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[1] To better inform the subsurface scientist on the expected performance of parallel
simulators, this work investigates performance of the reactive multiphase flow and
multicomponent biogeochemical transport code PFLOTRAN as it is applied to several
realistic modeling scenarios run on the Jaguar supercomputer. After a brief introduction to
the code’s parallel layout and code design, PFLOTRAN’s parallel performance (measured
through strong and weak scalability analyses) is evaluated in the context of conceptual
model layout, software and algorithmic design, and known hardware limitations.
PFLOTRAN scales well (with regard to strong scaling) for three realistic problem
scenarios: (1) in situ leaching of copper from a mineral ore deposit within a 5-spot flow
regime, (2) transient flow and solute transport within a regional doublet, and (3) a real-
world problem involving uranium surface complexation within a heterogeneous and
extremely dynamic variably saturated flow field. Weak scalability is discussed in detail for
the regional doublet problem, and several difficulties with its interpretation are noted.
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1. Introduction

[2] Barry [1990] wrote on the application of supercom-
puting to simulating subsurface solute transport, referring
to a computer revolution and proposing that supercomput-
ing lay on this revolutionary path. Barry characterized
supercomputers (which were primarily vector-based at the
time) and discussed the state of the art in theory of fluid
flow and solute transport, solution techniques (numerical
methods), data analysis, and visualization. He concluded
the paper asserting that ‘‘[supercomputers’] rapidly increas-
ing use in future investigations is therefore a plausible
expectation.’’ Though perhaps intending to be prophetic,
his assertion proved somewhat overly optimistic : Over two
decades later, the use of supercomputing in subsurface sim-
ulation is far from ubiquitous.

[3] The question then arises as to why supercomputing
or high performance computing (HPC) is not employed
more regularly within subsurface simulation, especially for
modeling difficult real-world scenarios that call for increas-
ingly mechanistic process models for validation and higher
resolution discretizations for better accuracy. Certainly, a
large number of researchers have investigated the applica-
tion of HPC to subsurface simulation. Most of this research
has focused on the application of high performance com-
puting to solve hypothetical subsurface problem scenarios
[Kolditz et al., 2012; Navarre-Sitchler et al., 2013] or real-
world ones [Tompson et al., 1998; Zhang et al., 2003;
White et al., 2004, 2008; Yamamoto et al., 2009; Ham-
mond and Lichtner, 2010; Hammond et al., 2011; Nowak
et al., 2011; Yabusaki et al., 2011; Chen et al., 2012,
2013], with little to no analysis of parallel performance.
Research on the scalability of parallel subsurface simula-
tors has often focused on hypothetical scenarios or proofs
of concept [Gwo et al., 2001; Jones and Woodward, 2001;
Hammond et al., 2005; Kollet and Maxwell, 2006; Kollet
et al., 2010; Guo et al., 2013]. Hypothetical scenarios are
well-suited to weak-scaling analysis and can be very
informative, but even well-constructed hypothetical prob-
lems may omit unexpected complications that arise in real-
world problems, and they lack field data against which a
model may be validated. It is therefore desirable to evaluate
parallel simulators using real-world scenarios as well, par-
ticularly when seeking to inform on the use of simulators
for real-world problems such as environmental perform-
ance assessments [e.g., US DOE, 2013].

[4] There are several studies in the literature in which
researchers have reported on the scalability of their simula-
tors as applied to real-world scenarios. Wu et al. [2002] ana-
lyzed the performance of the parallel version of TOUGH2
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for three real-world problem scenarios run on two HPC plat-
forms (Cray T3E-900, IBM RS/6000SP). They discussed the
problem scenarios and the parallel performance in great
detail, enabling the reader to come to his or her own conclu-
sions regarding the performance of TOUGH2 (the authors of
this paper strongly recommend that the reader carefully scru-
tinize Tables 2 and 3 of that work when drawing their own
conclusions about the reported superlinear performance of
TOUGH2 (i.e. 150%)).

[5] Lu and Wheeler [2009] briefly discussed the parallel
performance of IPARS on reservoir simulations executed
on Lonestar and IBM’s Blue Gene in their research com-
paring the iterative implicit pressure explicit saturation
(IMPES) and fully implicit solution approaches for multi-
phase flow. Several scenarios modified from real-world res-
ervoirs were simulated on up to 2048 processes. Parallel
performance was reported through speedup plots with a
breakdown of total CPU time distributed between time
spent in solvers, parallel communication, initialization, and
other portions of the code presented in pie charts.

[6] The work by Kollet et al. [2010], although a proof of
concept, is quite close to real-world, and the level of detail
and analysis provided by the authors is very informative with
a breakdown of the performance of several components of
ParFlow (e.g., nonlinear function evaluation, Krylov solver,
multigrid preconditioner, setup time, etc.). Their work studied
the application of ParFlow coupled to the common land
model (CLM) for modeling regional-scale surface-subsurface
hydrologic interaction. They demonstrate the excellent weak-
scaling performance of the ParFlow solvers and multigrid
preconditioners. The inclusion of a strong-scaling analysis
would have been beneficial to the reader (as would the addi-
tion of weak-scaling analyses in any studies reporting solely
strong scaling) but overall the work by Kollet et al. [2010] is
informative to the end user. Other studies of the scalability of
subsurface simulators have been published, e.g., Gwo et al.
[2001] provides a useful breakdown on HBGC123D parallel
performance on a hypothetical problem.

[7] Designing software to effectively use HPC resources
does involve consideration of a complex interplay between
numerical algorithms, data layout, and data access patterns,
which can result in extremely complicated software. Several
projects, however, have demonstrated that it is possible to
manage this software complexity by encapsulating it using
object-oriented approaches designed around the mathematics
of the problem to be solved [Reynders et al., 1996; Brown
et al., 1997; Balay et al., 1997; Smith et al., 2012]. Some
authors have stated that such approaches are not effective:
Kolditz et al. [2012] state ‘‘the parallelization of OO [object-
oriented] codes still lacks efficiency’’ and ‘‘[HPC] efficiency
of OO codes is a subject of future research.’’ The authors of
this work speculate that such claims may be due to experien-
ces with software in which too fine a granularity of object
design has been employed, resulting in code that an optimiz-
ing compiler cannot translate into efficient machine code
due to reasons such as too much indirect memory addressing
and excessive pointer aliasing. In any case, many object-
oriented scientific codes have in fact demonstrated impres-
sive parallel efficiency [Anderson et al., 1999; Akcelik et al.,
2003; Adams et al., 2004].

[8] Besides the associated software complexity, other
concerns affecting the use of HPC are sparsity of data sets

and lack of access to (or shortcomings in the ease of use of)
high-end supercomputing resources. We contend that HPC
can be an appropriate tool even when data sets are sparse,
as coarse or simplified data sets can still be mapped to
refined discretizations. Furthermore, with a conceptual
model designed for HPC, it is possible for the researcher to
better assess data deficiencies to motivate and guide data
collection. Without doubt, the use of HPC in subsurface
simulations is not trivial as it often invokes a workflow
more complicated than running on a typical workstation
(e.g., gaining access to machines; balancing of problem
size versus process count; understanding queue structure,
scheduling policies, and runtime limits; working in tempo-
rary scratch disk space). Providing subsurface scientists
with a realistic picture of the benefits they can expect from
using HPC can assist them in evaluating whether the addi-
tional complications are worthwhile.

[9] Clearly, HPC enables the execution of larger and
increasingly complex simulations in shorter runtime. This
has been effectively demonstrated over the past several
years by research funded by the U.S. Department of Energy
Biological and Environmental Research (BER) program to
model the persistence of uranium plumes at the Hanford
300 Area [Hammond and Lichtner, 2010; Hammond et al.,
2011; Lichtner and Hammond, 2012; Chen et al., 2012,
2013] and a uranium mine tailings site in Rifle, CO [Yabu-
saki et al., 2011]. However, what is the expected perform-
ance, and how can that knowledge aid the domain scientist
in determining the suitability of HPC for their problem and
estimating the expected benefit? What are the potential
drawbacks? And what guidelines are there to follow? For
instance, it can be demonstrated that employing too many
processes can actually lead to degradation in performance
and waste valuable computing resources. For any given
problem size, there exists an optimal number of processes
to run the problem on a particular machine. This can be
found by determining the minimum number of degrees of
freedom per process that run efficiently and creating a
speedup curve as demonstrated later in section 4.3. Subsur-
face scientists must contemplate such questions and evalu-
ate the advantages/disadvantages of utilizing HPC for their
research, and these must be informed decisions.

[10] The purpose of this research is to provide a refer-
ence point for the performance of an efficient parallel,
object-oriented code for subsurface simulation on modern
HPC platforms, on both hypothetical and real-world sub-
surface problems where complexity of the natural system
comes into play.

[11] In what follows, PFLOTRAN is introduced with a
brief description of its object-oriented design and the paral-
lel numerical methods employed within the code. Parallel
performance is explained in the context of conceptual
model layout, software (algorithmic) design, and known
hardware limitations, using three realistic problem scenar-
ios. The first is geochemically dominated and simulates the
in situ leaching of copper from a mineral ore deposit within
a 5-spot flow regime. The second stresses the performance
of the code on a regional variably saturated groundwater
flow and conservative solute transport problem with a dou-
blet well configuration. The final scenario demonstrates
parallel performance on both flow and transport by simulat-
ing uranium surface complexation under extremely
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transient, variably saturated groundwater flow conditions
within the Integrated Field Research Challenge (IFRC) site
at the Hanford 300 Area. PFLOTRAN performance is ana-
lyzed for each of these scenarios with the intended goal of
providing a benchmark for the expected performance of a
parallel subsurface reactive flow and transport simulator
when using computing resources that might typically be
available to university or industry researchers (e.g., up to
16,384 processes). Although a considerable amount of
development effort has been put into enabling PFLOTRAN
to utilize petascale leadership-class supercomputing resour-
ces (work that continues as platforms evolve), our focus
here is on problems run on smaller scale, more readily
available computing platforms.

2. PFLOTRAN

[12] PFLOTRAN is a massively parallel, multiphase flow
and reactive multicomponent transport simulator. Although
written almost entirely from scratch, it originated as a paral-
lel successor to the serial FLOTRAN code [Lichtner, 2001],
incorporating parallel solvers and data structures provided
by the Portable, Extensible Toolkit for Scientific Computa-
tion (PETSc) framework [Balay et al., 2012] and templated
after the doctoral research code PARTRAN [Hammond
et al., 2005]. Through the DOE SciDAC-2 groundwater pro-
gram, PFLOTRAN was refactored to accommodate a modu-
lar object-oriented design, parallel I/O through HDF5, and
additional physicochemical process models. Active develop-
ment of the code continues to this day. PFLOTRAN is capa-
ble of leveraging petascale computing to simulate
subsurface problems composed of billions of degrees of free-
dom (dofs) utilizing hundreds of thousands of processor
cores while still being applicable to serial batch systems or
1D reactive transport using the identical executable and
source code [Mills et al., 2009; Hammond and Lichtner,
2010; Hammond et al., 2012; McInnes et al., 2013].

2.1. Open-Source Software

[13] In recent years, open-source software development
has become increasingly popular. Open-source promotes
unlimited free redistribution of source code exposing a soft-
ware product’s design and implementation details to the pub-
lic. Code developers and application scientists do not have
to reinvent the wheel. They can leverage existing software in
their own codes and/or contribute back to the original open-
source code. The approach enables peer review through a
user base and affords developers the opportunity to contrib-
ute to a collaboratory effort that leverages a diverse pool of
expertise. PFLOTRAN is open-source, developed under a
GNU Lesser General Public Licence (LGPL). The LGPL
license allows for third parties to build proprietary software
around PFLOTRAN, though any modifications to the origi-
nal code itself must be documented and remain open-source
(e.g., a third party may develop a proprietary GUI around
PFLOTRAN and sell it to the public).

[14] Release and development versions of PFLOTRAN
may be downloaded from https://bitbucket.org/pflotran.
For source code management, the PFLOTRAN project uses
Mercurial, a distributed version control tool that records
code revision through changesets. Anyone may anony-
mously clone the PFLOTRAN repository and peruse the

history of the source code using Mercurial. With a (free)
Bitbucket account, scientists may add capability to PFLO-
TRAN by (1) forking the pflotran-dev repository, (2) modi-
fying the code and documentation, (3) verifying that code
accuracy and integrity is maintained by passing tests within
a regression suite, and (4) submitting a pull request to the
administrators of the account. Software support is provided
through online documentation and a public mailing list at
pflotran-users@googlegroups.com.

2.2. Object-Oriented Design

[15] PFLOTRAN is written in free format Fortran 2003
and, where not detrimental to performance, maximizes the
use of Fortran modules, dynamic memory allocation,
derived types, pointers, linked lists, pointers to procedures
and classes (Fortran 2003 extendable derived types with
member functions and subroutines). The choice of Fortran,
as opposed to C/C11, was based primarily on the desire to
enlist and preserve domain scientist involvement in code
development and maintenance. Although less than perfect,
modern Fortran affords much of the coarse-grained object
oriented design capability [see Decyk et al., 1997 for exam-
ples] necessary to encapsulate data/processes.

[16] PFLOTRAN is composed of a hierarchy of objects
and operations ranging from the highest-level multirealiza-
tion simulation object to low-level auxiliary data structures
that support individual process models on a fine-grained
cell by cell basis. Though discussion of the complete list of
PFLOTRAN data structures and procedures would be
excessive, Figure 1 illustrates a subset of key objects and
operations critical in the completion of a simulation. Simu-
lation workflow is shown to the left starting with Initializa-
tion, while key objects (Fortran derived types) and
processes are referenced to right. Each Simulation proceeds
from Initialization to reading of Input followed by the
Timestep Loop, where Flow, Transport, and Reaction proc-
esses are simulated for each time step and Output is written
to disk either through serial text or parallel HDF5 algo-
rithms. After the Timestep Loop has completed, additional
realizations are considered (if a Multi-Realization run) and
Finalization terminates the simulation.

[17] Upon Initialization, PFLOTRAN creates a Simula-
tion object composed of Timesteppers for flow and trans-
port and a Realization. The Timestepper stores parameters
associated with time stepping (e.g., minimum/maximum/
current time step size, iteration counters) and possesses a
Solver object, which is essentially a wrapper that stores
pointers to PETSc matrices and linear/nonlinear solvers
and preconditioners and defines convergence criteria. Each
set of tightly coupled process models requires an individual
Timestepper object. Control of the nonlinear solve is
handed over to PETSc through the Solver object, where the
associated nonlinear solver (i.e., PETSc SNES) calls pro-
cess model-specific residual and Jacobian evaluation rou-
tines and relies on custom domain-specific criteria to
determine convergence.

[18] The Realization object supplies all data required to
evaluate the residual function and Jacobian, including
material properties (e.g., permeability, porosity, mineral-
ogy), functional relationships (e.g., saturation and relative
permeability functions and parameters, equations of state),
boundary conditions and constraints (e.g., pressures,
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chemical concentrations), and spatial discretization (e.g.,
structured and unstructured grids). The Realization also
stores process model-specific, fine-grained auxiliary data at
each grid cell required for function evaluations and model
output (e.g., state, water density, secondary aqueous com-
plex concentrations, reaction rates, etc.). These fine-grained
auxiliary data structures greatly simplify the source code
by encapsulating cell-centric data within a single object,
alleviating the need to continually modify lengthy argu-
ment lists within procedure declarations as process models
evolve.

[19] Note that only the Process Model routines and the
Auxiliary Data are mode specific, in that the routines and
objects must be tailored to the processes considered in the
simulation, whether they be multiphase CO2-H2O, thermo-
hydro-chemical, single-phase variably saturated ground-
water flow or reactive biogeochemical transport. The other
objects are for the most part independent of the operational
mode, and therefore much easier to maintain and reuse.
The Auxiliary Data objects which exist for each grid cell
and boundary/initial conditions and constraints can be very
complex storing a large amount of data.

2.3. Approach to Parallelization

[20] PFLOTRAN employs a distributed-memory parallel
programming model using the Message Passing Interface
(MPI) and the PETSc framework [Balay et al., 2012] to
solve subsurface scientific problems on parallel computers.
Parallelism is derived from a domain decomposition
approach, in which the spatial simulation domain is decom-

posed into nonoverlapping, contiguous subdomains, each
of which is assigned to one parallel process. Within each
subdomain, additional hybrid parallelization approaches
(e.g., shared memory pthreads, OpenMP, GPU-based
CUDA, or OpenCL) can be employed within PETSc ker-
nels [Minden et al., 2010; Abhyankar et al., 2012], but
PFLOTRAN relies primarily on domain decomposition
parallelism. When information residing on another process
is required to complete a calculation (e.g., computing a flux
term across a subdomain boundary), data are passed via
MPI messages.

[21] There are two archetypal communication patterns:
ghost point updates (or ‘‘halo exhanges’’) along bounda-
ries between nearest neighbors, and global reduction
operations required to compute vector dot products and
norms. In PFLOTRAN, ghost point updates are required
when calculating flux terms in nonlinear residual func-
tions and Jacobians and when forming matrix-vector
products (to gather off-process vector entries) inside iter-
ative linear solvers. The bulk of global reductions per-
formed are for dot product computations in Krylov
method linear solvers; they are also used for convergence
checks. Although ghost point updates involve much
larger messages, global reductions are usually the limit-
ing factor for parallel scalability [Mills et al., 2010]
when using many MPI processes, as the cost grows rela-
tively quickly with the number of processes involved in
the operation due to internode communication latency as
well as load imbalance introduced by operating system
‘‘noise’’ [Petrini et al., 2003; Oral et al., 2010].

Figure 1. Flowchart of key PFLOTRAN objects and operations.
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2.3.1. PETSc
[22] The PETSc framework supplies a suite of scalable

parallel data structures and routines for solving partial dif-
ferential equation (PDE) based scientific applications.
PETSc is mature and well established among the computa-
tional and domain science communities. It is open-source
and interfaces with many other computational frameworks
and libraries enabling the scientist to reach beyond the lim-
its of PETSc algorithms and solvers if so desired.

[23] PFLOTRAN parallelization is founded upon PETSc
data structures. PFLOTRAN’s unstructured grid implemen-
tation relies upon PETSc’s interface to graph partitioning
software such as ParMETIS [Karypis and Schloegel, 2011]
and PETSc data structures such as Index Sets, VecScatters,
LocalToGlobalMappings to create parallel vectors and mat-
rices and appropriate scatter/gather mappings between
them, while for structured grids the PETSc Distributed
Array automatically decomposes the domain and encapsu-
lates such functionality for the code developer. PFLO-
TRAN process model routines build and store nonlinear
systems of equations in these parallel vectors and matrices
and pass them to the PETSc solver to generate a solution.

[24] By default, PFLOTRAN employs an inexact New-
ton’s method without line search or other globalization
techniques—though the option exists to use any of several
such techniques—to solve the nonlinear system of equa-
tions through the PETSc Scalable Nonlinear Equations
Solver (SNES) component. The linearized system of equa-
tions within Newton’s method is solved using the stabilized
biconjugate gradient method (BCGS) and block Jacobi pre-
conditioning. The modeler may also choose alternative lin-
ear (Krylov) solvers such as conjugate gradient (CG) for
symmetric systems or generalized minimum residual
(GMRES).

[25] A wide variety of parallel preconditioners are sup-
ported (e.g., block Jacobi, additive Schwarz, hypre multi-
grid, etc.), but it is the experience of PFLOTRAN
developers that the default block Jacobi preconditioning
with point-block ILU[0] factorization in each block deliv-
ers the best strong-scaling performance for most PFLO-
TRAN simulations since the underlying matrices are
usually diagonally dominant due to the transient nature of
the subsurface problem (i.e., hyperbolic/parabolic govern-
ing equations) and the local coupling of chemical reaction.
Multilevel preconditioners such as PETSc’s new GAMG
geometric/algebraic multigrid or hypre’s algebraic Boo-
merAMG and geometric PFMG multigrid solvers [Falgout
and Yang, 2002] work well for steady-state problems (ellip-
tic equations). For small problems run in serial (e.g., 1D
reactive transport), the user may choose PETSc’s direct
solver by selecting (complete) LU factorization as the pre-
conditioner; for somewhat larger problems a parallel direct
solver such as MUMPS or SuperLU can be employed,
although iterative methods are generally preferable in
parallel.

[26] With regard to solver convergence, the experienced
modeler must have control over the types of tests employed
(e.g., L1-, L2-, or L1-norm on residual or update vectors
with relative versus absolute criteria) and the tolerances
applied. PFLOTRAN leverages PETSc’s built-in and cus-
tom convergence contexts to provide the user with a range
of convergence criteria from which to choose. The code

also supports manipulation of the update and solution vec-
tors immediately before and after the solution update to
improve convergence. For instance, the user can choose to
truncate or dampen the update to minimize oscillatory
behavior.

[27] PETSc provides significant flexibility to the user in
terms of parallel data layout, choice of solvers and precon-
ditioners, etc., and most of these options can be specified at
runtime. PETSc also includes a detailed but lightweight
scheme to enable application performance profiling [Balay
et al., 2012, chap. 12] to guide these choices. Performance
data for PETSc routines as well as application developer-
defined PFLOTRAN events are automatically logged when
PFLOTRAN is run with certain runtime options.
2.3.2. Parallel I/O

[28] PFLOTRAN supports both ASCII text or binary for-
mats for data input and output (I/O). The main PFLOTRAN
input file is written in ASCII text with links to secondary
ASCII and binary HDF5 [The HDF Group, 2012] files.
Data sets spanning multiple processes (e.g., permeability
fields) are stored in binary HDF5 and read in parallel.
PFLOTRAN output formats vary. For small to medium
sized simulations (e.g., problems composed of millions of
degrees of freedom run on less than �10,000 [10 K] proc-
esses), plot files may be written in Tecplot ASCII format
by means of a round-robin gather operation through the
root process.

[29] For all simulations, binary HDF5 files formatted for
VisIt [2005] may be written collectively from all processes
or through a two-stage I/O operation where processes are
divided into groups and one process from each group
aggregates data from all processes within the group and
writes to the HDF5 file [Sripathi, 2010]. This latter two-
stage I/O is necessary to minimize congestion when writing
data from over �10 K processes, and the user may specify
the size of the processor groups to optimize performance.
Key to PFLOTRAN’s parallel I/O performance is the use
of the HDF5 Hyperslab which allows processes to write
their respective chunks or slices of data simultaneously to a
single file.

[30] Checkpoint files are written and read using PETSc
routines that employ MPI-IO calls to read/write files in
PETSc’s internal binary format. These files store all infor-
mation necessary to restart a simulation without modifying
simulation results and are machine and process-count inde-
pendent. The purpose of checkpointing is to enable the user
to run simulations longer than supercomputer queue run-
time limits allow and to provide fault tolerance. It also ena-
bles restarting a simulation from a steady-state initial
condition and accelerates debugging when one must repeat-
edly run a large problem scenario to a point late in the sim-
ulation. Because the checkpoint files are independent of
machine configuration and process count, it is possible to
restart calculations on whatever resources may be readily
available, which can decrease queue wait times for heavily
subscribed compute resources.
2.3.3. Multirealization Capability

[31] PFLOTRAN provides the ability to run multiple
simulations simultaneously, each representing a unique set
or realization of parameters. To run in multirealization
mode, the user loads data sets for each realization into
HDF5 files with an integer ID signifying the realization
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number appended to each data set name. The user then
launches the simulation with a command similar to the
following:

[32] mpirun -np 64000 pflotran
[33] -stochastic
[34] -num_realizations 1000
[35] -num_groups 500
[36] Here 64,000 processes are employed to run a total

of 1000 realizations, 500 of which run simultaneously,
each simulation being executed by a processor group com-
posed of 128 processes (6400045005128). The keyword
stochastic instructs PFLOTRAN to run in multirealiza-
tion simulation mode. Upon launch, PFLOTRAN divides
the realization IDs among the processor groups, and each
individual processor group runs its assigned realizations in
sequential order to completion. The number of processor
groups must divide evenly into the number of processes
(np), but not the number of realizations as long as num_-
realizations � num_groups. The utility of PFLO-
TRAN’s multirealization capability is demonstrated in
Chen et al. [2012] and Chen et al. [2013], where several
tracer injection experiments at the Hanford 300 Area IFRC
site were modeled within separate data assimilation frame-
works to invert for heterogeneous permeability at the site.

3. Parallel Performance

[37] The efficiency or scalability of a parallel algorithm
measures how effectively the code divides and solves a par-
ticular problem as the number of processes is increased rel-
ative to some base performance measure. Computational
scientists typically employ strong and weak scalability
studies to evaluate performance of a parallel code. To
assess strong scalability, problem size remains fixed while
the number of processes changes. With weak scalability
(sometimes referred to as scaled speedup), problem size
changes linearly with the number of processes. In an ideal
world, the wall-clock execution time on a single process
would be an excellent metric for base performance. How-
ever, for many performance analyses, especially those
requiring thousands of processes, the test problem may not
fit on one process due to memory constraints or the single-
process runtime may be far too long for practical purposes.
Relative performance must be considered in those cases
where base performance is determined on more than a sin-
gle process. It is assumed that all performance measures in
this work are relative.

[38] With strong scalability, parallel performance can be
measured through relative speedup, the increase in speed
with which a code reaches a solution as the number of proc-
esses increases measured through a reduction in execution
time

Sp5
Tbase

Tp
(1)

where Tbase is the execution time on a base process configu-
ration with pbase processes and Tp is the runtime on an
alternative configuration with p processes. Ideal speedup is
equal to the number of processes employed in the alterna-
tive configuration divided by the number in the base case

Sp;ideal 5
p

pbase
: (2)

[39] Another measure is relative strong scaling efficiency

Ep5
Tbase � pbase

Tp � p
5

Sp

Sp;ideal
(3)

which is essentially the measured speedup divided by the
ideal speedup with ideal efficiency

Ep;ideal 51: (4)

[40] For weak scalability studies, performance is meas-
ured through relative weak scaling efficiency, which is the
ratio of base configuration execution time (Tnbase ;pbase ) to
that of an alternative configuration (Tn;p),

En;p5
Tnbase ;pbase

Tn;p
(5)

where the problem size n and number of processes p are
scaled by the same factor a (i.e., n5a � nbase and
p5a � pbase). With weak scaling, again

En;p;ideal 51: (6)

[41] For any parallel code, but especially one employing
domain decomposition parallelization, load balance plays
an important role in preserving scalability as an uneven dis-
tribution of work across processes can significantly degrade
performance [Kumar et al., 1994]. In this work, load imbal-
ance due to uneven domain decomposition is measured as

Load Imbalance 5
dofmax 2dofmin

dofmin
(7)

where dof max and dof min represent the maximum and mini-
mum number of degrees of freedom (number of grid cells
times number of unknowns per grid cell) per process
among all processes, respectively. When evenly distrib-
uted, the load imbalance approaches zero. Load imbalance
will factor in later during the analysis of the IFRC problem
scenario in section 4.3. It should be noted, however, that
this definition assumes equal algorithmic work load per
process which may not be the case (e.g., operator-split reac-
tive transport where in certain portions of the domain min-
erals are reacting faster, requiring more nonlinear iterations
and possibly smaller reaction time steps).

4. Results: PFLOTRAN Parallel Performance

[42] In this section, PFLOTRAN performance is ana-
lyzed when run on the Jaguar (Cray XK6) supercomputer
at Oak Ridge National Laboratory for several problems
representative of practical application in the field. The first
is an in situ copper leaching scenario with tight coupling of
geochemistry and transport. The second is a regional dou-
blet scenario with a downgradient undulating river stage
that measures performance on transient variably saturated
flow and solute transport. The final IFRC scenario couples
variably saturated flow with geochemical transport in an
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extremely dynamic flow regime within the Hanford 300
Area Integrated Field Research Challenge (IFRC) site.
Tables B1–B3 in Appendix B summarize the details of each
problem scenario presented below. For all scenarios, time
step size was set to the initial value indicated in the tables
and allowed to increase to the maximum size specified
based on convergence (PFLOTRAN increases/decreases
time step size as a function of the number of Newton itera-
tions or the maximum change in a primary dependent vari-
able (e.g. pressure, concentration, etc.), or cuts the time step
in half once a maximum number of Newton iterations is
exceeded. Time step cuts only occurred with the copper
leaching problem scenario and were few (less than 10).

[43] Parallel performance is broken down by physico-
chemical process model (i.e., flow and/or transport) with all
times reported as the total wall-clock time required to simu-
late the respective process. Note that in the first two prob-
lem scenarios (i.e., copper leaching and regional doublet),
the time spent in initialization and I/O is not reported. This
time constituted a small fraction of the overall runtime
(i.e., 3.2–4.6% and 0.6–1.0% for the largest copper leach-
ing and regional doublet problems, respectively). For the
IFRC scenario, where time spent in initialization and I/O
ranged 0.15–21.8% of the overall runtime, I/O plays a
larger role in performance as large quantities of data must
be read to restart the simulation, which becomes cumber-
some at extremely large process counts. Thus, the perform-
ances of the initialization and I/O stages are studied
separately in that scenario.

[44] It is the authors’ view that time spent in initializa-
tion and I/O should be reported separate from process
model times (i.e., actual time stepping) since the time
required to complete the initialization and I/O stages of the
simulation can be amortized to near zero by running a sim-
ulation longer or reducing the frequency of I/O. Certainly,
the performance of the initialization and I/O stages of a
simulation should not be neglected, but it is better to ana-
lyze them separately, as is done below.

4.1. In Situ Copper Leaching

[45] Based on Lichtner [1996], the copper leaching sce-
nario simulates in situ mining of copper by injection of an

acidic solution (pH�1) into the subsurface that dissolves
chrysocolla (CuSiO 3 � 2H2O) releasing copper into solution
for extraction above ground and precipitates secondary
minerals in the chrysocolla front’s path. A 5-spot well pat-
tern is used in the simulation. Due to symmetry, only one
quarter of the 5-spot domain is typically modeled, however,
this requires an isotropic porous medium and uniformly
spaced wells.

[46] The copper leaching scenario consists of a rectangu-
lar 16 m316 m3128 m domain with injection and extrac-
tion wells spanning the entire depth at x, y 5 0 m and x,
y 5 16 m, respectively, as illustrated in Figure 2. The
domain is discretized in half-meter increments in the hori-
zontal and 32 m or half-meter in the vertical, depending on
the problem size. Twelve chemical degrees of freedom
(dofs) are considered representing 12 primary basis species,
with 32 secondary aqueous complexes and 10 minerals
modeled through kinetic precipitation-dissolution reactions.
Simulations are run to 2 years time at which point the domi-
nant copper bearing mineral, chrysocolla, has been removed
from the system and replaced by secondary minerals.

[47] Parallel performance was assessed for tightly
coupled (global implicit) geochemical transport while the
performance of the steady-state, saturated groundwater
flow solution was ignored. Two problem sizes were consid-
ered: 49 K (3233234 grid 312 species) and 3.1 M
(323323256 grid 312 species) dofs. Although the prob-
lem is inherently 2D, the fine discretization of the z-
dimension serves to better assess the impact of parallel
communication on performance. Regardless, the dominant
processes in this problem are geochemical and local to the
grid cell, which bodes well for parallel performance.

4.1.1. 49 K: 3233234 grid 312 species
[48] The 49 K scenario was run on 1–1024 Jaguar XK6

processor cores incremented by powers of 2. Figure 3

Figure 2. Schematic of copper leaching scenario.

Figure 3. Wall-clock time for geochemical transport ver-
sus process count for 49 K copper leaching scenario. The
Ideal Slope lines represent the slope of ideal speedup,
which is essentially linear between 8–128 processes.
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illustrates the wall-clock time versus the number of proc-
esses employed for fully implicit geochemical transport.
The dashed lines in the figure illustrate the slope of ideal or
linear speedup, but not ideal performance itself. It is clear
from the figures that scalability (or speedup) is less than
ideal between 1–8 and 128–1024 processes.

[49] The nonideal performance from 1–8 processes is
less of an algorithmic issue and more attributable to cache
and memory contention within the XK6 compute node.
Appendix A discusses the impact of Jaguar XK6 node
architecture on memory contention and parallel perform-
ance where the 49 K copper leaching scenario is employed
with various processor core configurations to demonstrate
that the performance degradation is more hardware related
than algorithmic. It is also demonstrated that parallel per-
formance on 1–16 processes is near linear when a single
process is employed per XK6 node, which alleviates mem-
ory contention.

[50] The degradation in parallel performance between
128 and 1024 processes may be attributable to a combina-
tion of breakdown in linear solver performance and a sig-
nificant decrease in computational work load per process
(i.e., increasing communication to computation ratio) at the
higher process counts. By default, the PETSc iterative lin-
ear solvers used by PFLOTRAN employ block Jacobi pre-
conditioning—in which each process considers only the
block of the Jacobian that corresponds to the grid cells that
comprise its local subdomain—and apply point-block
ILU[0] factorization on each block. This preconditioner
can also be viewed as a domain-decomposition method (it
is equivalent to a single-level additive Schwarz method
with zero overlap). The block size/subdomain size is
directly proportional to the problem size per process. As
this block size decreases with increasing process counts,
the amount of information available for incomplete factori-
zation decreases (i.e., the subdomains become less repre-

sentative of the global domain), diminishing the efficacy of
the preconditioner. This is a well-understood behavior in
subsurface simulators solving implicit systems of equations
[Hammond et al., 2005] as well as in other applications
[Keyes, 1999]. In comparison to the original �49K dofs
run on a single process, the local problem sizes are very
small at large process counts (i.e., 96 and 48 dofs/process
on 512 and 1024 processes, respectively), far too small to
expect scalable parallel performance. In fact, it is surprising
that PFLOTRAN scales linearly to 128 processes. (Recall
that the poor scalability between 1–16 processes is more
hardware related than algorithmic as demonstrated in
Appendix A).

[51] Breakdown in iterative linear solver preconditioning
is exhibited through an increase in the number of iterations
required to converge to a solution. Figure 4 illustrates the
total number of linear solver iterations in the 49 K simula-
tion scenario versus the number of processes employed.
This plot clearly demonstrates the growth in linear solver
iteration count when increasing numbers of processes are
employed.

4.1.2. 3.1 M: 323323256 Grid 312 Species
[52] The 3.1 M scenario, with 64 times as many grid

cells as the 49 K scenario in the z-dimension of identical
length, was run on 32–16384 XK6 processor cores, again
incremented by powers of 2. Figure 5 illustrates the wall-
clock simulation time for the 3.1 M copper leaching sce-
nario. With the minimum number of processes at 32, the
nodes are fully packed leaving no room for the improved
memory/cache efficiency that was exhibited below 16 proc-
esses in the 49 K scenario.

[53] PFLOTRAN exhibits near ideal speedup out to 4096
processes and then tails off quickly. At that process count,
each process possesses 768 dofs, which is near the ratio of
number of dofs to processes at which the 49 K scenario per-
formance begins to degrade. The performance degradation
is largely due to a jump in the cost of parallel

Figure 4. Number of linear BCGS solver iterations in
simulation versus number of processes employed for 49 K
copper leaching scenario.

Figure 5. Wall-clock time for geochemical transport ver-
sus process count for 3.1 M copper leaching scenario.
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communication as more of the machine must be spanned.
Figure 6 shows that the total number of linear solver itera-
tions is nearly identical for the 4096 and 8192 process cases,
but PETSc profiling results reveal that the proportion of time
spent in vector dot products and norms (both of which
require collective communication to compute a global reduc-
tion) grows from 17 to 39% when increasing from 4096 to
8192 processes. At 16,384 processes, a spike in the number
of linear solver iterations further reduces parallel speedup.

[54] Regarding iterative linear solver performance, note
that several plateaus exist in Figure 6 where the number of
linear solver iterations remains nearly constant (this phe-
nomenon is also evident for the 49 K scenario in Figure 4).
Since the copper leaching problem involves essentially 2D
flow between the injection and extraction wells that span
the depth of the domain, transport is inherently 2D and for
the most part decoupled in the vertical dimension. There-
fore, when the parallel domain decomposition is refined in
the vertical, there is little to no impact on the block Jacobi
preconditioner performance since the matrix blocks are
essentially decoupled in the z-dimension (i.e., the off-
diagonal Jacobian entries representing coupling in z are
small relative to those in x and y).

[55] As discussed earlier, the copper leaching scenario in
the 5-spot flow regime is well-designed for demonstrating
parallel performance since the problem is dominated by
local geochemistry (large preconditioner friendly matrix
blocks in the Jacobian) and transport is coupled primarily
in 2D. However, this does not imply that the problem is
trivial to solve. Throughout the 2 year simulation, minerals
precipitate and dissolve in (often quasi-stationary) fronts
that propagate downgradient much more slowly than
groundwater velocities. However, these flow velocities are
steady through time. The next test scenario examines paral-
lel performance for transient flow and solute transport typi-
cal within a larger field setting.

4.2. Regional Doublet

[56] The regional doublet scenario models variably satu-
rated groundwater flow and solute transport within a hypo-
thetical aquifer measuring 5000 m32500 m3100 m as
illustrated in Figure 7. The aquifer is layered with four uni-
form soil types of varying porosity and anisotropic perme-
ability. The porosities of the soil layers are 0.25, 0.35, 0.25
and 0.2, respectively, with horizontal permeability set at
1310210, 2310210, 5310211, and 1310210m2, and verti-
cal permeability an order of magnitude smaller in each
layer. Variably saturated flow is simulated in the top soil
layer through the Richards equation with saturation and rel-
ative permeability modeled through the van Genuchten and
Mualem constitutive relations, respectively, with an air
entry pressure of 104 [Pa], pore size distribution (n) of 2,
and a residual saturation equal to 0.1. Regional flow is
imposed by prescribing a gradient of 20.002 [m/m] across
the domain in the x-direction from west to east with a tran-
sient river stage at the eastern boundary. River stage fluctu-
ates 3 meters seasonally, cycling yearly over the 10 year
simulation. Recharge is transient, prescribed at between 25
and 29 cm/yr. A pair of injection/extraction wells form a
doublet in the system, each pumping at an extreme rate of
105 m3/day with doublet flow in the same direction as
regional flow, west to east. A single solute tracer is added
at the injection well and transported downgradient. Time
step size is restricted to 0.1 yr to preserve a CFL � 1.

[57] The regional doublet scenario provides a transient,
yet not overly dynamic variably saturated flow and solute
transport problem for testing PFLOTRAN parallel perform-
ance at the kilometer scale. Geochemical transport is not
considered in this scenario, and thus, the sparse systems of
equations solved consider only one degree of freedom per
grid cell. In the results that follow, four problem sizes are
considered:

[58] 1. 102 K dof: 100351320 grid on 1–512 processes
[59] 2. 630 K dof: 2503126320 grid on 8–1024 processes
[60] 3. 2.5 M dof: 5003251320 grid on 16–16,384

processes
[61] 4. 10 M dof: 10003501320 grid on 128–16,384

processes.
[62] Figure 8 shows wall-clock times versus process

count for flow and transport for each of the four regional
doublet problem sizes, all of which are plotted on the same
scale for comparison purposes. Also included in the plots is

Figure 6. Number of linear BCGS solver iterations in
simulation versus number of processes employed for 3.1 M
copper leaching scenario.

Figure 7. Schematic of regional doublet scenario.
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the slope of ideal linear performance (dash-dot line) for
reference purposes and a vertical dotted line signifying the
threshold beyond which (i.e., to the right of which) the
number of dofs per process drops below 10 K. These
results demonstrate that at greater than 10 K dofs per pro-
cess (i.e., to the left of the dotted line) PFLOTRAN per-
formance is near ideal for all cases except the 102 K dof
problem. In the 102 K dof case, the cache/memory conten-
tion discussed in section 4.1.1 and Appendix A likely fac-
tors in at eight processes and below. Note that in Figure
8a the shape and slope of the curves for both flow and
transport are similar to that of the geochemical transport

result in Figure 3 below eight processes, suggesting the
presence of intranodal memory contention. Figure 8 dem-
onstrates that the ratio of number of dofs to process count
can drop well below 10 K for smaller overall problem
sizes (i.e., 102 K, 630 K, 2.5 M), but the PFLOTRAN
simulation is most likely to exhibit scalable parallel per-
formance at or above 10 K dofs per process. The increase
in runtime at greater than �2048 processes in Figures 8c
and 8d is likely due to a combination of too few dofs per
process (growing communication to computation ratio)
and breakdown in Krylov solver performance as discussed
earlier in section 4.1.1.

Figure 8. Wall-clock time for flow and transport versus process count for the regional doublet sce-
nario: (a) 102 K, (b) 630 K, (c) 2.5 M, and (d) 10 M dofs scenarios. In all cases, simulations run at � 10
K dofs/process exhibit scalable parallel performance except when intra-nodal memory contention comes
into play (i.e., 102 K dof scenario). The 102 K dof scenario (a) includes times for the heterogeneous per-
meability layer (Het.).
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[63] One final regional doublet scenario is the case where
a heterogeneous and anisotropic layer is introduced into the
third layer of the 102 K dof scenario between 30 and 50 m
elevation. The permeability in this layer ranged
2:4310213–1:031027m2 with a mean of 5:4310210m2 and
a standard deviation 2:031029m2. A comparison between
the homogeneous and heterogeneous (Het.) results in Fig-
ure 8a shows little difference in the shape of the flow and
transport curves. However, the heterogeneous scenario
does require approximately one third more time to com-
plete. This is not unexpected as heterogeneity broadens the
spectrum of eigenvalues that must be resolved by the Kry-
lov solver (i.e., increases the condition number of the Jaco-
bian matrix) resulting in additional iterations as shown in
Figure 9. Note that the relative increase in solver iterations
versus the number of processes employed is largest for
transport with the heterogeneous 102 K dof scenario.

4.3. Hanford 300 Area IFRC

[64] The Hanford 300 Area IFRC scenario is based on a
field-scale injection experiment performed at the Hanford
300 Area Integrated Field Research Challenge (IFRC) site
in March of 2011, one of many conducted since 2008. The
purpose of the experiment was to inject water with tracer
and low-concentration uranium into the persistent uranium
plume at the site and monitor tracer transport and uranium
elution at downgradient wells within the triangular IFRC
well field. Tens of thousands of PFLOTRAN simulations
have been run within a Bayesian data assimilation frame-
work employing ensemble Kalman filters and high per-
formance computing to invert for hydrologic properties and
evaluate the geochemical response of sorbed uranium to
stimulus [Chen et al., 2013]. Although each realization (in
the ensembles of simulations executed) ran for 1000 h in
simulation time, PFLOTRAN performance was assessed on

the most dynamic portion of the experiment beginning with
a restart from a checkpoint file at 15 min prior to the 353 h
injection and ending 155.75 h afterward (509 h total).

[65] Computationally challenging aspects of the Hanford
300 Area IFRC scenario include heterogeneous porous
media [see Chen et al., 2013 for details], extremely
dynamic variably saturated groundwater flow (i.e., an
undulating water table with flow velocities that rapidly
change in magnitude and direction) and complex geochem-
istry with 10 primary aqueous species, 43 secondary aque-
ous complexes, and kinetic multirate surface complexation
considering two surface complexes and 50 site fractions.
Since the ratio of geochemical transport to flow degrees of
freedom is 10 to one, this problem presents a unique chal-
lenge for efficient parallel computing where the user must
simultaneously consider the number of degrees of freedom
per process for both flow and geochemical transport. If the
number of chemical dofs per process is too large, the simu-
lation may not complete in a reasonable amount of time or
within time limits dictated by the supercomputer’s schedul-
ing policy. Assigning too few flow dofs per process may
result in poor parallel performance.

[66] The 120 m3120 m315 m IFRC scenario domain is
discretized with 432 K grids cells measuring
1 m31 m30:5 m. At one and 10 dofs per grid cell, the total
number of flow and geochemical transport dofs are 432 K
and 4.32 M, respectively. Simulations were run on 32–
16,384 Jaguar XK6 processor cores incremented by powers
of 2. Figure 10 presents the total wall-clock time required
to complete the simulation versus the number of processes
employed where the total time is divided between Flow,
Geochemical Transport, and time spent in Other portions

Figure 9. Number of flow and transport linear BCGS
solver iterations in simulation versus number of processes
employed for the 102 K regional doublet scenario without
and with heterogeneity (Het.).

Figure 10. PFLOTRAN wall-clock time for the IFRC
problem scenario where the Total time is divided into time
spent in Flow, Geochemical Transport, and Other (i.e., ini-
tialization, I/O). Ideal Slope indicates perfect scalability.
Note that beyond 128 processes, the size of the IFRC flow
problem on each process is too small to expect good scal-
ability (i.e., well below 10 K flow dofs/process).
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of the code (the major contributors being initialization and
checkpointing). The slope of ideal speedup is plotted for
comparison purposes. The corresponding relative strong
scaling efficiencies are shown in Figure 11. The overall
scalability of the code is near linear (Total efficiency
>75% in Figure 11) out to 512 processes. Beyond 512
processes, the scalability of the flow solution and Other
portions of the code begins to degrade dramatically.

[67] As discussed earlier, the time spent in initialization
and I/O (i.e., Other) for the copper leaching and regional
doublet scenarios was negligible. However, this was not
the case with the IFRC scenario. The major contributors to
Other were time spent in initialization and checkpointing.
The initialization stage of the code can be broken down
into time spent restarting the simulation (i.e., reading
checkpointed solution), reading boundary and initial condi-
tion data, and reading HDF5 files containing material ids,
permeabilities, initial pressures, and initial concentrations.
Note that initial conditions (i.e., pressure, concentration,
etc.) are still read when restarting a simulation, though they
are overwritten. A breakdown of the time spent in initiali-
zation is shown in Figure 12 where Init Stage, the total
time spent in initialization, is divided into the three major
contributors: Restart, Reading Condition Data, and HDF5.
Below 1024 processes, the performance of initialization
stage scales well (i.e., the time spent mainly in I/O remains
small at � 13 s). However, this figure clearly illustrates the
presence of I/O contention at larger process counts. It
should be noted that the initialization time varied greatly
between jobs on Jaguar suggesting that other jobs running

on the supercomputer may contribute to the I/O contention,
a known issue on Jaguar. The performance of checkpoint-
ing at the end of the simulation (the other major contributor
to Other in Figure 10) was nearly identical to Restart. The
use of PFLOTRAN’s two-stage I/O capability would
reduce the time spent in HDF5, but the capability is not yet
supported with checkpoint/restart.

[68] Had the IFRC scenario been executed without
checkpoint/restart, PFLOTRAN’s overall performance
based on total wall-clock time would have been much bet-
ter at large process counts for two reasons. First, time spent
in checkpoint/restart, the largest contributors to Other,
would not have existed. Second, the simulation would have
started at time 0, not 353 h into the experiment, providing a
longer runtime over which the growing initialization time
(i.e., Reading Condition Data and HDF5) could be amor-
tized across time spent in the more scalable flow and geo-
chemical transport. Thus, as discussed earlier, the
performance of initialization and I/O (i.e., Other) should be
reported separately from the process model solution times
(i.e., Flow and Geochemical Transport).

[69] To further study the performance of the physico-
chemical process models, Figures 13 and 14 illustrate a
breakdown of the total wall-clock times for the flow and
geochemical transport shown in Figure 10, respectively.
These total times are divided among the nonlinear and lin-
ear solves, residual and Jacobian evaluations, and global
reductions. These times are not mutually exclusive (i.e., the
nonlinear solve includes the residual and Jacobian

Figure 11. PFLOTRAN relative strong scaling efficiency
for the IFRC problem scenario where the efficiency for the
entire simulation (Total) is divided into the Flow, Geo-
chemical Transport, and Other (i.e., initialization, I/O)
components. Ideal efficiency is 1.0. The superlinear effi-
ciency for Flow is likely due to caching effects. Note that
beyond 128 processes, the size of the IFRC flow problem
on each process is too small to expect good scalability (i.e.,
well below 10 K flow dofs/process).

Figure 12. PFLOTRAN wall-clock time for the initiali-
zation stage (Init Stage) of the IFRC problem scenario
where the initialization time is divided into time spent in
Restart and reading HDF5 files and initial/boundary condi-
tions (Reading Condition Data). Note that up to 1024 proc-
esses, within the realm of realistic problem size per process
for good scalability from the flow and transport code, the
initialization stage scales well (i.e., it remains small, at or
below 13 s).
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evaluations, linear solve; the linear solve includes most but
not all global reductions, etc.). The plots include vertical
lines with horizontal dashes signifying the threshold
beyond which (i.e., to the right of which) the number of
dofs per process drops below 10 K.

[70] From Figure 13, it is clear that, although superlinear
at small numbers of processes (see also Figure 11), the scal-
ing of the flow solution is far from ideal at large process
counts, tailing off at 128 processes (�3K dofs per process).
The figure demonstrates that the degradation in parallel
performance is mainly attributable to performance degrada-
tion in the linear Krylov solver likely due to increased time
spent in global reductions and a growth in linear solver iter-
ations (see Figure 15). Note that growing linear solver iter-
ations increases the number of global reductions,
compounding performance degradation attributable to
global reductions. The residual and Jacobian evaluations
scale well out to 1024–2048 processes.

[71] On the other hand, geochemical transport scales
much better, with perfect scalability up to 128 processes
(�33K dofs per process) and near linear scalability out to
4096 processes (�1K dofs per process). The time spent in
global reductions does jump between 128 and 256 proc-
esses. However, the total time spent in global reductions is
sufficiently small so as to not adversely impact parallel per-
formance until after 4096 processes.

[72] The performance of the geochemical transport
solver is similar to that of the copper leaching scenario. In
both cases, a global implicit method is employed tightly
coupling transport and geochemical reaction within a single

large Jacobian matrix. Recall from the copper leaching sce-
nario (section 4.1) that with large numbers chemical com-
ponents tightly coupled through geochemical reaction, the
systems of equations being solved are diagonally dominant

Figure 13. PFLOTRAN wall-clock time for the flow
stage of the IFRC problem scenario where the Total Flow
time is divided into time spent in the Nonlinear Solve, Lin-
ear Solve, Residual Evaluation, Jacobian Evaluation, and
Global Reductions. Ideal Slope indicates perfect scalability.
The Nonlinear Solve and Linear Solve are not mutually
exclusive. Note that beyond 128 processes, the size of the
IFRC flow problem on each process is too small to expect
good scalability (i.e., well below 10 K flow dofs/process).

Figure 14. PFLOTRAN wall-clock time for the geo-
chemical transport stage of the IFRC problem scenario
where the Total Transport time is divided into time spent
in the Nonlinear Solve, Linear Solve, Residual Evaluation,
Jacobian Evaluation, and Global Reductions. Ideal Slope
indicates perfect scalability. The Nonlinear Solve and Lin-
ear Solve are not mutually exclusive. Due to the larger
problem size per process relative to flow (i.e., 103), the
geochemical transport stage scales well out to 8192 proc-
esses or 527 dofs per process.

Figure 15. Number of flow and geochemical transport
linear BCGS solver iterations in simulation versus number
of processes employed for the IFRC scenario.
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and well-suited for the block Jacobi preconditioner. There-
fore, the geochemical transport solution scales to far fewer
dofs per process than is possible with the flow solution,
where for flow there is too little work (too few dofs per pro-
cess) at high process counts to outweigh the increasing
number of linear solver iterations and growing demands of
parallel communication.

[73] Note that at the minimum flow wall-clock time
(�65 s on 1024 processes), the number of dofs per process
is �422. At 2048 processes, PETSc decomposes the
domain with 1631638 processes in x, y, z. However, this
decomposition does not divide evenly into the number of
grid cells in each direction (i.e., 1203120330 cells).
Therefore, at 2048 processes, the number of flow dofs per
process, which is equivalent to the number of grid cells per
process, ranges between 147 (73733 cells) and 256
(83834 cells) and a load imbalance (calculated based on
equation (7)) of up to 74%, i.e.

Load Imbalance 5
2562147

147
’ 0:74 (8)

is introduced. Load imbalance is often reflected through
delay at synchronization points in the simulation such as
global communication (i.e., an increase in communication
time). The large black dots in Figures 13 and 14 reflect the
number of processes (i.e., 128) employed per simulation
when ensembles of realizations are simultaneously run on
tens of thousands of processes on the supercomputer [Chen
et al., 2013] and demonstrate that the supercomputer is
being utilized within the efficient spectrum of the speedup
curves.

[74] Figure 15 shows the number of linear solver itera-
tions for flow and geochemical transport. Note that the
growth in solver iterations is not linear. The slope of the
lines tends to increase when employing larger numbers of
processes. The plot also shows significant jumps in the
number of solver iterations for flow at 256, 2048, and
16,384 processes. At these process counts, the number of
processes in the z-direction have been doubled over the pre-
vious count as shown in Table 1. This phenomenon sug-
gests strong vertical coupling of flow (pressure). As the
number of processes in the z-direction doubles, the only
difference in the solution process is that the coefficients
outside the local block within the Jacobian, which represent
coupling in the z-direction across processes, are dropped by
the block ILU preconditioner, degrading iterative Krylov
solver convergence. Were these coefficients smaller, the
impact on convergence may be much less.

[75] The iteration counts for geochemical transport
exhibit the opposite effect, but to a lesser degree. With
transport it appears that coupling is weaker in the vertical
(z-direction) than in the horizontal, though the contrast is
much smaller. This makes sense given flow (velocities) at
the Hanford 300 Area IFRC site is predominantly horizon-
tal [Hammond and Lichtner, 2010]. This behavior was
exhibited earlier for the copper leaching scenario where
flow was horizontal. The plateaus in the iteration counts
within Figures 4 and 6 occur when the number of processes
in the z-direction double.

[76] In the end, the modeler must weigh the trade-offs of
iterative solver performance for flow and transport when

choosing a decomposition. To do so, a minimum allowable
relative strong scaling efficiency can be set for the com-
bined performance. In the case of the IFRC scenario, a min-
imum allowable efficiency of 75% would dictate that 512
is the maximum number of processes that can be employed
for scalable simulation (see Figure 11). At that process
count, the simulation completes in under 12 min, well
within the time constraints of any supercomputer queueing
policy.

4.4. PFLOTRAN Weak Scaling

[77] As discussed in section 3, a weak scalability analy-
sis measures a code’s parallel performance with a fixed
problem size per process and increasing process counts.
There are two distinct approaches to implement weak scal-
ability: keep the grid resolution fixed and grow the size of
the problem domain, or keep the problem domain fixed and
refine the grid resolution. For this work, the latter was cho-
sen since it makes the most sense from a practical stand-
point as a single real-world problem domain does not
typically vary in size. With a fixed problem domain and
grid refinement, the simulated problem changes with
increasing process counts since the grid resolution
increases altering the spectrum of eigenvalues for flow and
transport. For this reason, it is difficult to expect good weak
scalability with a Newton-Krylov solver, unless the Krylov
solver is preconditioned with a multilevel technique (e.g.,
multigrid). This behavior is demonstrated in Figure 16
where wall-clock time, Newton iterations, and linear Kry-
lov iterations are compared in a weak scalability sense for
flow and transport with the (homogeneous) regional dou-
blet problem from section 4.2. As discussed in section
2.3.1, the default PETSc stabilized biconjugate gradient
method (BCGS) with block Jacobi preconditioning (point-
block ILU[0] in each block) are employed to solve the lin-
ear systems of equations for both flow and transport.

[78] For ideal weak scalability, the wall-clock times in
Figures 16a and 16e and efficiencies in Figures 16d and
16h should be flat indicating no increase in wall-clock time
for a fixed problem size per process. However, this is not
the case as wall-clock time grows and efficiency drops with
increasing process count. The main cause of the increase in
wall-clock time is the growth in linear Krylov solver itera-
tions (see Figures 16c and 16g), which is directly correlated
to wall-clock time. This is a well-understood phenomenon,
and often multilevel solvers (or preconditioners) such as

Table 1. Decomposition of Hanford 300 Area IFRC Scenario for
32–16,384 Processes

Total Number
of Processes Number in X Number in Y Number in Z

32 4 4 2
64 8 4 2
128 8 8 2
256 8 8 4
512 16 8 4
1024 16 16 4
2048 16 16 8
4096 32 16 8
8192 32 32 8
16,384 32 32 16
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algebraic or geometric multigrid are employed to improve
performance (limit growth in linear iteration count).

[79] Multigrid solvers work well for elliptic or parabolic
PDEs where the initial guess for the solution is far from the
final solution (i.e., large initial error). Multigrid with its
smoothing on a hierarchy of grid resolutions resolves a
wide spectrum of error (i.e., high to low frequency) [Briggs
et al., 2000; Trottenberg et al., 2001]. The more general
Krylov solver, however, acts like a smoother on a single
grid level, removing high frequency error quickly, but low
frequency error tends to persist requiring large numbers of
iterations to resolve. From this viewpoint, multigrid can be
more efficient for a select set of problems (e.g., ground-
water flow), and problem size can often increase with little
to no increase in multigrid iteration count.

[80] However, multigrid solvers are not appropriate for
all systems of PDEs [Greenbaum, 1997], and they may
introduce new challenges. As problem size grows, levels of
grid refinement are often added to the grid hierarchy to pre-
serve optimal convergence, but this comes with algorithmic
cost that may exceed the Krylov solvers’ in terms of time
to solution. Kollet et al. [2010] illustrates this phenomenon
in Figures 1b and 2 of their work where the Solver Setup
scaled parallel efficiency decreases to near zero and rela-
tive compute time increases to 0.1 as the number of proc-
esses approaches 16,384. Baker et al. [2012] demonstrates
that this growth in multigrid setup time can be reduced by
optimizing hypre’s parameters (e.g., number of boxes, box
size, etc.).

[81] Another challenge for multigrid is that many subsur-
face problems such as geochemical transport are transient
with hyperbolic terms (i.e., advection) in their PDEs requir-
ing fine temporal resolution. The equations defining such
processes often produce systems of equations with diago-
nally dominant matrices for which general Krylov methods

and conventional preconditioners are very effective, for the
same reason pointwise Jacobi iteration is effective for diag-
onally dominant matrices [Golub and Van Loan, 1996]. On
the other hand, the application of multigrid solvers to sys-
tem PDEs that represent complex multiphase flow and
advection-dominated geochemical transport scenarios
remains a young but active area of research [Lee, 2009;
Guo et al., 2013]. These systems do not have the nice prop-
erties of elliptic PDEs [Hackbusch, 1985; Brandt and
Livne, 2011].

[82] It is the authors’ experience that many subsurface
problems involve a fixed domain, and one simply wants to
solve the problem in less time using more processes to the
extent possible, and strong scalability provides such guid-
ance. Unfortunately, from a parallel performance view-
point, researchers often report weak scalability for
multigrid solvers without any information on strong scal-
ability. Given that multigrid methods excel as problem size
grows, this is not surprising. However, it is difficult to
assess the strong-scaling performance of multigrid relative
to Krylov solvers in these cases since only one side of the
scalability picture is presented (i.e., weak scaling). The
converse can be said of those presenting solely strong scal-
ability performance results.

5. Discussion

[83] The development of a scalable and efficient parallel
subsurface simulator is no easy task. However, careful and
deliberate design with iterative input from experienced
domain scientists, computer scientists, and computational
scientists and feedback from end users can greatly enhance
the likelihood for success. The open-source PFLOTRAN
project is an example of such an effort. Clearly, PFLO-
TRAN’s weak-scaling performance can be enhanced, and

Figure 16. (a and e) Regional doublet wall-clock time, (b and f) Newton iterations, (c and g) linear
iterations and (d and h) efficiency for the (a–d) flow and (e–h) transport weak scalability comparison.
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the PFLOTRAN and PETSc developers are actively work-
ing together to improve this performance [McInnes et al.,
2013]. However, the PFLOTRAN performance presented
in section 4 demonstrates the code’s strong scalability on a
wide range of physicochemical process model scenarios,
problem sizes, and processor core configurations. Just
glancing at Figures 10–14, the reader may perceive that
PFLOTRAN is not scalable at large process counts. How-
ever, one must judge performance within the context of
problem size per process (e.g., work per process). Should
the decomposed problem size per process be too small (too
little work per process), PFLOTRAN’s parallel perform-
ance is expected degrade due to increasing Krylov solver
iterations counts and a growing cost of communication, as
demonstrated in Figures 13 and 14 where the time spent in
global reductions increases. By maintaining PFLOTRAN’s
problem size per process at 10 K or greater, strong scalabil-
ity is better ensured.

[84] PFLOTRAN’s scalable performance thus far can be
attributed to several choices made by the developers early
on in the development process :

[85] First, the developers attribute much of their success
with respect to parallel scalability to the choice of using the
PETSc library (i.e., an efficient parallel framework).
Because solvers and parallelism are largely handled by
PETSc, the PFLOTRAN source code can remain at a man-
ageable size and PFLOTRAN developers have more time
to focus on application-specific code. Furthermore, excel-
lent support (in terms of guidance, response time, and code
modification/enhancement) has been provided by the
PETSc developers. Though PETSc offers a stable release
version, the development branch is entirely public and
PFLOTRAN development tracks this branch. This means
that various improvements made by the PETSc community
can immediately be leveraged by PFLOTRAN and, through
close collaboration with the PETSc developers, PFLO-
TRAN requirements have led to improvements in PETSc.

[86] Second, is the decision to employ distributed-
memory, domain decomposition-based parallelism as the pri-
mary approach to parallelization as opposed to solely
process-level techniques such as pthreads, OpenMP, CUDA,
or OpenCL, which can require a great deal of tuning for com-
piler/hardware configuration, provide limited performance
for solving implicit systems of sparse PDEs, and have diffi-
culty scaling beyond the number of processes provided by a
single shared memory node. Attempts to parallelize code
solely through these process-level techniques have difficulty
scaling beyond tens of processes [e.g., Gwo et al., 2001].

[87] Next in line is the choice of binary HDF5 for paral-
lel I/O with the two-stage I/O option provided by collabora-
tors [Sripathi, 2010]. HDF5 enables the simulation of large
and complex user-defined data sets where individual
parameter values can be imported on a cell by cell basis.
The library also enables output operations to complete on
many tens to hundreds of thousands of processes [Ham-
mond et al., 2012].

[88] Finally, the decision to open-source PFLOTRAN
helps improve its scalability by allowing the user commu-
nity to interrogate the code, suggest improvements, and
most critically, exercise the capability on user-defined
problems with institution-specific hardware, all of which
stress the performance of various portions of the code.

Without this user interaction, cross-platform scalability
would be more difficult.

[89] It should also be noted that PFLOTRAN’s object-
oriented design has little to no impact on performance.
During the code’s refactor as part of the SciDAC-2 project,
the performance of the traditional sequential and new
object oriented versions of PFLOTRAN’s biogeochemical
reaction algorithms were compared, and neither was
deemed to run more optimally. But even if the object ori-
ented version were somewhat slower (e.g., a few percent),
its flexibility and modular design could be well worth any
minor losses in performance in many cases of interest.
Clearly, many other choices factored into PFLOTRAN
development, but these constitute the major choices thus
far, and there are yet many improvements to be made.

6. Summary and Conclusions

[90] The purpose of this research was to demonstrate the
scalability of the object-oriented PFLOTRAN code on real-
world problem scenarios and provide a reference point for
the performance of a subsurface simulator employing HPC.
One of the keys to successful high performance computing
is the ability to demonstrate parallel performance, whether
good or poor (to inform the user) and explain the poor per-
formance in terms of physical hardware or algorithmic
issues. For PFLOTRAN that was demonstrated in section 4
where parallel performance was assessed on three realistic
problem scenarios: (1) in situ leaching of copper from an
ore deposit in a 5-spot flow regime (copper leaching), (2)
variably saturated flow and conservative solute transport
within a regional aquifer with a doublet well configuration
(regional doublet), and (3) a real-world experiment at the
Hanford 300 Area IFRC site involving uranium surface
complexation within an extremely transient, variably satu-
rated groundwater flow domain (IFRC).

[91] The performance of PFLOTRAN on these problems
was discussed in detail, with the intent of providing subsur-
face scientists with improved understanding of the parallel
scalability possible with today’s supercomputing resources
and the potential benefit that high performance computing
may provide to their research (i.e., speedup that will enable
larger and more complex simulations to be executed in less
time). It was demonstrated that PFLOTRAN scales well on
all three problems in the context of strong scaling when the
number of degrees of freedom per process (calculated as a
function of domain decomposition) is maintained at or
above 10 K dofs/process. With the exception of the 10 M
dof regional doublet scenario, PFLOTRAN scaled near lin-
early well below 10 K dofs/process, and in the case of geo-
chemical transport with large numbers of chemical species
(e.g., 10–12), down to hundreds of dofs/process. Note that
Jaguar is a leadership-class supercomputer with an opti-
mized XK6 interconnect for communication. Custom, off-
the-shelf systems may require larger problem sizes per pro-
cess to ensure good parallel performance. For this reason, it
is important that users develop runtime or speedup curves
on the platform of interest in order to verify that a code is
being executed within the scalable spectrum of parallel
performance.

[92] All three test scenarios were diagonally dominant
subsurface problems (i.e., in terms of matrix coefficients in
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the nonlinear systems of equations being solved) with com-
plex biogeochemistry, advection-dominated transport, and/
or highly transient groundwater flow (small time steps).
Certainly, the addition of a robust multigrid solver (or pre-
conditioner) would serve the PFLOTRAN well as demon-
strated in the lackluster weak scalability for the regional
doublet scenario (see section 4.4). However, such multile-
vel algorithms have limited utility in the context of multi-
phase flow, advection-dominated transport, and reactive
biogeochemical transport as the development of block
smoothers for system PDEs remains an active area of
research [Lee, 2009; Guo et al., 2013].

[93] Section 4 demonstrated that solver algorithms
exhibit sensitivity to the physical decomposition and distri-
bution of subsurface processes across computing processes.
In the case of the Hanford IFRC scenario (section 4.3) pres-
sure exhibited a stronger sensitivity to decomposition in the
vertical whereas the opposite was true for uranium trans-
port, but due to sequential coupling, both were solved sepa-
rately with the same decomposition. Such phenomenon
must be considered when choosing a more optimal
decomposition.

[94] It is strongly recommended that researchers devel-
oping and/or utilizing parallel simulators on supercom-
puters establish benchmark problems such as those
presented in this work (but more relevant to their respective
fields), execute the problems employing a wide range of

process counts (both in a strong-scaling and weak-scaling
sense), and develop parallel speedup or efficiency curves
based on overall wall-clock times to assess the performance
of the code. By doing so, the user can better learn and
understand the strengths and limitations of the simulator
and supercomputer and employ parallel computing in a
manner that is hopefully as efficient as possible.

Appendix A: Analysis of In Situ Copper Leaching
49 K Scenario Performance on 1–8 Processes

[95] To better explain the degradation in performance
between 1–8 processes on the 49 K copper leaching sce-
nario (i.e., section 4.1.1), a brief description of the Jaguar
XK6 node architecture and the AMD Interlagos processor
is required. Figure 17 illustrates the configuration of proc-
essor cores and cache within a 16 core AMD Interlagos
processor. Each Jaguar XK6 compute node contains a sin-
gle Interlagos processor composed of two 8-core NUMA
(nonuniform memory access) nodes that reside on separate
dies connected via HyperTransport links. Each NUMA
node contains four ‘‘bulldozer’’ compute modules, each
with two cores. Level I cache is unique to each core, while
Level II cache is shared by the two cores within a bulldozer
compute unit. Level III cache is shared by all eight cores
within a NUMA node, and main memory is shared by all
NUMA nodes, compute units, and cores. It is much faster

Figure 17. Configuration of XK6 Interlagos processor (Image courtesy of the Oak Ridge Leadership
Computing Facility, Oak Ridge National Laboratory).
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for a NUMA node to access local memory than that resid-
ing on the other die. The high degree of resource sharing
between modules causes many numerical kernels to display
rather different performance characteristics than those
observed on previous-generation AMD processors.

[96] For 1–8 processes on the 49 K copper leaching sce-
nario, the less than ideal performance is for the most part
attributable to an increase in memory contention within a
Jaguar node as the number of cores employed increases (In
this work, the term contention refers to competition
between processor cores for cache and memory bandwidth,
but not main memory given each node possesses sufficient
memory to run this problem on 16 cores.). A simple com-
parison of processor core utilization illustrates this
contention.

[97] Figure 18 illustrates the wall-clock time for the 49
K dof problem run on 16 cores versus the number of proc-
esses employed per node. The colored bars correspond to
approaches for allocating processor cores within the node.
The performance for each of these configurations is
described below:

[98] 1. Default allocation of cores on XK6 node : The
default approach to allocating cores is to employ all cores
within a compute unit or NUMA node before employing
the next. Therefore, a job requesting four processes per
XK6 node with the default configuration will employ the
four cores in first two compute units (two cores per com-
pute unit) on the first NUMA node, the remaining 12 cores
(six compute units or 1.5 NUMA nodes) remaining idle.
With the default approach in Figure 18, performance deteri-
orates between 1–2 and 4–8 processes per node.

[99] 2. Processes divided evenly between NUMA nodes :
This approach follows the default allocation within a
NUMA node. However, processes are split evenly between
NUMA nodes. Therefore, a job requesting four processes
per XK6 node will employ four cores in two compute units
(two cores per compute unit), but the two compute units
reside on separate NUMA nodes. In this case, performance
deteriorates between 2–4 and 8–16 processes per node.

[100] 3. All processes on single NUMA node : This
approach is identical to the default approach, but is limited
to one NUMA node, thus no 16-process per node entry.
This result further confirms the results for the default
approach to allocation up to eight cores.

[101] 4. One process per compute unit on a single
NUMA : In this case, only a single core is allocated per
compute unit and all compute units reside on a single
NUMA node. Therefore, a job requesting four processes
per XK6 node will employ four cores in four separate com-
pute units (one core per compute unit) all on the same
NUMA node. No more than four cores may be employed
due to the limitation of a single NUMA node. Note the
slight degradation in performance at two processes and
larger wall-clock time at four processes per node.

[102] 5. One process per compute unit on both NUMA :
This approach mixes two of the earlier approaches. First,
only one core is allocated per compute unit and second, the
number processes is evenly distributed between NUMA
nodes. A job requesting four processes per XK6 node will
employ four cores in four separate compute units (one core
per compute unit) with two compute units per NUMA
node. In this case, performance is even through four proc-

esses per node and with a slightly larger wall-clock time at
eight processes per node, though still much faster than the
alternative approaches.

[103] It is well known that as larger numbers of cores are
employed per node, performance degrades and wall-clock
times increase, and in the end this will explain the less than
ideal performance on 1–8 processes in Figure 3. However,
what is the root cause of this inferior performance? Com-
parison of the approaches to allocating cores in Figure 18
suggests that (1) contention within the compute units is the
primary cause, and (2) contention between compute units
and between NUMA nodes impacts performance much
less. Contention between cores within a compute unit is
demonstrated by the default and all processes on single
NUMA node scenarios where wall-clock times jump imme-
diately at two processes per node, whereas the other three
scenarios remain constant at two processes per node, and
only the even distribution between NUMA increases at four
processes per node (since each NUMA employs two cores
in a single compute unit). Note also that the one process
per compute unit scenarios never exhibit the large increase
in wall-clock time. The slight growth in the orange bar
(one process per compute unit on a single NUMA) at four
processes per node is due to contention between single-
core compute units in a single NUMA. The rise in the
cyan-colored bar (one process per compute unit on both
NUMA) at eight processes per node demonstrates slight
contention between NUMA.

[104] It should be noted that contention within fully-
packed nodes (16 processes per node) is not fully reflected
in Figure 18 since the internodal communication employed
for the 1–8 process per node scenarios no longer exists
(i.e., at 16 processes per node, all cores reside on a single
node, whereas the lower process per node scenarios distrib-
ute cores across more than one node and thus require inter-
nodal communication). However, this degradation is likely
minimal considering the short hop between neighboring
nodes on a switch in the communication interconnect.

Figure 18. Comparison of wall-clock time versus proces-
sor core configuration on an Interlagos processor for the 49
K copper leaching scenario. ‘‘Default’’ refers to the results
presented in Figure 3.
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[105] Figure 19 demonstrates PFLOTRAN performance
employing 1–16 processes with alternative processor core
configurations. From these results, it is clear that the degra-
dation in performance between 1–8 cores is primarily due
to the contention within the node, most likely the conten-
tion between cores within a compute unit mentioned ear-
lier, as the 1 core per node scenario scaling is nearly linear
at 16 processes and the single core per compute unit (1 per
CU, . . . NUMA) scenarios also fair well. Thus, one could
argue that the lack of scalability at 1–8 processes in Figures
3 and 19 is primarily due to hardware limitations and less
algorithmic.

Appendix B: Summary of Problem Scenarios

[106] Additional details regarding the configuration of
the three example problems analyzed in this work are pre-
sented in Tables (B1–B3).

Figure 19. Wall-clock time for geochemical transport
versus process count for the 49 K copper leaching scenario
with alternative processor core configurations. ‘‘Default’’
refers to the results presented in Figure 3.

Table B1. Details of the Copper Leaching Scenarios

Scenario 49 K 3.1 M

Domain 16 m 3 16 m 3 128 m 16 m 3 16 m 3 128 m
Grid size 32 3 32 3 4 32 3 32 3 256
Number of primary

species
12 12

Number of secondary
species

32 32

Number of minerals 10 10
Total dofs 49,152 3,145,728
Initial time step size 0.001 y 0.001 y
Max. time step size 0.01 y 0.01 y
Simulation duration 2 y 2 y
Number of time steps 1512 1420
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