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Abstract

The distribution and quantification of tetracycline, sulfonamide and beta-lactam

resistance genes were assessed in slaughterhouse zones throughout meat chain

production and the meat products; this study represents the first to report quantitatively

monitor antibiotic resistance genes (ARG) in goat and lamb slaughterhouse using a

culture independent approach, since most studies focused on individual bacterial

species and their specific resistance types. Quantitative PCR (qPCR) revealed a high

prevalence of tetracycline resistance genes tetA and tetB in almost all slaughterhouse

zones. Sulfonamide resistance genes were largely distributed, while beta-lactam

resistance genes were less predominant. Statistical analysis revealed that resistant

bacteria, in most cases, were spread by the same route in almost all slaughterhouse

zones, except for tetB, blaCTX and blaTEM genes, which occurred in few zones as isolated

‘hot spots.’ The sumof all analyzedARG indicated that slaughterhouse surfaces and end

products act as reservoirs of ARG, mainly tet genes, which were more prevalent in

slaughtering room (SR), cutting room (CR) and commercial meat products (MP).

Resistance gene patterns suggest they were disseminated throughout slaughterhouse

zones being also detected in commercial meat products, with significant correlations

between different sampling zones/end products and total resistance in SR, CR andwhite

room (WR) zones, and also refrigerator 4 (F4) and MP were observed. Strategically

controlling key zones in slaughterhouse (SR, CR and WR) by adequate disinfection

methods could strategically reduce the risks of ARG transmission and minimize the

issues of food safety and environment contamination.
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Introduction

Antibiotics have been routinely used for therapy, prophylaxis, animal growth

promotion and in agricultural operations for several decades. However, the over-

or in-appropriate use results in the selection of drug-resistant pathogens and

commensals in animals and the environment [1], with resistant microorganisms

spreading through water and food chain. As such, the prevalence and distribution

of antibiotic-resistant bacteria (ARB) have become a threat to food safety; the

surveillance and control of spread of antibiotic resistance genes (ARG)

throughout food chain has great relevance since consumers are increasingly aware

of concerns over antibiotic resistant bacteria in foods, especially those of animal

origin. Furthermore, several studies unequivocally supported the concern that use

of antibiotics in veterinary or in food animals (particularly non-therapeutic use)

impacts the health of people on farms and within the food chain [2–7].

There is a growing interest in ecological studies of antimicrobial resistance in

foodborne bacteria. Those bacteria are considered potential reservoirs of

resistance as a consequence of the complex transmission routes between farms and

consumers. The frequent transfer of resistance genes among host bacteria is

becoming more evident with molecular studies, which have shown the

distribution of the same gene in different bacteria of animal or human origin [7].

For example, the spread of ARG from animals to humans could be enhanced

within the food matrix and also within the human gastrointestinal tract [8–10] by

horizontal gene transfer of mobile elements such as plasmids, transposons,

integrons or phages [11–13]. In fact, serious public health hazards arise because of

the ability of many bacteria to acquire resistance traits to different antimicrobials.

Smith DeWaal and Vaughn Grooters [14] report that there has been a

significant increase in sales and distribution of the highly important classes of

antibiotics (tetracyclines, beta-lactams and sulfonamides) frequently used for

therapeutic and prophylactic purposes in food-producing animals. A recent

increase in antibiotic-resistant foodborne outbreaks highlights the emergence of

resistance [14]. However, the information available on the incidence of resistance

in foodborne bacteria is mainly based on phenotypic tests and culture-dependent

methods; quantification of ARG in food samples by culture-independent methods

should also be used to reveal if there is any real increase in resistance potential.

The main goal of the present study was to quantitatively track the frequency and

the distribution of ARG in different slaughterhouse surfaces throughout meat

chain production (and in the commercial meat products) by quantitative real-

time PCR for tetracycline, beta-lactam and sulfonamide resistance genes.

Furthermore, the present study determines whether relationships exist between

different ARG, and their source locations.

Quantification of Antibiotic Resistance Genes in Slaughterhouse
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Material and Methods

Samples

The samples were collected from a local goat and lamb slaughterhouse that is

representative of the region (Jaén, Spain), as described in a previous study by

Lavilla Lerma et al. (2013). Standard cleaning and disinfection procedures were

applied to sampling areas 12 h before the sampling. Briefly, different samples were

collected with sterile swabs from 100-cm2 surfaces in the following zones: entrance

(E), slaughtering-room (SR), refrigerator (F), cutting-room (CR), freezing-tunnel

(FrT) and white-room (WR, where meat products were packaged under

controlled environmental conditions). The samples were transported at 4 C̊ to the

laboratory, where sterile swabs were then immersed in 10 ml of sterile BHI (Brain

Heart Infusion, Scharlab, Barcelona, Spain) broth and incubated at 22 C̊ for 24 h

[15]. There was no observed growth resulting from the incubation. For the

present study, 1 ml of samples (each one in duplicate) was centrifuged and the

pellets were subjected to DNA extraction. In addition to slaughterhouse surfaces,

we examined five meat products (MP; MP1, minced beef; MP2-MP4, ham; MP5,

cooked ham) from different supermarkets in Jaén (Spain). Meat product samples

(5 g each) were diluted in 45 ml of sterile saline solution (0.85%), homogenized

for 3 min in a Stomacher 80 (Biomaster) and then 1 ml of this mixture was added

to 9 ml BHI and incubated at 22 C̊ for 4 h. The samples were processed, as

described above, for slaughterhouse samples.

DNA extraction

Total DNA was extracted from the pellets of all samples analyzed in the present

study by the method described by De los Reyes-Gavilan et al. [16]. Quality of

DNA samples was checked spectrophotometrically and then diluted 1/10 with

molecular biology grade water. The integrity of nucleic acids was assessed by

electrophoresis of 2 ml of each sample through a 1.2% agarose-TBE gel as

described by Sambrook et al. [17].

Real-time PCR assays for quantification of tetracycline, beta-

lactam and sulfonamide resistance genes

The distribution of nine gene determinants targeting tetracycline resistance (tet),

extended-spectrum beta-lactamases (bla), and sulfonamide resistance (sul) were

selected on the basis of the reported incremented resistance to such antibiotics in

foodborne bacteria. In particular, the following gene determinants were assayed:

two beta-lactam resistance genes (blaTEM and blaCTX), four tetracycline resistance

gene determinants (tetA, tetB, tetO and tetQ) and three determinants of

sulfonamide resistance (sulI, sulII and sulIII), and pheS (phenylalanyl-tRNA

synthase) gene universally present in all bacteria as a surrogate measure of

bacterial abundance. These genetic markers were selected as bio-indications of

relative, potential risks of ARB contamination in slaughterhouse. For each

resistance determinant, duplicate 25 ml reaction mixtures including 3.75 ml of
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DNA template (1/10), 1.25 ml of primer mixture at 10 mM (for each forward and

reverse primer, Table 1), 12.5 ml of 2x qPCR Master Mix with SYBR Green for the

BioRad iCycler (Primer design Ltd, Southampton, United Kingdom) and 7.5 ml

molecular-grade water were analyzed. Analyses were performed using a BioRad

iQ5 Real Time PCR Detection System and software (BioRad, Hercules, CA).

Reaction conditions included initial denaturation at 95 C̊ (1 min 30 sec for all

resistance genes and 2 min for pheS gene), and then 40 cycles of 95 C̊ (30 sec) for

tet and sul genes, 50 cycles of 95 C̊ (30 sec) for blaTEM and 45 cycles of 95 C̊

(30 sec) for blaCTX gene and 35 cycles of 95 C̊ (1 min) for pheS gene, annealing

temperatures (X˚C, Table 1) for 30 sec, and 72 C̊ for 30 sec for all genes except

pheS (for 35 sec).

All reactions were run with serially diluted specific standards of known quantity

for each gene as described elsewhere (Table 1) including negative control in each

run. The standard curve was generated by cloning gene segments into a plasmid

vector (TOPO-TA, Invitrogen-Life Technologies). Plasmids were purified

(Plasmid Mini Kit, Qiagen) and the DNA quantified with a UV spectro-

photometer (NanoDrop 1000; Thermo Scientific, United Kingdom), and serially

diluted to generate concentrations for standard curve [18]. Correlation

coefficients (r2) for the standards curves were .0.99 for calibration curves, the

efficiency varied from 95 to 103% and log gene abundance values were always

Table 1. Primers and conditions used in this study.

Target Primer Sequence (59-39) Annealing temperature ( C̊) Reference

pheS pheS 21-F CAYCCNGCHCGYGAYATGC 46 [19]

pheS 23-R GGRTGRACCATVCCNGCHCC

tet(A) TetA-F GCTACATCCTGCTTGCCTTC 55 [43]

TetA-R CATAGATCGCCGTGAAGAGG

tet(B) TetB-F TTGGTTAGGGGCAAGTTTTG 55 [43]

TetB-R GTAATGGGCCAATAACACCG

tet(O) TetO-F AACTTAGGCATTCTGGCTCAC 55 [43]

TetO-R TCCCACTGTTCCATATCGTCA

tet(Q) TetQ-F TTATACTTCCTCCGGCATCG 55 [43]

TetQ-R ATCGGTTCGAGAATGTCCAC

sulI SulI- F CGCACCGGAAACATCGCTGCAC 65 [37]

SulI- R TGAAGTTCCGCCGCAAGGCTCG

sul II SulII- F TCCGGTGGAGGCCGGTATCTGG 57.5 [37]

SulII- R CGGGAATGCCATCTGCCTTGAG

sul III SulIII- F TCCGTTCAGCGAATTGGTGCAG 61 [37]

SulIII- R TTCGTTCACGCCTTACACCAGC

blaCTX CTX-consensus primer F GCAGYACCAGTA ARGTKATGGC 58 Modified from [44]

CTX consensus primer R ATCACKCGGRTCGCCXGGRAT

blaTEM BlaTEM- F TCGGGGAAATGTGCG 50 [38]

BlaTEM- R GGAATAAGGGCGACA

doi:10.1371/journal.pone.0114252.t001
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within the linear range of detection. Antibiotic resistance gene (ARG) abundances

were normalized to pheS housekeeping gene abundances (a surrogate measure of

‘total bacteria’) [19] to minimize variance caused by differential extraction and

analytical efficiencies, and differences in background bacterial abundances. These

normalized values were then log-transformed to apply the Kolmogorov-Smirnov

test for normality.

Statistical analysis

All statistics were conducted using IBM SPSS Statistics version 19. Values of ARG

log-transformed among the studied zones were compared to determine significant

differences between them by a Tukey or a Games Howell test, depending to the

Levene test value. The ARG values for a given zone that had a p-value of ,0.05

were considered statistically significantly different.

Figure 1. Detection of different antibiotic resistance genes (tetracycline, sulfonamide and beta-lactam genes) in different slaughterhouse zones
and meat products.

doi:10.1371/journal.pone.0114252.g001
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To investigate the relationship between relative abundances in different zones

or different genes, Pearson correlation coefficients (r) were calculated; this

determined the extent to which values of two variables (zones or genes) were

linearly similar. Categorization of correlations between different antimicrobials

was based on Dancey and Reidy [20]; the strength of correlation was considered

‘strong’ when r.0.7, moderate when 0.4,r,0.6, and weak with r,0.3. In all

analyses, a P value of ,0.05 was considered significant for two-tailed tests.

Results and Discussion

Spatial variations of antibiotic resistance gene abundances in

goat and lamb slaughterhouse

Slaughterhouses comprise several zones where meat and product processing

occur, and each zone has characteristic environmental conditions and surface

exposures that may influence bacteria presence and retention. The flow of ARB

and their ARG throughout meat chain production has been documented in the

literature, mainly in poultry and swine slaughterhouses [21–23], and many studies

have focused on individual bacteria species and specific resistance traits [24, 25].

To our knowledge, this is the first report of the monitoring of antibiotic resistance

in the total microbiota present in goat and lamb slaughterhouse.

Many slaughterhouse surfaces were found to harbor different ARG. PCR

detected ARG in all zones (Fig. 1), with the entrance (E) and freezing tunnel (FrT)

being zones having the least resistance diversity detected (four of nine

determinants, 44%). Greatest diversities were found within the SR (slaughtering

room) and CR (cutting room), where surfaces had 8/9 gene determinants. In

terms of gene frequency on surfaces, the most widely distributed genes were sulIII

(found on 25 surfaces, 78% of the total sampled) and sulI-sulII-tetB (18–20

surfaces, 56–63%), while gene tetO (only in 5 surfaces, 16%) was detected least

frequently (Figs. 1–4). The tetB gene was the most prevalent being detected in 20 of

the 32 surfaces analyzed (8 of 9 zones analyzed), followed by tetA and tetQ genes

(14–15 samples of 6–7 zones) and tetO (8 samples of 4 zones) (Fig. 2); it, however,

was not detected in the entrance (zone E) (Figs. 1, 2B). Concerning commercial

meat products (MP), sulIII and tetA genes were detected in all or almost all

samples, respectively, while blaCTX was absent in all meat samples analyzed

(Figs. 1–4).

The distribution and broad presence of gene determinants creates great

concern, considering the potential risks associated with the spread of ARG

throughout meat chain production to end products. Although slaughtering and

meat handling operations follow rigorously good hygienic practices, the risk of

surface and end products contamination with ARB may occur.

Figure 2. Relative concentrations of tetracyline resistance genes (A, tetA; B, tetB; C, tetO; D, tetQ) in different slaughterhouse zones and meat
products.

doi:10.1371/journal.pone.0114252.g002
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Figure 3. Relative concentrations of sulfonamide resistance genes (A, sulI; B, sulII; C, sulIII) in different slaughterhouse zones and meat products.

doi:10.1371/journal.pone.0114252.g003
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To better understand the risks and the patterns of gene dissemination,

measurements of genes were further evaluated quantitatively. Absolute abun-

dances represent total genes swabbed per surface area (Figure 5). Highest

abundances were obtained with tetracycline genes, mainly tetB and tetQ genes,

which averaged (geometric mean) 105.5 and 104.8 genes/cm2 over the nine

slaughterhouse zones, respectively (Fig. 5A). While tetA and tetO showed an

average of 103.4 and 102.9 genes/cm2, respectively (Fig. 5A). Regarding sul gene

abundances in slaughterhouse, sulII was the most abundant (104.4 genes/cm2),

followed by sulI (104 genes/cm2) and sulIII (103.1 genes/cm2) (Fig. 5B). Similarly,

beta-lactam resistance gene blaTEM exhibited 103.0 genes/cm2, while blaCTX was

less abundant (101.0 genes/cm2) (Fig. 5C). When analysis was done with

commercial meat products, higher densities of all ARG except blaCTX were

obtained (Fig. 5).

Figure 4. Relative concentrations of beta-lactam resistance genes (A, blaCTX; B, blaTEM) in different slaughterhouse zones and meat products.

doi:10.1371/journal.pone.0114252.g004
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To approximate the percent resistance of total bacteria, ARG values were

normalized by pheS values to provide relative abundances (Figures 2–4). Different

determinants of the tet genes differed in prevalence among all slaughterhouse

zones analyzed and even between samples recovered from surfaces within the

same zone, thus strong spatial variations were detected depending on the ARG

and location (Fig. 2). Relative concentrations of tetB gene were higher in almost

all surfaces, oscillating between 1021.80 and 100 (genes/pheS) with gene densities

more noticeable in SR, CR, F2, F3, F4 and WR (Fig. 2B). However, we only

detected tetB gene in one sample of commercial meat products (MP2). Similarly,

tetA gene was detected in all zones except F1, Frt and F4 zones (Figs. 1 and 2A).

Relative concentrations of tetA gene were higher in both samples S4 and S9 of SR

zone (approximately 100 genes/pheS), followed by S13 and S14 of CR zone (1020.5

and 1020.4 genes/pheS), S21 of F2 zone and MP4 (about 1020.7 and 1020.8 genes/

pheS, respectively) (Fig. 2A). Furthermore, we detected tetA gene in other surfaces

(S1, S2, S3, S6, S8, S18, S19, S20, S22 and S30) belonging to different

slaughterhouse zones (E, SR, CR, F3 and WR) and also meat products (MP1, MP2

and MP3) (ranging between 1023.0 and 1021.1 genes/pheS) (Fig. 2A).

Lavilla Lerma et al. [15] showed that the same goat and lamb slaughterhouse

contained Gram negative bacteria (about 73% of which were Pseudomonas spp.,

Escherichia coli and non-identified Gram negative psychrotrophs), so the high

prevalence of tetA and tetB genes (each encoding an efflux pump) was in

agreement with those who reported tetracycline resistance in individual Gram

negative bacteria isolated from animal foods and slaughterhouse environments

[26–28]. Additionally the diversity of tet genes and their genetic mobility

contribute significantly to their dissemination among many different bacteria

[29].

Regarding tetracycline-resistance genes that encode ribosomal protection

proteins (tetO and tetQ), they are commonly found in intestinal tracts of cattle

and also in the environment; their quantification results were variable. TetO was

only detected in CR, F3, FrT, WR and meat products (Fig. 2C) and the relative

concentrations oscillated between 1020.74 and 100 (tetO/pheS) (Fig. 2C). However,

tetQ gene was distributed throughout slaughterhouse surfaces except F1 and CR

(Fig. 2D), being highly abundant in E (S1), SR (S7), F2 (S21), FrT (S23), WR

(S29) and meat product (MP2) (tetQ/pheS were almost 100), while in other

surfaces (SR, F2, F3, F4 and WR) quantification of tetQ gene was variable

(Fig. 2D).

The occurrence of sul genes varied and occurred in most slaughterhouse zones

(Fig. 3A). Comparing relative concentrations of sul genes, higher abundances were

found with sulII gene (1021.3 and 100 sulII/pheS) in most cases (Fig. 3B).

However, sulIII gene was more disseminated throughout slaughterhouse surfaces

Figure 5. Gene abundance (absolute values per ml) of all antibiotic resistance genes (A, tetracyclines
genes; B, sulfonamide genes; and C, beta-lactam genes) in different slaughterhouse zones and meat
products.

doi:10.1371/journal.pone.0114252.g005
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being detected also in meat products (Fig. 3C). The high prevalence of

sulfonamide resistance in animals and humans was largely reported all over the

world due to the frequent use of those antimicrobials in veterinary, and their

spread to humans via food chain was also documented [30, 31]. Furthermore, the

genetic localization of sul genes on mobile elements may explain their wide

distribution [32, 33].

Concerning beta-lactamases, relative concentrations of blaTEM gene was

quantitatively higher (approximately 100) than blaCTX and often detected in SR

(S10) and WR (S29), and absent in E, F2 and FrT (Fig. 4). However, blaCTX was

not detected in E, F1, F2, F3, FrT and meat products (Fig. 4A). The genes blaTEM

and blaCTX are widespread among Gram negative pathogens [34]; however, in the

present study despite the high prevalence of Gram negative bacteria in

slaughterhouse environment, lower concentrations of beta-lactamase genes were

detected in comparison with other genes.

Analysis of total antibiotic throughout meat chain production

Analyses of resistance genes provide quantitative information for risk assessment

in each slaughterhouse zone and also meat products. Analysis of the sum of

measured tetracycline resistance genes (tetA, tetB, tetO and tetQ), sulfonamide

resistance genes (sulI, sulII and sulIII) and beta-lactam resistance genes (blaTEM

Figure 6. Percentage of tetracycline, sulfonamide and beta-lactam total resistances.

doi:10.1371/journal.pone.0114252.g006
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and blaCTX) in different slaughterhouse zones and meat products showed that

tetracycline genes were most prevalent in goat and lamb slaughterhouse zones and

meat products (about two and ten orders of magnitude higher than sulfonamide

and beta-lactamase groups, respectively) (Fig. 6). This data is not surprising since

Table 2. Quantification of ARGs in different slaughterhouse zones and end products.

Gene Zone Mean ¡ SD Stat Signif Diff* Gene Zone Mean ¡ SD Stat Signif Diff*

sulI F2 21.875¡0.007 A

F3 21.730¡0.004 A

tetA F3 22.219¡0.019 A SR 21.662¡1.473 A

MP 21.870¡1.091 A F1 21.641¡0.049 A

E 21.550¡0.029 A F4 21.600¡0.845 A

WR 21.514¡0.012 A E 21.430¡0.055 A

SR 21.334¡1.000 A CR 21.165¡0.651 A

CR 21.260¡0.831 A WR 20.024¡0.002 A

F2 20.743¡0.033 A sulII F1 21.270¡0.055 A

tetB CR 21.081¡1.112 A

F1 21.797¡0.040 A MP 20.946¡0.181 A

MP 21.750¡0.040 A WR 20.786¡0.680 A

FrT 20.975¡0.032 AB F3 20.764¡0.048 A

F3 20.450¡0.523 BC SR 20.500¡0.932 A

CR 20.389¡0.297 BC F2 20.380¡0.026 A

SR 20.184¡0.318 BC F4 20.253¡0.162 A

WR 20.090¡0.019 C sulIII E 23.629¡0.060 A

F2 20.083¡0.005 C CR 22.910¡0.839 A

F4 20.034¡0.042 C MP 22.613¡0.657 A

F4 22.425¡0.732 A

F3 22.386¡0.555 A

tetO FrT 20.428¡0.017 A F1 22.318¡0.044 A

MP 20.330¡0.361 A SR 22.104¡0.910 A

WR 20.184¡0.014 A WR 21.437¡1.752 A

F3 20.123¡0.036 A blaCTX CR 25.276¡0.374 A

CR 20.060¡0.139 A FrT 25.218¡0.025A

WR 24.467¡0.472 AB

tetQ F4 23.713¡2.039 A SR 24.342¡0.574 AB

F4 23.459¡0.765 B

SR 22.397¡2.284 A blaTEM F3 23.652¡1.087 A

WR 21.709¡1.632 A MP 22.512¡0.055 AB

F3 21.129¡0.178 A F1 22.490¡1.675 AB

E 20.152¡0.033 A CR 22.095¡0.547 AB

MP 20.128¡0.019 A SR 22.036¡1.275 AB

F2 0.008¡0.030 A F4 21.873¡0.038 AB

FrT 0.004¡0.002 A WR 20.257¡0.022 B

*Different letters represent significant differences according to Tukey or Games- Howell tests (p,0.05).

doi:10.1371/journal.pone.0114252.t002
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tetracycline genes are often spread over many promiscuous conjugative genetic

elements [29, 35], thus detection of tet genes was possible in a diversity of

environmental bacteria (in soil, sludge, wastewater, river water, and agriculture)

[36–40] and foods [41]. The most important reservoir of tetracycline genes were

CR, SR and MP, while sulfonamide and beta lactamase groups were mainly

observed in SR (Fig. 6).

Statistical analysis

Statistical analysis of the relative concentrations of each ARG showed that the

differences were not significant (p.0.05) between slaughterhouse zones and meat

products concerning tetA, tetO, tetQ, sulI, sulII and sulIII genes (Table 2).

However, the differences in the relative concentrations of tetB, blaCTX and blaTEM

genes were significant (p,0.05) among slaughterhouse zones and also meat

Table 3. Correlations between the relative concentrations of ARGs in different slaughterhouse zones (per pheS gene; log-transformed).

Zone Entrance
Slaughtering
Room Fridge 1

Cutting
Room Fridge 2 Fridge 3

Freezing
Tunnel Fridge 4

White
Room

Meat
Products

Entrance 1

Slaughtering Room 0.052 1

Fridge1 0.427 0.672* 1

Cutting Room 20.234 0.735** 0.480 1

Fridge2 0.348 0.213 0.712* 0.795* 1

Fridge3 0.082 0.029 20.691* 0.056 20.268 1

Freezing Tunnel 0.332 0.025 0.296 0.180 0.190 0.310 1

Fridge 4 0.150 20.114 20.201 20.060 0.374 0.301 0.405 1

White Room 0.118 0.647** 0.084 0.609** 0.078 0.493 0.223 0.050 1

Meat Products 20.069 0.132 20.337 0.289 20.288 20.008 0.423 0.608** 20.064 1

*Asterisk denoted significant correlation at p,0.05 level (2- tailed).
**Double asterisk denoted significant correlation at p,0.01 level (2- tailed).

doi:10.1371/journal.pone.0114252.t003

Table 4. Correlations between relative concentrations of different ARGs (per pheS gene; log-transformed).

Gene blaCTX blaTEM tetA tetB tetO tetQ sulI sulII sulIII

bLaCTX 1

bLATem 20.318 1

tetA 0.212 20.514* 1

tetB 0.138 20.213 20.024 1

tetO 20.220 20.135 20.237 0.148 1

tetQ 20.126 0.168 20.385 20.007 0.641* 1

sulI 20.152 20.373 0.039 0.187 0.513 0.535* 1

sulII 20.224 0.134 20.128 0.348 20.025 0.295 0.336 1

sulIII 20.380 20.316 0.012 20.010 0.245 20.054 0.234 0.065 1

*Asteristik denoted significant correlation at p,0.05 level (2- tailed).

doi:10.1371/journal.pone.0114252.t004
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products (Table 2). The data suggests that resistance could be acquired by a spread

of genetic trait through slaughterhouse zones and also meat products; the

exception would be tetB, blaCTX and blaTEM genes, which appear as ‘hot spots’

within the meat processing stream. ARG may migrate with ARB throughout

slaughterhouse zones. Besides indirect transmission of resistant bacteria through

the food chain by consumption of animal foods, resistance acquisition can occur

by direct contact of farms and slaughterhouse workers and veterinarians, which

can be other vectors by which ARB are spread to the community and the

environment [42].

Significant positive correlations between different sampling zones/meat

products and the total relative concentrations of ARG were observed in CR and

F2, SR or WR; SR and F1 or WR; F1 and F2; MP and F4, while negative

correlations were only detected between F1 and F3 (Table 3). Furthermore, tetQ

positively correlated with tetO and sulI, however, tetA gene negatively correlated

with blaTEM gene (Table 4). In all cases, correlations of ARGs were highly

significant (p,0.01 or p,0.05). Moreover, a broad relationship between some

slaughterhouse zones (mainly between SR, CR and WR) throughout meat chain

production indicated flow of resistance genes by handling, carcasses, transport

and utensils.

Conclusions

Slaughterhouse surfaces and meat products act as large reservoirs of ARG

especially tet genes. The greatest risk appears to be located in cutting room (CR)

and slaughtering room (SR), with evidence of ARG (and ARB) ending up in end

products (MP). These data should importantly be considered to reduce the risk of

gene transfer throughout slaughterhouse zones. Furthermore, total resistance in

SR, CR and WR zones, and also F4 and MP strongly correlated, suggesting

resistance disseminated throughout slaughterhouse zones by carry-over contam-

ination; control of those key zones in slaughterhouse (SR, CR and WR) would be

a good strategy to reduce the risks of transmission and avoid food-safety problems

with food safety by adequate disinfection methods.
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