PBS), 0.5 mM Ambly for 2 h, 4 h or 24 h, 5 mM MG-132 for 24 h or 0.2 mM rapamycin for
16 h. Images are representative of three independent experiments containing the autophagic markers (mTOR, AMBRA1, LC3-I and LC3-II) in A) SK-MEL-
28 cells and (B) MIA PaCa-2 cells and (C) autophagic/apoptosis marker (Bim) in SK-MEL-28 cells and (D) MIA PaCa-2 cells. Confocal microscopy analysis
of cultured cells treated with vehicle (PBS) or 0.5 mM Ambly for 24 h. The final overlay image represents five fields of three independent experiments in
which (E) the red fluorescence represents HC1, while the green fluorescence represents mTOR and the merging of the two is in yellow; or (F) the red
fluorescence represents LC8-1/2, while the green fluorescence represents AMBRA1 (originally, the yellow fluorescence was artificially colored by the
microscope software) and the merging of the two is in yellow; or (G) the red fluorescence represents LC8-1/2, while the green fluorescence represents Bim
and the merging of the two is in yellow.

doi:10.1371/journal.pone.0111907.g006

Dynein and Protein Flow in Amblyomin-X Mechanism

PLOS ONE | DOI:10.1371/journal.pone.0111907 December 5, 2014 14 / 20



Discussion

This study describes a novel Kunitz-type protein of approximately 15 kDa [22]

that primarily acts on proteasomes. Amblyomin-X exhibits some features that

differentiate this protein from other known proteasome inhibitors. We previously

described its action in a variety of tumor cells [23, 24, 25]. Amblyomin-X inhibits

proteasome activity as early as 4 h and for as long as 24 h, primarily by inhibiting

the trypsin-like activity of the proteasome [24]. The proteasome inhibitors

described preferentially inhibit chymotrypsin-like activity [7, 46] and are all small

molecules or peptides [32]; thus, they pass directly through the plasma

membranes of cells. Bortezomib [35] and carlfizomib [36], which are approved by

the U.S Food and Drug Administration (FDA), are not involved with any

specialized uptake mechanism by the cell or a special recognition by the tumor cell

membrane. Amblyomin-X uptake by tumor cells and the involvement of dynein

are under investigation. Amblyomin-X is a relatively large protein; thus, the

current hypothesis is that this protein may require a specialized uptake

mechanism such as endocytosis.

Proteasome inhibitors, such as carlfizomib, exhibit a selectivity strictly related

to their action on the catalytic subunit of the proteasome [7]; thus, they do not act

on other proteases as bortezomib does [46]. In addition to this, proteasome

inhibitor use is limited to therapies for multiple myeloma and blood malignancies

[7, 46]. In this study, we explored a new molecule that acts on the proteasome in

two tumor cell lines representing solid tumors (SK-MEL-28 and MIA PaCa-2).

We previously reported the pro-apoptotic effects of Amblyomin-X in both cell

lines [24].

In this context, we investigated the intracellular events that could be used to

distinguish Amblyomin-X from other compounds that target the UPS.

Interestingly, the recombinant protein presence in the tumor cell microenviron-

ment appears to trigger a signal transduction that leads to an increased gene

expression profile of particular dynein chains that showed some differences

between the tumor cell lines studied. Some analyzed targets could not be

quantified using qPCR, especially in SK-MEL-28 cells, possibly because of the

presence of a great number of alternative splicing mRNA variants in these cells;

tumor cells produce many mutant proteins [37]. Another hypothesis is that the

pair of primers did not target the sequence site most suited to properly access the

amplification of the target. However, the primers were validated with good

efficiency, the RNA sample quality was verified via agarose gel electrophoresis and

PCRs were performed with endogenous controls. Some genes of interest may not

be constitutively expressed at a high level in a specific cell type due to the

increased cDNA sample and similar test results (data not shown).

The ATP-dependent HC1 motor chain of dynein is responsible for the

movement of this complex and the transportation of cargoes along microtubules

to their destinations [20]. Although HC1 gene expression could not be measured

in SK-MEL-28 cells after Amblyomin-X treatment, both tumor cell types

displayed an increased protein expression of this motor chain. In addition to this,
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LIC2 and LC8-1/2 protein expression were increased after Amblyomin-X

induction.

Proteasome inhibition leads to aggresome formation [11] and requires dynein

function because this molecular motor transports aggresomes [11]. Additionally,

K63 signaling encompasses aggresome formation, autophagy activation, endo-

some trafficking, NF-kB and DNA repair signaling [11]. The data from this study

showed increased gene and protein expressions of dynein chains in addition to

increased K63 linkage, suggesting a possible role for dynein in other cellular

functions in the Amblyomin-X mechanism of action beyond the expected

transport of aggresomes.

Dynein is also a binding partner of the main heterodimer of NF-kB (NFKB1

(p105/p50)/RelA (p65)) [21]. In the tumor cells studied, Amblyomin-X blocked

NFKB1 cleavage after proteasome inhibition, suggesting the inhibition of the NF-

kB complex; thus, dynein function could not be related to its translocation to the

nucleus. The last finding is also present in proteasome inhibitors such as

bortezomib [32].

We found that Amblyomin-X possibly induced aggresome formation via the

non-exclusive ubiquitin pathway because Bag3 levels were increased. This is in

contrast to other proteasome inhibitors that form aggresomes through the

exclusive ubiquitin pathway [32]. Additionally, aggresomes were formed in a

nascent polypeptide-dependent manner after the recombinant protein induction;

this could be concluded because CHX pretreatment abolished the aggresome

formation induced by Amblyomin-X. The explanation for this involves the

reduction of proteasome cargo by inhibiting protein synthesis on ribosomes to a

level that is not sufficient to form aggresomes, as previously reported [40]. This

result also occurs with proteasome inhibitors such as bortezomib [40].

Moreover, transmission electron microscopy revealed spherical-type aggresome

formation in MIA PaCa-2 cells and ribbon-type aggresome formation in SK-

MEL-28 cells. The two aggresome types can be composed of different substrates,

such as multispanning transmembrane proteins, secretory proteins and cytosolic

proteins. The structure varies depending on the aggregating proteins and the cell

type [11]. The melanoma cell line (SK-MEL-28) represents malignant cells derived

from melanocytes localized in the epithelial tissue of skin. The pancreas

adenocarcinoma cell line (MIA PaCa-2) represents malignant cells localized in the

pancreas, a gland of the digestive and endocrine systems. We hypothesize that the

aggresomes that formed in MIA PaCa-2 cells had secretory proteins because these

proteins are related to pancreas function. These proteins could represent a

relevant factor in the formation of the spherical-type (as opposed to ribbon-type

aggresomes) in this cell line.

Surprisingly, aggresomes were not cleared by autophagy, as is expected for a

proteasome inhibitor [32]. The conversion of LC3-I into LC3-II was not observed,

which could lead to an enhanced activity of the recombinant protein.

Furthermore, we did not observe increased acidic vesicle formation or autophagic

vacuoles after Amblyomin-X treatment, indicating no increased formation of late

endosomes or lysosomes. Additionally, pretreatment with rapamycin followed by
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Amblyomin-X returned acidic vesicles to basal levels, possibly indicating a

possible role for mTOR in the inhibition of autophagy activation. To test this

hypothesis, we measured mTOR and its co-localization with HC1, once dynein

was reported to transports mTOR to perform its function [44]. Indeed,

Amblyomin-X induced the overexpression of mTOR, which co-localized with

dynein.

The light chains LC8-1 and LC8-2 of dynein can function with or without being

coupled to the molecular motor complex [38, 43]. LC8-2, in particular can be

involved in apoptosis [38, 43] or autophagy [39, 45]. The increases observed in the

mRNA and protein levels of LC8-2 induced by Amblyomin-X in tumor cells

together with the decreased expression of AMBRA1 and its co-localization with

dynein chains only in MIA PaCa-2 cells suggest that AMBRA1 could be

sequestered to LC8-2 to become inactive. Although the co-localization of both

targets did not occur in SK-MEL-28 cells, the decreased AMBRA1 suggests that

Amblyomin-X inhibited autophagy activation. The pro-apoptotic factor Bim,

which can participate in both apoptosis and autophagy (assisted by dynein)

[38, 39, 43, 45] appears to perform none of these biological functions in this

mechanism of action and thus does not influence the inhibition of autophagy

activation or the programmed cell death triggered by the recombinant protein in

the studied tumor cells.

This work demonstrated that Amblyomin-X induces a series of intracellular

events that are cytotoxic for tumor cells and lead to tumor cell death. The events

observed by the presence of Amblyomin-X in tumor cells differentiate this

molecule from other proteasome inhibitors. These differences rely on the

following: (i) Amblyomin-X appears to inhibit the proteasome and to inhibit

autophagy activation, thus influencing more than one target and then enhancing

the therapeutic potential of the molecule; (ii) Amblyomin-X appears to be a non-

cell-permeable molecule; (iii) Amblyomin-X is a protein and not a small

molecule; (iv) Amblyomin-X induces aggresome formation possibly via the non-

exclusive ubiquitin pathway; (v) Amblyomin-X requires dynein involvement and

altered gene and protein expression; (vi) Amblyomin-X preferentially inhibits the

trypsin-like activity of the proteasome. These findings provide new insights into

the molecular mechanism of action of Amblyomin-X, suggesting dynein as a

possible new target. The recombinant protein is a promising molecular entity to

treat malignant tumors and does not act as a classic proteasome inhibitor because

it can affect more than one target.
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