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In this work, we present an experimental design and analytical framework to measure the non-
parametric joint radius-length (R-L) distribution of an ensemble of parallel, finite cylindrical pores,
and more generally, the eccentricity distribution of anisotropic pores. Employing a novel 3D dou-
ble pulsed-field gradient acquisition scheme, we first obtain both the marginal radius and length
distributions of a population of cylindrical pores and then use these to constrain and stabilize the
estimate of the joint radius-length distribution. Using the marginal distributions as constraints al-
lows the joint R-L distribution to be reconstructed from an underdetermined system (i.e., more vari-
ables than equations), which requires a relatively small and feasible number of MR acquisitions.
Three simulated representative joint R-L distribution phantoms corrupted by different noise levels
were reconstructed to demonstrate the process, using this new framework. As expected, the broader
the peaks in the joint distribution, the less stable and more sensitive to noise the estimation of the
marginal distributions. Nevertheless, the reconstruction of the joint distribution is remarkably ro-
bust to increases in noise level; we attribute this characteristic to the use of the marginal distri-
butions as constraints. Axons are known to exhibit local compartment eccentricity variations upon
injury; the extent of the variations depends on the severity of the injury. Nonparametric estimation
of the eccentricity distribution of injured axonal tissue is of particular interest since generally one
cannot assume a parametric distribution a priori. Reconstructing the eccentricity distribution may
provide vital information about changes resulting from injury or that occurred during development.
[http://dx.doi.org/10.1063/1.4901134]

I. INTRODUCTION

The shape and size distribution of pores strongly in-
fluence transport and material properties of porous media.
Specifically, these morphological features are known to af-
fect the macroscopic electrical conductivity, thermal conduc-
tivity, hydraulic permeability, solute and solvent diffusivity, as
well as the mechanical stiffness, susceptibility to fracture, and
many other properties. Pores that are not spherical and largely
aligned with one another can result in macroscopic tensorial
relationships between generalized flows or fluxes and forces.1

In biology, shape and pore-size distribution (PSD)
strongly influence macroscopic functional properties. In the
nervous system, axons can be viewed as being imperme-
able cylindrical pores whose diameter is known to be cor-
related with the conduction velocity of nervous impulses.2, 3

In addition, the distribution of diameters of these axons, and
thus the distribution of velocities of nerve impulses, is a de-
terminant of the amount of information that can propagate
along a bundle of the axonal fibers or a fascicle.4 Further-
more, quantification of the compartment shape eccentricity,
in addition to its size, is particularly valuable in injured ax-
ons, as it is known to change following mechanical, chem-
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ical, or metabolic insults.5–8 This local variation in eccen-
tricity is usually referred to as “beaded” axonal morphology,
and its noninvasive characterization is of great value in as-
sessing the functional status of nervous tissue. In muscle,
another fibrous tissue, the individual components that com-
prise the muscle fiber are long tubular cells (myocytes). Their
length and cross-sectional area are proportional to the mus-
cle functional properties, such as force and velocity.9, 10 Cor-
tical bone is another biological porous material, which con-
tains anisotropic anatomic cavities of different sizes.11 These
anatomic microstructural variations have a significant impact
on the material properties of cortical bone12, 13 and are also
known to be affected by age and disease.14 Finally, in plant
biology, the sieve tubes, which are part of the phloem tissue
that conducts nutrients, can be viewed as elongated cylindrical
cells that are connected at the ends and separated by porous
plates.15 It has been proposed that these sieve tube elements
are critical in regulating water and nutrient flow, but a quan-
titative characterization of their structure and morphology is
still lacking.16

MR provides many types of contrasts that can be used
to determine features of pore microstructure and morphol-
ogy. For instance, diffusion MR of spin-labeled mobile
molecules within pores permit us to infer features of pore
shape from their net displacement distribution and its de-
pendence on diffusion time. The single pulsed-field gradient
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(s-PFG) experiment17 is most commonly used to obtain this
size and shape information. This experiment consists of a
single pair of magnetic field gradient pulses of duration δ,
with a separation � embedded within a conventional Hahn
spin-echo MR experiment. The restricting nature of pores
can result in estimates of average pore size18 or macroscopic
anisotropy.19

Special attention was given to different types of
anisotropy by Özarslan,20 as well as experimental and ana-
lytical strategies to measure them. The compartment shape
anisotropy (CSA) of a capped cylinder geometry can be
measured using a variant of the s-PFG MR experiment, the
double-PFG (d-PFG).21, 22 In this case, two PFG pairs with
amplitudes G1 and G2, and a prescribed relative angle be-
tween them, are applied successively, separated by a mixing
time, τm. The d-PFG experiment is sensitized to the tempo-
ral correlations of molecular motion within the two diffu-
sion periods and is sensitive to the direction of the applied
gradients.23 Using this experiment one can obtain the aver-
age pore size24–26 and the microscopic anisotropy.27 As the
relative angle can be varied, 3D information regarding the re-
stricting compartment can be obtained, including the CSA. In
the case of a capped cylinder geometry, both radius and length
would provide an exact estimate of eccentricity.20

In most cases, the MR signal is generated from an en-
semble of polydisperse pores. Estimating the PSD with an
assumed parametric distribution has a long history.28, 29 This
quantity can also be estimated empirically, without a priori
information (i.e., non-parametrically) using s-PFG NMR in
conjunction with solving a system of linear equations.30 In
this case, the stability and accuracy of the solution depend
on the degree of linear independence of the columns of the
transfer matrix (the matrix that describes the set of linear
equations), which effectively measures the degree of correla-
tion between the independent variables.31, 32 The solution to
this inverse problem of estimating the PSD becomes more
ill posed as the degree of linear dependence and condition
number increase. In an attempt to stabilize PSD estimation,
it was recently suggested that a d-PFG rather than a s-PFG
experiment be used.33 The former approach adds an inde-
pendent second dimension to the parameter space that acts
to constrain the estimates of pore shape and size. The theo-
retical benefits of the d-PFG in the context of PSD estima-
tion were discussed and demonstrated,33 along with strategies
for optimal experimental design,34 and later validated on cal-
ibrated cylindrical microcapillary phantoms, resulting in ac-
curate PSD estimation.35 This method was also applied to
drug-releasing bioresorbable porous polymer films, resulting
in the estimate of a continuous size distribution of spherical
pores.36

To date, PSD estimation has been obtained from pores
assumed to be either infinite cylinders or spheres, both hav-
ing an isotropic compartment shape. To derive a PSD of an
ensemble of anisotropic pores, the system must be described
by (at least) a bivariate size distribution instead of a one-size
variable distribution. A finite (capped) cylinder, for instance,
would be characterized by a 2D joint size distribution function
(R-L distribution), consequently having a marginal radius dis-
tribution (MRD) and a marginal length distribution (MLD).

In the present study, we propose a framework to estimate
the joint R-L distribution of a population of capped cylinders
by encoding specific planes of the specimen using the d-PFG
MR experiment. This unique experimental design allows us
to derive separately the complex spatial information from the
parallel and the perpendicular dimensions of the cylinder and
then use this information to reconstruct the joint R-L distribu-
tion. Two simulated representative joint distribution phantoms
corrupted by different noise levels were then used to recon-
struct the ground-truth joint R-L distribution.

II. THEORY

To date, only isotropic shapes have been considered in the
model that describes the nonparametric PSD.30, 35, 36 In those
cases, the general assumption was that the acquired signal is
the superposition of the calculated signals originating from
the different isotropic pores. The signal can be expressed as

Edata(�k) =
∑

i

�(Ri)E(�k,Ri), (1)

where �(Ri) are the volumetric fractions, or the PSD, which
satisfy

∑
i�(Ri) = 1. �k is the kth experimental parameter

set, i.e., a combination of G, δ, �, and the gradient direction,
which in a spherical coordinate system is given by the polar
and azimuthal angles θ and ϕ (Fig. 1(a), top). In this study,
we consider the 3D parametric space that is formed solely by
varying �, G, and ϕ/θ . Higher dimensional information (e.g.,
�1 �= �2 or variation of δ) can be easily incorporated into
this framework. We introduce a new parameter, τ , according
to which the amplitude of G2 is varied in a z axis experiment
(Fig. 1(c), top). This new experiment will be comprehensively
discussed in Subsection II B. Different �s are used to trans-
form Eq. (1) to a linear set of equations, which can be written
as the matrix equation

Edata(�) = E(�,R)�(R), (2)

where Edata(�) is the experimental data vector, �(R) is the
vector of relative volumetric fractions of each pore size, and

(a) (b) (c) (d)

FIG. 1. Illustration of the experimental framework. (a) A 3D overlook on
a capped cylinder ensemble (bottom), aligned with the z axis of a spherical
coordinate system (top). (b) In an x-y plane experiment, the polar angle, θ ,
is π /2, while ϕ is varied along with the direction of G2 (top), resulting in
structural information from the cross section of the cylinder (bottom). (c) In
a z axis experiment, the amplitude of G2 varies according to |G2| = Gcos (τ ),
while all other parameters are kept constant (top), resulting in structural in-
formation from the parallel direction of the cylinder (bottom). (d) A cross
section of the x-z plane, where both the radius and the length play a role
(bottom). Here, G2 changes its direction according to θ , while ϕ = π /2 (top).
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E(�,R) is the transfer matrix. �(R) is estimated by a non-
negative least-square algorithm with an added constraint, that∑

i�(Ri) = 1, or

min(||Edata(�) − E(�,R)�(R)||2) (3)

subject to ∑
i

�(Ri) = 1, �(Ri) ≥ 0. (4)

When an ensemble of capped cylinders with distributions
of radii, R, and lengths, L, is considered, the most compre-
hensive microstructural information is their joint R-L distri-
bution matrix, �(R,L). Owing to the separation of position
variables in both the parallel and perpendicular directions of
the capped cylinder, we suggest that the directionality of the
diffusion encoding can be used in the same manner to obtain
a complete microstructural description.

If one applies Eq. (1) in a straightforward manner to ob-
tain the joint distribution, �(R,L) is written as a vector that
includes the relative volumetric fractions of all the possible
R and L combinations. In such a case, the large number of
coefficients that would need to be estimated (i.e., number of
columns of the transfer matrix) would require an even larger
number of acquisitions, leading to an unstable solution and an
infeasible experimental time.

Instead, we suggest applying the concept of separation
of variables in an experimental way by a two-step exper-
iment, first independently finding the marginal radius and
length distributions and then estimating their joint distribu-
tion. The first step involves preforming a set of d-PFG exper-
iments with gradients encoding the orthogonal perpendicular
and parallel directions of the cylinder. Both marginal radius
and length distributions can be estimated only if the diffusion
encoding occurs exclusively in the perpendicular and parallel
directions, respectively. Then, to estimate the joint distribu-
tion, a d-PFG experiment set with gradients encoding the x-z
plane is performed, thus correlating the two orthogonal axes.
The marginal radius and length distributions are then used as
equality constraints for the estimation of the joint distribution.
This pipeline is depicted schematically in Fig. 2.

A. Marginal radius distribution

The use of gradients that encode the x-y plane by vary-
ing the azimuthal angle, ϕ, between the two PFG pairs, en-
ables the MRD to be estimated, while avoiding molecular dis-
placement information from the parallel direction (Fig. 1(b)).

FIG. 2. A block diagram of the experimental and analytical framework.
The marginal distributions (MRD, MLD) are used to estimate the joint
distribution.

Therefore, in this case, the length of the capped cylinder does
not affect the signal attenuation, and the 3D transfer matrix
Exy(�,R,L) is naturally reduced to a 2D matrix, since L is
degenerate

Exy(�,R,L) = Exy(�,R), (5)

and Eq. (1) turns into

Edata(�k) =
∑

i

�(Ri)E
xy(�k,Ri). (6)

�(R) can then be estimated from

Edata(�) = Exy(�,R)�(R), (7)

by solving Eq. (3).

B. Marginal length distribution

In the case of the MLD, to avoid any x-y component in
the acquired signal, the relative angle between the PFG pairs
cannot be varied and both pairs have to point to the z direc-
tion. Using a s-PFG experiment in the z direction might be
possible but would lead to only one experimental variable, G.
The disadvantages of using a 1D acquisition in the context of
pore size distribution estimation were previously studied and
discussed.33, 34 In addition to the extended information result-
ing from a 2D acquisition, the s-PFG experiment has a lower
number of maximal acquired data points, since the minimal
step size of G is limited by hardware. Instead, we suggest a
novel d-PFG acquisition with both PFG pairs applied over the
parallel direction, where |G1| = G and |G2| = Gcos (τ ); this
acquisition would lead to two experimental variables, G and
τ , as shown in Fig. 1(c). The values for |G2| were chosen ac-
cording to a cosine since it is the projection of the parallel
(to the cylinder’s symmetry axis) component of an arbitrary
gradient on the x-z plane.

When this sequence is used, the radius of the capped
cylinder does not affect the signal attenuation, and the 3D
transfer matrix Ezz(�,R,L) is naturally reduced to a two-
dimensional matrix, since R is degenerate

Ezz(�,R,L) = Ezz(�,L), (8)

and Eq. (1) turns into

Edata(�k) =
∑

i

�(Li)E
zz(�k,Li). (9)

�(L) can then be estimated from

Edata(�) = Ezz(�,L)�(L), (10)

by solving Eq. (3).

C. Joint radius-length distribution

Before continuing with the strategy to obtain the joint dis-
tribution, it is important to recognize the two possible cases in
a bivariate distribution. The cylinder radius and length can be
either statistically independent or dependent. If R and L are in-
dependent variables, their joint probability can be expressed
as

�(R,L) = �(R)�(L)T , (11)
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and since both marginal probabilities have been already
found, estimating �(R,L) becomes trivial.

But for the general case, a dependency may exist between
R and L. To obtain information that correlates the two orthog-
onal axes, parallel and perpendicular, we suggest using a d-
PFG experiment with gradient directions that vary in the x-z
plane, as shown in Fig. 1(d). Since in each measurement both
the perpendicular and parallel axes of the capped cylinder are
being encoded, we can no longer ignore one of the cylinder’s
dimensions. It follows that the transfer matrix is indeed 3D.
Furthermore, the probability density function now depends on
both R and L, and is in fact the joint distribution, �(R,L). In
this case, Eq. (1) can be written as

Exz(�k) =
∑

i

∑
j

�(Ri, Lj )Exz(�k,Ri, Lj ), (12)

where
∑

i

∑
j� (Ri, Lj) = 1.

As suggested earlier, to solve Eq. (12), the matrix
�(R,L) has to be written as a vector. Instead of the two vari-
ables, R and L, we shall define 
 = (R, L), which is a com-
bination of a specific R, L couple. Therefore, a system of N
radii and M lengths should have N · M (R, L) couples, 
.
Equation (12) is then reduced to

Exz(�k) =
∑

p

�(
p)Exz(�k,
p), (13)

where
∑

p�(
p) = 1.
Because the number of coefficients that must be esti-

mated here is N · M, which is normally large, the large
amount of acquired data that are required soon becomes in-
feasible. Adding equality constraints to Eq. (3) stabilizes the
inversion by limiting and narrowing the solution space of the
least square minimization. This vital process can be achieved
since we have obtained the two marginal distributions, �(R)
and �(L), which are related to the joint distribution as

∑
j

�(R,Lj ) = �(R) and
∑

i

�(Ri, L) = �(L).

(14)

Applying the equality constraints in Eq. (14) while solv-
ing the minimization problem in Eq. (3), leads to a stable
nonparametric estimation of the joint radius-length distribu-
tion. Thanks to these constraints, the system is allowed to be
underdetermined (i.e., more variables than equations) and yet
solvable.

The importance of CSA was discussed in the Introduc-
tion. The current framework allows a direct measurement of
the anisotropy variation within the sample in the form of
cylinder eccentricity distribution. If we follow Özarslan’s def-
inition of the finite cylinder’s eccentricity, ε = L/(2R),20 then
the eccentricity probability distribution, �(ε) can be deter-
mined from �(R,L). After defining an eccentricity matrix
E(Ri, Lj ) = Lj/(2Ri), the probability of each element from
the corresponding joint distribution matrix can be appropri-
ately assigned.

III. METHODS

A. Experimental parameters

The current framework requires d-PFG experiments per-
formed in both the z axis and the x-y and x-z planes aligned
with the principal axes of the capped cylinders, as discussed
in Sec. II and as illustrated in Fig. 1. In this case, it is eas-
ier to describe the gradient wave vectors within a spherical
coordinate system, as defined in Fig. 1(a) (top). Each gradi-
ent vector is defined by its amplitude; azimuthal angle, ϕ; and
polar angle, θ .

For the purpose of this study, the different experimen-
tal parameter sets, �, differed only by three parameters, �,
G, and the relevant angle (ϕ, θ , and τ in the case of the x-y
plane, x-z plane, and z direction, respectively). This methodol-
ogy creates a 3D parametric space for diffusion encoding. The
remaining experimental parameters, namely, δ = 3 ms and tm
= 0, were fixed. In addition, the diffusion coefficient
was set to be D = 1.8 μm2/ms. Since the wave vector
q = (2π )−1γ δG (γ is the gyromagnetic ratio of the labeled
spins) reflects the diffusion weighting and provides direct in-
sight to the physical dimension of the pore, we will use it
instead of G.

Although infinite possible experimental sets, �, exist,
a judicious choice of specific experimental parameters im-
proves the size distribution reconstruction.33 In the present
study, we have followed a version of a previously suggested
optimization framework.34 This iterative method is designed
to select experimental data sets that balance the need to lower
the inherent ill posedness and increase the MR signal inten-
sity. It is suggested that no single metric of the transfer matrix
(e.g., column rank) can be used to predict the quality of the es-
timation. Instead, the stability of the inversion is related to the
transfer matrix column rank, condition number, and signal-
to-noise ratio (SNR). In the present work, the selection of
the optimal experimental sets was done in two iterative steps.
First, an experimental parameters set that results in a full rank
transfer matrix is determined; then this set is used as an initial
guess while a search is carried out to find the experimental
set that minimizes the transfer matrix condition number. A
detailed description of the algorithm is provided elsewhere.34

The dimensions of the capped cylinders were assumed to
lie within the range of axonal tissue. In this case, the nomi-
nal size in the parallel axis of the cylinder is expected to be
larger than that in the perpendicular axis, therefore directly
affecting the signal attenuation profiles and leading to gener-
ally stronger attenuation in the z direction. This discrepancy
requires the application of weaker gradients in the z and x-z
experiments. For the estimation of the marginal distributions,
we have found that about ten times more equations than free
parameters are needed, a finding which is consistent with pre-
vious publications.34

1. x-y plane

In the x-y plane d-PFG experiment, the direction of
|q1| = q was (ϕ, θ ) = (0, π /2), while the direction of |q2| = q

was varied in the x-y plane, such that (ϕ, θ ) = (0 − π , π /2)
(Fig. 1(b)).
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FIG. 3. The optimized x-y plane acquisition scheme that includes 160 data
sets from the 3D parametric space spanned by q, ϕ, and �.

The transfer matrix, Exy(�,R), was generated with a
cylinder radius range of 0.6 μm ≤ R ≤ 10 μm with 0.6 μm
steps; this range led to 16 different pore radii. Upon opti-
mization, 160 different experimental sets were chosen from
the 3D parametric space created by ϕ = 0 − π , q = 366
− 871 cm−1, and � = 50, 75 ms. As an example, the op-
timized experimental sets used in the x-y plane d-PFG are
shown in Fig. 3.

2. z direction

In the z direction d-PFG experiment, the direction of both
|q1| = q and |q2| = q cos(τ ) was (ϕ, θ ) = (0, 0), while q2 was
varied according to τ .

The transfer matrix, Ezz(�,L), was generated with a
cylinder length range of 5 μm ≤ L ≤ 40 μm, with 1.4 μm
steps; this range led to 26 different pore lengths. Upon opti-
mization, 240 different experimental sets were chosen from
the 3D parametric space created by τ = 0 − π , q = 60
− 594 cm−1, and � = 50, 75 ms.

3. x-z plane

Two versions were used in the x-z plane d-PFG experi-
ment: (1) the direction of |q1| = q was (ϕ, θ ) = (0, 0), while
the direction of |q2| = q was varied in the x-z plane, such that
(ϕ, θ ) = (0, 0 − π ); (2) the direction of |q1| = q was (ϕ, θ )
= (0, π /2), while the direction of |q2| = q was varied in the
x-z plane, such that (ϕ, θ ) = (0, π /2 − 3π /2).

The transfer matrix, Exz(�,R,L), was generated with
the same R and L steps used to generate Exy(�,R), and
Ezz(�,L), respectively, which led to 416 different (R, L) com-
binations. Upon optimization, 150 different experimental sets
were chosen from the 3D parametric space created by θ = 0
− 3π /2, q = 59 − 623 cm−1, and � = 50, 75 ms.

The typical diffusion length, LD = √
2D� = 16.4 μm,

is shorter than the maximal considered length (40 μm). Rep-
resenting the mean displacement of free diffusing molecules,
LD should not be used as the maximal restricting dimension,
since this assumption implicitly suggests that for a compart-
ment with L > LD, all molecules experience Gaussian diffu-
sion. However, while the mean displacement of the ensemble
of spins is known, the spins are uniformly distributed within

the compartment, and so are their initial positions. When the
first diffusion gradient is applied, spins that are close to the
compartment boundary do experience restriction, and they are
responsible for the deviation from Gaussian diffusion even
when L � LD. A simulation that demonstrates this deviation
is provided in the Appendix.

4. Inversion details

All implementations of the theory were performed with
Matlab R© (R2013a, The MathWorks, Natick, MA) in-house
algorithms. To form the transfer matrix, all of the signal at-
tenuation curves were generated with the multiple correlation
function (MCF) method,37 which was later extended to de-
scribe d-PFG MR experiments.38 The capped cylinder geome-
try considered in this article is envisioned as a combination of
two parallel plates and a cylinder whose symmetry axis is ori-
ented along the z-direction (Fig. 1), as previously proposed.20

The partial volumetric fraction vector, �, was then obtained
by implementing a non-negative least-square algorithm with
an added constraint, that

∑
i� i = 1 (and for the joint distri-

bution, the additional equality constraint in Eq. (14)), using
the lsqlin Matlab function. Note that no regularization was
used in the fitting process. For the moment, we avoid using
regularization methods since they are problem specific, and
the selection of the regularization parameter may affect the
results.

Because of the equality constraints, the reconstruction
of the joint distribution was possible with fewer equations
than variables, namely, 150 and 416, respectively. The sta-
bility of this underdetermined system results in a relatively
low number of acquisitions and thus a feasible experimental
design.

Throughout the study the estimation quality was assessed
based on the Jensen difference39 between the theoretical and
estimated PSDs. The Jensen difference metric is a symmet-
ric version of the Kullback-Leibler divergence, but it always
yields a finite value. The difference between two PSDs, Q and
P, is defined as40

dJD =
∑

i

[
Pi ln(Pi) + Qi ln(Qi)

2

−
(

Pi + Qi

2

)
ln

(
Pi + Qi

2

)]
. (15)

The Jensen difference metric was chosen since it is a well-
established method of measuring the similarity between two
probability distributions.

B. Simulated joint distribution phantoms

In the case of axon bundles, there are pore size distribu-
tions that appear to be lognormal or multimodel, as in many
distributions occurring in nature and granular media.4 This
notion had led us to use a weighted linear combination of bi-
variate lognormal distribution functions to form two joint R-
L distribution phantoms (Figures 4(a) and 4(b)). In addition,
a more general R-L distribution was considered (Fig. 4(c))
to demonstrate the power of the presented approach.
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FIG. 4. Joint R-L distribution phantoms representing two realistic cases of
microstructure: (a) five narrow peaks (referred to as “dense-narrow”) and (b)
three broad peaks (referred to as “scattered-broad”) in the R-L space, while
in (c), a more general and demanding distribution is considered (referred to
as “random-diagonal”).

While this distribution is clearly not realistic, its marginal
radius and length distributions have very few non-negative
coefficients, thus making the estimation process more
challenging.

The general form of the lognormal probability density
function was

f (R,L) = 1

2πRLσ̃Rσ̃L

√
1 − ρ2

(
exp

[
− 1

2(1 − ρ2)

×
[(

log(R) − R̃0

σ̃R

)2

− 2ρ

(
log(R) − R̃0

σ̃R

)

×
(

log(L) − L̃0

σ̃L

)
+

(
log(L − L̃0

σ̃L

)2]])
, (16)

where

σ̃x =
[

log

(
1 + σ 2

x

x2
0

)] 1
2

,

x̃0 = log(x0) −
(

σ̃ 2
x

2

)
.

x0 and σ x are the mean and standard deviation of either R or
L, and ρ is the correlation coefficient of log (R) and log (L).

The following three joint R-L distribution phantoms were
simulated:

1. Dense-narrow peak distribution: Five bivariate lognor-
mal probability density functions, as shown in Fig. 4(a),
with the following parameters: centers (all in μm) (R0,
L0) = (2.0, 10.4), (2.2, 32.4), (9.5, 32.2), (5.5, 21.0),
(5.5, 33.5); standard deviations (all in μm) (σ R, σ L)
= (0.25, 1.5), (0.30, 2.0), (0.40, 1.1), (0.30, 2.0), (0.20,
1.0); correlation coefficients ρ = (0.5, 0.5, −0.7, 0, 0);
and relative fractions 0.25, 0.15, 0.25, 0.2, 0.15.

2. Scattered-broad peak distribution: Three broad bivari-
ate lognormal probability density functions, as shown in
Fig. 4(b), with the following parameters: centers (all in
μm) (R0, L0) = (3.0, 12.0), (3.2, 38.4), (8.5, 25.2); stan-
dard deviations (all in μm) (σ R, σ L) = (0.50, 3.0), (0.80,
3.0), (0.65, 2.5); correlation coefficients ρ = (0.35,
−0.25, 0.55); and relative fractions 0.25, 0.25, 0.50.

3. Random-diagonal peak distribution: Six narrow bivari-
ate lognormal probability density functions, as shown in
Fig. 4(c), with the following parameters: centers (all in
μm) (R0, L0) = (1.0, 7.4), (2.7, 13.4), (4.4, 19.4), (6.0,
25.4), (7.7, 31.4), (9.4, 37.4); all with the same standard
deviations (in μm) (σ R, σ L) = (0.20, 0.8) and correlation
coefficients ρ = 0; the relative fractions were randomly
generated and were 0.15, 0.11, 0.21, 0.17, 0.25, 0.11.

To approach the continuous nature of an actual size dis-
tribution, the signal attenuation profile, Edata(�), was gener-
ated using an appropriate transfer matrix with very fine, equal-
sized spatial steps of 0.2 μm in both R and L. In addition, all
of the generated signal curves were corrupted by Gaussian
white noise. For each distribution, two noise standard devi-
ations were analyzed, namely, 0.5% and 1% relative to the
signal attenuation without any diffusion gradient applied.

IV. RESULTS

The joint R-L distribution of capped cylinders was es-
timated after following the steps described schematically in
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FIG. 5. The theoretical (solid surface) and estimated (bins) joint R-L distribution of the dense-narrow peak distribution phantom with a noise standard deviation
of 0.5%, without the use of the equality constraints.

Fig. 2. Three joint distributions were simulated (Fig. 4), ac-
counting for different peak widths and separations.

A. Advantage of constraints

First, it is important to provide clear evidence that the
use of the marginal radius and length distributions as equal-
ity constraints in the joint distribution estimation improves the
results. To this end, the estimation of the joint distribution was
performed without using the marginal distributions. Further-
more, a fair comparison would have to include in the estima-
tion process all of the data points from the x-y plane and the z
direction, along with the x-z plane acquisition originally pro-
posed to estimate the joint distribution.

Because the underlying data sets of the marginal distri-
butions are included, the transfer matrix becomes overdeter-
mined (all 160, 240, and 150 experimental sets from the x-y
plane, z direction, and x-z plane, respectively).

The dense-narrow peak distribution phantom with a noise
standard deviation of 0.5% was used for the comparison. This

particular phantom was selected since it represents the “easi-
est” case for estimation because of the relatively small number
of non-zero elements, and the low noise level.

In Fig. 5, the theoretical joint distribution (solid surface)
and the estimated one (bins) are shown after the minimiza-
tion problem in Eq. (3) has been solved without the equality
constraints. Fig. 5 should be compared to Fig. 8(a).

B. Estimation of marginal and joint distributions

As described above, the MRD was estimated from an x-
y plane d-PFG experiment. In Fig. 6, the theoretical MRDs
of all of the phantoms were drawn as a function of the ra-
dius (solid line), while the estimated MRDs were overlaid
on it (bins). The MRDs of the narrow peak distribution in
Fig. 4(a), presented in Figures 6(a) and 6(d), correspond
to noise standard deviations of 0.5% and 1%, with Jensen
differences of 0.0393 and 0.0431, respectively. The MRDs
of the broad peak distribution in Fig. 4(b), presented
in Figures 6(b) and 6(e), correspond to noise standard
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deviations of 0.5% and 1%, with Jensen differences of
0.0653 and 0.1032, respectively. Finally, the MRDs of the
random-diagonal peak distribution in Fig. 4(c), presented in
Figures 6(c) and 6(f), correspond to noise standard devia-
tions of 0.5% and 1%, with Jensen differences of 0.0764 and
0.0867, respectively.

Next, the MLD was estimated from a z-direction d-PFG
experiment. In Fig. 7, the theoretical MLDs of all of the phan-
toms were drawn as a function of the radius (solid line), while
the estimated MLDs were overlaid on it (bins). The MLDs
of the narrow peak distribution (Fig. 4(a)) are presented in
Figures 7(a) and 7(d); they correspond to noise standard de-
viations of 0.5% and 1%, with Jensen differences of 0.0524
and 0.0807, respectively. The MLDs of the broad peak distri-
bution in Fig. 4(b), presented in Figures 7(b) and 7(e), cor-
respond to noise standard deviations of 0.5% and 1%, with
a Jensen differences of 0.0480 and 0.1185, respectively. Fi-
nally, the MLDs of the random-diagonal peak distribution in
Fig. 4(c), presented in Figures 7(c) and 7(f), correspond to
noise standard deviations of 0.5% and 1%, with Jensen differ-
ences of 0.1131 and 0.1197, respectively.

Unless the radii and lengths of the ensemble of cylinders
are statistically independent, the marginal distributions pro-
vide only a fragment of the microstructural information. An
x-z plane d-PFG experiment should be used to obtain the full
description from the joint R-L distribution. In Fig. 8, the theo-
retical (solid surface) joint distributions of all of the phantoms
and the estimated ones (bins) are shown. The narrow peak R-L
distributions are presented in Figures 8(a) and 8(b); they cor-
respond to noise standard deviations of 0.5% and 1%, with
Jensen differences of 0.2703 and 0.2774, respectively. The
broad peak distributions presented in Figures 8(c) and 8(d),
correspond to noise standard deviations of 0.5% and 1%,
with Jensen differences of 0.3407 and 0.3464, respectively.
Finally, the random-diagonal peak distributions presented in
Figures 8(e) and 8(f), correspond to noise standard devia-

tions of 0.5% and 1%, with Jensen differences of 0.2343 and
0.2184, respectively.

The influence of added noise can be seen by following the
changes in the Jensen differences. For the MRDs, the SNR de-
crease resulted in a Jensen difference increase of 10%, 58%,
and 13%, for the narrow, broad, and diagonal peak distribu-
tions, respectively. For the MLDs, the SNR decrease resulted
in a Jensen difference increase of 54%, 147%, and 6%, for
the narrow, broad, and diagonal peak distributions, respec-
tively. Interestingly, for the joint distributions, the SNR de-
crease resulted in a Jensen difference increase of only 2.6%
and 1.7% for the narrow and broad distributions, respectively,
and a 6.8% decrease for the diagonal peak distribution.

V. DISCUSSION

We have presented an experimental design and analytical
framework to estimate the nonparametric joint radius-length
distribution of an ensemble of capped cylinders. The major
innovations are the use of a 3D d-PFG MR acquisition to
obtain the marginal radius and length distributions and then
employing these as equality constraints in the estimation of
the joint R-L distribution. The suggested framework exploits
the ability to acquire the MR signal from orthogonal cross
sections of the pore by selectively applying the diffusion gra-
dients along different directions. The 3D d-PFG experiment
can be decomposed into three steps. First, the direction of the
diffusion gradients is kept in the x-y plane, allowing us to es-
timate the MRD by treating the capped cylinder as an infinite
one. Second, the d-PFG gradient pairs are applied along the
z axis, so that the MLD is estimated by treating the capped
cylinders as parallel plates. The final step involves applying
gradients in the x-z plane, which results in MR signal attenu-
ation that is influenced by the distribution of both pore length
and radius. Although there are many coefficients to estimate
in the joint R-L distribution, a relatively small number of
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FIG. 8. The theoretical (solid surface) and estimated (bins) joint R-L distributions of all of the phantoms. Dense-narrow distribution with noise standard
deviations of (a) 0.5% and (b) 1%. Scattered-broad distribution with noise standard deviations of (c) 0.5% and (d) 1%. Random-diagonal distribution with noise
standard deviations of (e) 0.5% and (f) 1%.

acquisitions is needed to reconstruct it. In fact, the transfer
matrix that is used to obtain the joint distribution can be un-
derdetermined, thanks to the use of the previously estimated
MRD and MRL as equality constraints.

Three joint R-L distribution phantoms, exhibiting a range
of pore morphologies, were used to demonstrate the versatil-
ity of the proposed framework. The first two cases represented
realistic scenarios for axonal morphology, and contained joint
distributions with five narrow peaks (referred to as “dense-
narrow”) and three broad peaks (referred to as “scattered-
broad”) in the R-L parameter space. The third phantom
(referred to as “random-diagonal”) contained a more gen-
eral R-L distribution in an attempt to establish the power of
the presented approach. In all cases, the MRDs, MLDs, and
joint R-L distribution were estimated subject to different noise
(SNR) levels (σ = 0.005, 0.01).

Estimation without constraints was performed to deter-
mine that using the marginal radius and length distributions

as equality constraints in the joint distribution estimation in-
deed improves the results. The dense-narrow distribution with
σ = 0.005 case was used as a phantom because of the rela-
tively small number of non-zero elements and the low noise
level. This step was done without the use of the marginal dis-
tributions as equality constraints but did include all 160, 240,
and 150 experimental sets from the x-y plane, z direction, and
x-z plane, respectively. The resulting joint distribution recon-
struction is clearly inaccurate, as two out of the five peaks are
missing, and the rest of the estimated peaks are much broader
than predicted (Fig. 5).

In contrast, when using the equality constraints, the re-
construction of the dense-narrow peaks proved fairly stable to
noise level increases for both the marginal and joint distribu-
tions. This stability can be seen qualitatively from Figures 6–
8, and quantitatively from the minor changes in the Jensen dif-
ference (a 10%, 54%, and 2.6% change for the MRD, MLD,
and joint, respectively) due to decreases in the SNR.
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With the exception of the joint distribution estimation,
the reconstructions of the scattered-broad peak distributions
were sensitive to decreasing SNR, for both marginal distri-
butions. Generally, as the size distribution becomes broader,
including a greater number of non-zero values, reconstruction
of the peak distribution becomes less stable. Therefore, large
standard deviations that result in wider peaks along with low
SNR should be expected to yield estimates with lower accu-
racy. Even though the Jensen difference increased by 58% and
147% for the MRD and MLD, respectively, it only increased
by 1.7% for the joint distribution.

The random-diagonal phantom provided a test case in
which both of the marginal distributions always have more
non-zero than zero elements, with a random value amplitude.
This case also proved fairly stable to noise level increases as
can be seen from the minor changes in the Jensen difference
(a 13%, 6%, and 6.8% change for the MRD, MLD, and joint
distribution, respectively) due to decreases in the SNR.

One of the advantages of using the marginal distributions
as equality constraints is that they reduce the number of un-
known parameters in the joint distribution. It is therefore im-
portant to look at the number of non-negative elements found
during estimation of the marginal distributions, since they will
later determine the remaining unknown parameters in the joint
distribution estimation process. For the dense-narrow peaks,
the marginal distributions reveal that there are about 8 and 13
non-zero radii and lengths, respectively. With these as equal-
ity constraints, there are 104 remaining unknowns for the joint
distribution, effectively making the system overdetermined
(the x-z experiment had 150 data sets). This is not the case
for the scattered-broad and random-diagonal distributions, for
which there are 276 and 230 remaining unknowns, respec-
tively, making the system underdetermined. The robustness
of the joint R-L distribution to noise level and standard de-
viation is remarkable since the estimation is performed with
what is potentially a very underdetermined system (416 par-
tial volume elements).

The ranges of radii and lengths within the joint distribu-
tion phantoms were based on beaded axonal morphologies,
and the expected ranges of these values such a specimen may
contain.8 Little information regarding the shape of the joint
distribution of beaded axons is currently available; therefore
there is no basis or a priori information to impose for assum-
ing a particular parametric size or shape distribution. Further-
more, it is reasonable to posit that severity of the injury may
affect the form of the joint R-L distribution; therefore, assum-
ing a specific parametric distribution is not warranted. All of
the estimated marginal and joint distributions are nonpara-
metric, and, therefore, not based on any assumed pore size or
eccentricity.

As previously shown,33, 34 a judicious choice of specific
experimental parameters, and/or increased dimensionality of
the parametric space (by varying other new salient param-
eters, e.g., δ) can improve the stability of the size distri-
bution estimation. For the purpose of introducing the cur-
rent framework, a d-PFG 3D parameter space of indepen-
dent experimental variables was assumed, from which the
values of q, ϕ/θ /τ , and � were selected according to an
optimization scheme described in Sec. III. The optimized

data point sets from the x-y plane d-PFG experiment are
shown in Fig. 3. Other experimental design optimization
schema can be incorporated into the joint radius-length dis-
tribution estimation framework, as an additional preliminary
step.

It has been previously shown41 that a s-PFG experiment
with a varying diffusion period is equivalent to a d-PFG exper-
iment to the second moment of the total signal decay. While
an important observation, the d-PFG experiment is preferable
for the purpose of resolving the PSD. The d-PFG experiment
is uniquely suited to pore size and shape characterization. The
ability to perform the d-PFG experiment in a chosen phys-
ical plane is a key element that enables the estimation of
the joint radius-length distribution. In addition, the theoret-
ical advantages of the d-PFG over the s-PFG experiment in
the context of the pore size distribution estimation problem
were previously shown and discussed,33, 34 and later exper-
imentally demonstrated.42 The application of two PFG pairs
(i.e., d-PFG) as opposed to one (i.e., s-PFG) results in a higher
sensitivity to different pore sizes, making the solution to this
inverse problem less ill posed. Moreover, use of the d-PFG
experiment leads to more and new information, increasing
the dimensionality of the column space of the transfer matrix,
making the estimation more robust.

The underlying assumption behind the present method is
that when it is used in neural tissue, specifically white matter,
axons are coherently oriented finite cylinders. In the case of
brain white matter tissue, fascicles containing axons are ex-
pected to take on all possible orientations within an imaging
volume. Two general cases of cylinder orientation can be en-
visioned, namely, parallel cylinders of unknown direction and
randomly oriented cylinders. A preliminary diffusion tensor
imaging (DTI) scan43 can be used to identify the case in hand.
The amount of anisotropy resulting from the DTI experiment
is related to the orientation coherence within a voxel, as ran-
domly oriented cylinders would appear to be isotropic. After
identifying and establishing the suitable orientation descrip-
tion, we suggest two experimental and analytical strategies to
address the problem.

If the cylinders are found to be parallel with a varying
orientation over different voxels, an adjustment to the exper-
imental design is necessary. Komlosh et al.44 used a 3D gra-
dient sampling scheme that involves the application of the
current circular d-PFG acquisition in different orientations,
similar to the design of DTI experiments. The principal fiber
orientation in each voxel can then be calculated from a sub-
set of these measurements (or from the previous DTI scan),
and the projection of the data onto the desired plane can be
used and analyzed. Although costly in experimental time, this
strategy is especially well suited for the joint distribution es-
timation framework, since a 3D d-PFG acquisition is already
being used.

If the cylinders are found to be randomly oriented, one
can use the current experimental framework and address the
orientation distribution with a slight analytical addition. A
uniform orientation distribution (i.e., random orientation) of
cylinders can be assumed,20 thus modifying the calculation
of the signal attenuation constructing the transfer matrix.
Evidently, the isotropic nature of the macrostructure would
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eliminate the possibly of decoupling R and L, and obtaining
the marginal distributions. A more complicated orientation
distribution (i.e., not random) would require additional free
parameters and is out of the scope of this work.

The determination of the joint radius-length distribution
permits direct quantification of the CSA. This framework was
introduced using the capped cylinder geometry, but can be im-
plemented for any anisotropic pore shape that is solvable with
the MCF method (e.g., ellipsoids with different major and mi-
nor axes). Measuring the CSA of injured (beaded) axons may
help to characterize and quantify the amount of damage to the
tissue and shed light on the injury mechanism and the possible
microstructural changes that may occur following the injury.
To adapt the model to real nervous tissue, additional compo-
nents can be added to the current capped cylinders, such as a
distribution of infinite cylinders, representing healthy axons,
and a Gaussian extracellular diffusion compartment. Such a
model may provide vital information about changes follow-
ing injury, or even during development.

Diffusion weighed MR techniques have already been
used to determine skeletal muscle architecture.45–47 The
length and cross-sectional area of myocytes are structural fea-
tures that are proportional to muscle force and velocity that
can be directly obtained from a joint radius-length distribu-
tion. Following changes in the joint distribution may help to
explain the way that muscle tissue responds to freezing and
thawing alternations in food sciences applications or help ex-
plain and improve tissue preservation in transplantation appli-
cations. The presented framework may also be used to directly
measure noninvasively the CSA of sieve tube elements, thus
shedding light on nutrient translocation within plants.

ACKNOWLEDGMENTS

This work was supported by funds provided by the In-
tramural Research Program of the Eunice Kennedy Shriver
National Institute of Child Health and Human Development
(NICHD). The authors would like to thank Dr. Michal Kom-
losh and Dr. Alexandru Avram for the helpful discussions.
D.B. would like to thank Dr. Uri Nevo for his advice and guid-
ance. We thank L. Salak for editing the paper.

APPENDIX: MAXIMAL CYLINDER SIZE

It is important to discuss the validity of the selected
range of radii and lengths in this work (0.6 μm − 10 μm and
5 μm − 40 μm, respectively). The relevant experimental pa-
rameters, namely, �min = 50 ms and D = 1.8 μm2/ms, de-
termine the largest mean ensemble displacement according
to LD = √

2D� = 16.4 μm. It was previously suggested30

that the product of the Einstein diffusion formula be used as
the maximal restricted dimension. This assumption implic-
itly suggests that for any larger restricted dimension, water
molecules experience Gaussian (i.e., free) diffusion. In our
case, if one adopts this suggestion, the upper boundary of the
possible cylinder radii and lengths has to be 16.4 μm or lower.
The MCF signal calculation framework, which is capable of
handling arbitrary experimental parameters, can be used to
check the validity of this upper boundary.
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FIG. 9. Signal attenuation from capped (solid lines) and infinite cylinders
(dashed line). Three different lengths of finite cylinders are presented, where
all but one is subject to L > LD.

A d-PFG z-direction experiment using the current study’s
experimental parameters and q = 300 cm−1 was simulated,
both with capped- and infinite-cylinder geometries. In the
capped-cylinder case, three representative lengths were cho-
sen, while all but one were subject to L > LD. It is clear from
the simulation results (Fig. 9) that even though the length
of the cylinder considerably and excessively violates LD, the
signal attenuation curves do not resemble those that result
from freely diffusing spins in the cylinder’s parallel axis. It
is therefore incorrect to assume Gaussian diffusion along the
restricted direction. It is clear that the use of Lmax = 40 μm in
our case is valid.
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