Table 1. List of space groups having only rotational symmetry elements (Sohncke groups) and the corresponding anti-Cheshire symmetry and limits for the optimal positioning of a molecule in the appropriate orientation.
The limits of the positioning region correspond to the asymmetric unit of the anti-Cheshire cell. x, y, z are fractional coordinates of the original cell. The symbol ‘Z’ relates to an infinitesimally small cell dimension in a particular direction. The location limits are somewhat modified from the version in Dauter (2013b ▶).
| Space group No. | Symbol | Anti-Cheshire symmetry | Molecule location limits |
|---|---|---|---|
| 1 | P1 | Z 31 | x, y, z = 1/2 |
| 3 | P2 | Z 12 | 0 x 1/4; 0 z 1/2; y = 1/2 |
| 4 | P21 | Z 12 | 0 x 1/4; 0 z 1/2; y = 1/2 |
| 5 | C2 | Z 12 | 0 x 1/4; 0 z 1/2; y = 1/2 |
| 16 | P222 | P222 | 0 x, y 1/4; 0 z 1/2 |
| 17 | P2221 | P222 | 0 x, y 1/4; 0 z 1/2 |
| 18 | P21212 | P222 | 0 x, y 1/4; 0 z 1/2 |
| 19 | P212121 | P222 | 0 x, y 1/4; 0 z 1/2 |
| 20 | C2221 | P222 | 0 x, y 1/4; 0 z 1/2 |
| 21 | C222 | P222 | 0 x, y 1/4; 0 z 1/2 |
| 22 | F222 | I222 | 0 x, y, z 1/4 |
| 23 | I222 | P222 | 0 x, y 1/4; 0 z 1/2 |
| 24 | I212121 | P222 | 0 x, y 1/4; 0 z 1/2 |
| 75 | P4 | Z 1422 | 0 x 1/4; x y 1/2 x; z = 1/2 |
| 76 | P41 | Z 1422 | 0 x 1/4; x y 1/2 x; z = 1/2 |
| 77 | P42 | Z 1422 | 0 x 1/4; x y 1/2 x; z = 1/2 |
| 78 | P43 | Z 1422 | 0 x 1/4; x y 1/2 x; z = 1/2 |
| 79 | I4 | Z 1422 | 0 x 1/4; x y 1/2 x; z = 1/2 |
| 80 | I41 | Z 1422 | 0 x 1/4; x y 1/2 x; z = 1/2 |
| 89 | P422 | P422 | 0 x 1/4; x y 1/2 x; 0 z 1/2 |
| 90 | P4212 | P422 | 0 x 1/4; x y 1/2 x; 0 z 1/2 |
| 91 | P4122 | P4222 | 0 x 1/4; x y 1/2 x; 0 z 1/2 |
| 92 | P41212 | P4222 | 0 x 1/4; x y 1/2 x; 0 z 1/2 |
| 93 | P4222 | P422 | 0 x 1/4; x y 1/2 x; 0 z 1/2 |
| 94 | P42212 | P422 | 0 x 1/4; x y 1/2 x; 0 z 1/2 |
| 95 | P4322 | P4222 | 0 x 1/4; x y 1/2 x; 0 z 1/2 |
| 96 | P43212 | P4222 | 0 x 1/4; x y 1/2 x; 0 z 1/2 |
| 97 | I422 | P422 | 0 x 1/4; 1/2 x y 1/2 + x; 0 z 1/2 |
| 98 | I4122 | P4222 | 0 x 1/4; 1/2 x y 1/2 + x; 0 z 1/2 |
| 143 | P3 | Z 1622 | 0 x 1/3; 0 y x/2; z = 1/2 |
| 144 | P31 | Z 1622 | 0 x 1/3; 0 y x/2; z = 1/2 |
| 145 | P32 | Z 1622 | 0 x 1/3; 0 y x/2; z = 1/2 |
| 146 | R3 | Z 1312 | 0 x 1/3; 0 y x; z = 1/2 |
| 149 | P312 | P622 | 0 x 1/3; 0 y x/2; 0 z 1/2 |
| 150 | P321 | P622 | 0 x 2/3; 0 y x/2; y 2x 1; 0 z 1/2 |
| 151 | P3112 | P6222 | 0 x 1/3; 0 y x/2; 0 z 1/2 |
| 152 | P3121 | P6222 | 0 x 2/3; 0 y x/2; y 2x 1; 0 z 1/2 |
| 153 | P3212 | P6422 | 0 x 1/3; 0 y x/2; 0 z 1/2 |
| 154 | P3221 | P6422 | 0 x 2/3; 0 y x/2; y 2x 1; 0 z 1/2 |
| 155 | R32 | R32 | 0 x 1/3; 0 y x/3; 0 z 1/2 |
| 168 | P6 | Z1622 | 0 x 2/3; 0 y x/2; y 2x 1; z = 1/2 |
| 169 | P61 | Z 1622 | 0 x 2/3; 0 y x/2; y 2x 1; z = 1/2 |
| 170 | P65 | Z 1622 | 0 x 2/3; 0 y x/2; y 2x 1; z = 1/2 |
| 171 | P62 | Z 1622 | 0 x 2/3; 0 y x/2; y 2x 1; z = 1/2 |
| 172 | P64 | Z 1622 | 0 x 2/3; 0 y x/2; y 2x 1; z = 1/2 |
| 173 | P63 | Z 1622 | 0 x 2/3; 0 y x/2; y 2x 1; z = 1/2 |
| 177 | P622 | P622 | 0 x 2/3; 0 y x/2; y 2x 1; 0 z 1/2 |
| 178 | P6122 | P6222 | 0 x 2/3; 0 y x/2; y 2x 1; 0 z 1/2 |
| 179 | P6522 | P6422 | 0 x 2/3; 0 y x/2; y 2x 1; 0 z 1/2 |
| 180 | P6222 | P6422 | 0 x 2/3; 0 y x/2; y 2x 1; 0 z 1/2 |
| 181 | P6422 | P6222 | 0 x 2/3; 0 y x/2; y 2x 1; 0 z 1/2 |
| 182 | P6322 | P622 | 0 x 2/3; 0 y x/2; y 2x 1; 0 z 1/2 |
| 195 | P23 | I432 | 0 x 1/4; x y, z 1/2 x |
| 196 | F23 | I432 | 0 x 1/8; x y, z 1/4 x |
| 197 | I23 | I432 | 0 x 1/4; x y, z 1/2 x |
| 198 | P213 | I4132 | 3/8 x 1/8; 1/8 y 1/8; max(x, y, y x 1/8) z y + 1/4 |
| 199 | I213 | I4132 | 3/8 x 1/8; 1/8 y 1/8; max(x, y, y x 1/8) z y + 1/4 |
| 207 | P432 | I432 | 0 x 1/4; x y, z 1/2 x |
| 208 | P4232 | I432 | 0 x 1/4; x y, z 1/2 x |
| 209 | F432 | I432 | 0 x 1/8; x y, z 1/4 x |
| 210 | F4132 | I432 | 0 x 1/8; x y, z 1/4 x |
| 211 | I432 | I432 | 0 x 1/4; x y, z 1/2 x |
| 212 | P4332 | I4132 | 3/8 x 1/8; 1/8 y 1/8; max(x, y, y x 1/8) z y + 1/4 |
| 213 | P4132 | I4132 | 3/8 x 1/8; 1/8 y 1/8; max(x, y, y x 1/8) z y + 1/4 |
| 214 | I4132 | I4132 | 3/8 x 1/8; 1/8 y 1/8; max(x, y, y x 1/8) z y + 1/4 |