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Abstract

Horizontal gene transfer (HGT) is widespread amongst prokaryotes, but eukaryotes tend to be far 

less promiscuous with their genetic information. However, several examples of HGT from 

pathogens into eukaryotic cells have been discovered and mimicked to improve non-viral gene 

delivery techniques. For example, several viral proteins and DNA sequences have been used to 

significantly increase cytoplasmic and nuclear gene delivery. Plant genetic engineering is 

routinely performed with the pathogenic bacterium Agrobacterium tumefaciens and similar 

pathogens (e.g. Bartonella henselae) may also be able to transform human cells. Intracellular 

parasites like Trypanosoma cruzi may also provide new insights into overcoming cellular barriers 

to gene delivery. Finally, intercellular nucleic acid transfer between host cells will also be briefly 

discussed. This article will review the unique characteristics of several different viruses and 

microbes and discuss how their traits have been successfully applied to improve non-viral gene 

delivery techniques. Consequently, pathogenic traits that originally caused diseases may 

eventually be used to treat many genetic diseases.
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1. Introduction

Horizontal gene transfer (HGT) is defined as the exchange of genetic material between 

different species. HGT occurs frequently between prokaryotes, allowing them to quickly 

adapt to environmental changes by sharing genes for antibiotic resistance [1] or metabolic 

enzymes [2,3]. This phenomenon revolutionized the field of biotechnology by allowing 

genetic engineers to transform bacteria with valuable eukaryotic genes for industrial 

production (e.g. insulin [4] and various antibodies [5]).
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In contrast to the genetic promiscuity of prokaryotes, eukaryotes are much more resistant to 

HGT. Eukaryotic cells possess several barriers that repel foreign DNA, including a nuclear 

membrane and DNase enzymes in the cytosol [6]. However, several significant HGT events 

have been discovered in multicellular eukaryotes. For example, the red color of some aphids 

and spider mites has been attributed to the HGT of fungal genes for carotenoid biosynthesis 

[7,8]. The coffee berry borer beetle (Hypothenemus hampei) also expresses a mannanase 

gene of bacterial origin which allows the beetle to digest galactomannan, the major 

polysaccharide in coffee berries [9]. The most stunning example of eukaryotic HGT may be 

the photosynthetic sea slug, Elysia chlorotica, which is able to harvest and support algal 

plastids for several months by expressing plastid maintenance genes of algal origin [10].

While the previous examples are highly random and isolated events, there are other 

examples of eukaryotic HGT which are more frequent. For example, viruses are highly 

efficient HGT vectors that transfer viral genes and even some host genes between cells 

[11,12]. The bacterium Agrobacterium tumefaciens infects plant tissues by transferring 

oncogenes to plant cells to induce tumor formation [13]. Finally, Trypanosoma cruzi is an 

intracellular eukaryotic parasite which infects human cells and is responsible for adverse 

HGT events which may cause chronic Chagas Disease [14]. The purpose of this review is to 

highlight the mechanisms that these pathogens use to transfer genetic material and show 

how those mechanisms have been applied to improve modern gene delivery techniques. In 

addition, the natural transfer of nucleic acids between host cells via plasmodesmata, 

nanotubes, vesicles, and carrier proteins will also be discussed.

2. Highly evolved HGT: Viruses

Viruses have evolved over millennia into highly efficient gene delivery vehicles. Their 

efficiency is highlighted by the success of many clinical trials with viral gene therapy [15]. 

For example, recombinant viruses have been used to successfully treat Leber's congenital 

amaurosis (LCA, a type of blindness) [16] and Severe Combined Immunodeficiency (SCID) 

[17]. Unfortunately, the clinical progress of viral gene therapy has been hindered by severe 

side effects, including immune responses [18,19], inflammation [20], and even oncogenesis 

[21]. Additional concerns associated with viral gene therapy include restrictions on gene size 

(<5–40 kb, depending on the virus) [15] and the relative difficulty of manufacturing viruses. 

Therefore, interest in non-viral gene delivery has grown significantly over the past few 

decades. Many non-viral gene delivery techniques have been developed (cationic polymers, 

lipids, dendrimers, peptides, etc.), but these techniques are typically much less efficient than 

viral gene delivery. This section will focus on the unique characteristics of viruses that have 

been used to increase the efficiency of non-viral gene delivery techniques, including 

methods of DNA protection/transport, cell invasion, endosomal escape, nuclear transport, 

and transgene expression/maintenance (see Fig. 1 for overview).

2.1. Nucleic acid protection: Capsids & envelopes

One of the simplest ways viruses enhance gene delivery is by storing their nucleic acids 

within protein capsules (capsids), which may also be surrounded by a lipid membrane or 

“envelope” from the previous host cell [22,23]. Capsids protect their nucleic acid cargo 

during intercellular transport from degradation by plasma nucleases [24] and scavenging by 
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albumin [25]. In addition, the size and shape of viral particles directly influence their 

circulation half life, since filamentous capsids have been shown to persist 10 times longer 

(∼1 week) in the circulation than spherical capsids [26]. Specialized capsid proteins also 

play key roles in cell binding and invasion. However, capsid proteins have also been shown 

to initiate immune responses, thereby significantly reducing the effectiveness of some viral 

gene therapies after the initial treatment [27]. Some viral capsids may also cause 

inflammation and even apoptosis in certain cells [28].

Many non-viral gene delivery vehicles have aimed to mimic the beneficial/protective 

properties of capsids while avoiding the immune and inflammatory effects of capsids [29–

31]. For example, cationic polymers and peptides readily bind to anionic plasmid DNA to 

form polyplexes, thereby condensing the DNA and protecting it from serum nucleases 

[32,33]. Cationic polymers (PEI and poly-lysine) have also been used to coat non-infectious 

viruses to create polymer–virus hybrids that are able to transduce a wide variety of cells and 

sustain gene expression for a considerable period (up to 40 days) [34] with much lower 

doses of hybrid than native virus [35].

Development of artificial capsids for gene delivery has also been the focus of much 

research, but controlling the crucial factors of size and shape while packaging bulky plasmid 

DNA has proven to be a considerable challenge. Nonetheless, Lim et al. were able to 

synthesize a self-assembling filamentous capsid containing siRNA by using self-assembling 

β-sheet peptides with poly-lysine sequences for DNA binding and covalently attached 

glucose ligands for cell-specific receptor binding. This synthetic capsid was able to deliver 

siRNA and silence GFP expression in HeLa cells just as well as lipofectamine (∼70% 

reduction in GFP expression) [36]. Malay et al. also showed that gold nanoparticles could be 

used to catalyze formation of capsids with cysteine rich trp RNA-binding attenuation protein 

(TRAP) monomers. However, the diameter of these synthetic capsids was quite small (15–

22 nm) and they did not contain any nucleic acids [37]. It is also worth mentioning that 

polyplexes of plasmid DNA and a cationic peptide from the HIV protein Vpr (aa 52–93) 

were shown to have transfection efficiencies 100–1000 fold higher than poly-lysine (but 

roughly equivalent to PEI) [38].

There have also been significant efforts to mimic enveloped viruses. For example, Muller et 

al. synthesized a PEI–lipid–RGD peptide conjugate that formed artificial virus-like 

envelopes (AVEs) loaded with plasmid DNA and presenting RGD peptides for cell-specific 

binding to HUVEC cells [39]. These micelles were able to transfect nearly 100% of HUVEC 

cells in vitro, while non-RGD micelles and PEI polyplexes transfected only 50% and 5% of 

cells, respectively [39]. Similar AVEs consisting of PEI–lipid–PEG monomers were also 

able to effectively transfect murine tumor cells in vivo, while avoiding accumulation in the 

reticuloendothelial system (RES) [40]. Finally, micelles with multiple lipid bilayers 

(Multifunctional Enveloped Nano-Devices or MENDs) have been shown to sequentially 

fuse with cell, endosome, and nuclear membranes to facilitate transfection at 10-fold higher 

levels than lipofectamine in vitro [41,42].
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2.2. Cellular invasion – Receptor targeting by protein antigens & antibodies

Many viruses rely on the unique biochemical machinery within specific cell types to 

successfully replicate. Consequently, these viruses have developed highly effective cell 

targeting mechanisms that might also be used to enhance the specificity of non-viral gene 

delivery techniques. Viruses target specific cell types by binding to one or more cell surface 

receptors (e.g. Adenovirus = CAR receptor, HIV = CD4 + CCR5, HepC = CD81 + Claudin 

+ SR−Ba + Occludin) [43,44]. Aside from allowing viruses to selectively bind to target 

cells, receptor binding can also accelerate cell membrane fusion or induce biochemical 

pathways that enhance viral transduction. For example, the enveloped Epstein–Barr Virus 

(EBV) directly fuses to the cell membrane after it binds to integrins [45], while receptor 

binding by non-enveloped viruses triggers key host cell pathways (including activation of 

PI3K [46], ERK [47], and PKC [48] kinases) which directly increase the rate of endocytosis 

[49] and influence endosomal sorting [50].

The benefits of cell-specific targeting may be easily adapted to enhance non-viral gene 

delivery by polymers and lipids. As previously mentioned, simply adding the RGD 

tripeptide to target integrins significantly enhances non-viral gene delivery to HUVEC [39] 

and other cell types up to 50-fold [51–53]. Conjugation of small molecules like folate has 

also been shown to enhance the transfection of PEI–PEG hybrids while reducing serum 

scavenging and toxicity [54]. Interestingly, conjugation of epidermal growth factor (EGF) to 

PEI for EGFR targeting also enhanced transfection 10–100 fold and sustained considerable 

expression at lower doses where unmodified PEI transfection was negligible [55].

Conjugation of whole proteins to polymers and lipids has also been shown to increase 

specificity and transfection efficiency. For example, polymer–antibody conjugates could 

potentially be used to enhance gene delivery to virtually any cell type. Li et al. were able to 

successfully target pulmonary endothelial cells with an anti-PECAM antibody–PEI 

conjugate that was 10 times more efficient than PEI [56]. Anti-ErbB2 antibody conjugates 

were also shown to selectively target breast cancer tissue [57]. Other options for protein-

polymer/lipid conjugation include transferrin, which is taken up at a higher rate in tumor 

tissue than typical somatic cells [58]. Conjugation of transferrin to PEI (i.e. 

“transferrinfection”) yielded a conjugate that is 10–100× more efficient than PEI alone [55].

2.3. Cellular invasion – Non-specific but highly efficient cell penetrating peptides

In addition to receptor binding, some viruses are able to further enhance transduction with 

cell penetrating peptides (CPPs), which are also known as protein transduction domains or 

PTDs. CPPs are defined as short cationic peptides (5–40 residues) that typically contain 

short repeats of arginine or lysine [59] and are able to translocate across biological 

membranes independently of receptors (reviewed extensively in [60–62]). CPP functions 

include cellular invasion, endosomal escape, or translocation of DNA or viral proteins into 

the nucleus. The first CPP was discovered within the Trans-Activator of Transcription 

(TAT) from HIV-1 [63], but many other CPPs have since been discovered [64] and synthetic 

CPPs have also been designed [65]. Aside from HIV-1, CPPs have been found in both 

mammalian [66] and plant [67] viruses, including Vp22 from herpes virus. Vp22 is thought 

to quickly translocate into the host cell nucleus and spread to neighboring cells as well [68]. 
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Interestingly, CPPs have also been found in a wide variety of eukaryotes including 

Drosophila (pAntp [69]), venomous wasps (Transportan [70]), toads (Buforin II [71]), and 

mice (pVEC [72]). The mechanisms associated with each CPP are both diverse and unclear. 

For example, some CPPs are ineffective at low temperatures, suggesting that they require 

endocytosis [73]. Transfection by pAntp may also be enhanced by endosomolytic agents like 

hemagglutinin (HA2, see next section), further suggesting that some CPPs simply induce 

endocytosis [74]. On the other hand, some CPPs are fully functional at low temperatures and 

can even transfect quiescent cells [73].

Even though CPP mechanisms remain unclear, it has clearly been shown that CPPs are 

powerful transport vehicles. Conjugates of TAT and the massive β-galactosidase protein 

(465 kDa) are readily taken up in vitro, although at a slower rate than TAT conjugates with 

smaller cargoes [75]. TAT has even been shown to translocate 90 nm beads into nuclei, 

which is quite a feat considering nuclear pore diameters vary from 9 to 40 nm [76]. 

Therefore, it is not surprising that polymer– TAT conjugates enhance transfection 10–70 

fold compared to PEI and chitosan in vitro [77,78]. Enhancement of transfection by PEI–

PEG–TAT conjugates has also been observed in vivo, although to a lesser degree (3 fold) 

[79].

Another interesting application of CPPs is the expression of CPP-transgene fusions for 

intercellular transport. In these systems, CPPs are expressed as fusion tags on the target 

proteins, allowing the target protein to spread to neighboring cells which were not 

transfected. For example, Lai et al. used Vp22 to transport EGFP from transfectants to 

neighboring cells [80], while Suzuki et al. showed an overall 4.3-fold enhancement of Vp22-

lacZ activity in myocardial cells [81]. This technique has also been used to increase the 

distribution of p53 (a tumor suppressor protein) intratumorally in vivo [82,83].

2.4. Endosomal escape – Fusogenic peptides

Endocytosis has three main outcomes – (1) acidic degradation of cargo within mature 

endosomes (i.e. lysosomes), (2) recycling of endosomal cargo back to the extracellular 

space, or (3) endosomal disruption and release of cargo [84]. Viruses have developed 

sophisticated ways to ensure the safe release of their nucleic acids into the cytoplasm. 

Helenius et al. were the first to discover that decreases in endosomal pH actually induced 

endosomal disruption by the influenza virus [85]. Further investigation revealed that the 

capsid protein hemagglutinin (HA) undergoes a conformational change around pH 5.0, 

exposing an amphipathic α-helical HA2 domain [86,87]. The amphipathic nature of the 

HA2 domain allows it to fuse with the endosomal membrane and destabilize it, facilitating 

the release of the endosomal contents [88]. Many other viruses have similar “fusogenic” 

peptides (reviewed in [88]), including the gp41 domain of the HIV gp160 protein [89].

Like CPPs, fusogenic peptides have also been used to enhance non-viral gene delivery. The 

HA2 domain has been used to enhance gene delivery with both cationic polymers and lipids, 

including poly-lysine [90], Transfectam® [91], and lipofectamine [92]. A gp41-PEI 

conjugate also enhanced transfections >10 fold in HeLa cells [93] and a peptide from the 

herpesvirus glycoprotein H enhanced transfection 5–10 fold in a variety of cell lines 

(MCF-7, AD293, and HepG2) [94]. Synthetic fusogenic peptides like GALA 
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(WEAALAEALAEALAEHLAEALAEALEALAA) have also been shown to enhance 

liposomal gene delivery up to 100-fold [95,96]. It is important to mention that cationic 

polymers with protonable amines (e.g. PEI [97] and PAMAM [98]) also have an inherent 

mechanism of endosomal disruption, in which the polymer binds excess protons in the 

endosome, thereby protecting the DNA from degradation. This “proton sponge” effect also 

attracts negatively charged chlorine ions into the endosome, causing an increase in osmotic 

pressure that eventually bursts the endosome. No viruses have been observed to utilize this 

mechanism of endosomal escape, but it has been reported that addition of 10 histidines 

(which also bind protons) to the TAT sequence enhanced its transfection efficiency up to 

7000 × compared to TAT alone [99].

2.5. Nuclear import – Enhancers and nuclear localization signals

The final (and probably most critical) physical barrier for gene delivery is the nuclear 

membrane. Many gene delivery techniques rely on the breakdown of the nuclear membrane 

during mitosis to transport plasmids into the nucleus, but this strategy is ineffective for 

quiescent cells [100]. Alternatively, plasmids may be actively transported into the nucleus 

through nuclear pore complexes (NPCs). Although nuclear pores are quite small during 

interphase (∼9 nm), they can actively transport proteins as large as 25–50 MDa, which is 

much larger than plasmid DNA (MW = 2–10 MDa) [101]. Transport through the NPC is 

tightly regulated by importin α, which binds to proteins containing a nuclear localization 

signal (NLS) that contains several basic amino acids [102].

Since plasmids are too large to passively diffuse through the NPC [103,104], most viral 

genomes contain DNA sequences that are bound by viral or host proteins with NLS tags 

(e.g. the large T-antigen of SV40 – PKKKRV and TAT – GRKKRRQRRRAP), allowing 

the viral DNA to “hitch a ride” through the NPC with the NLS-tagged protein [105–107]. 

These DNA sequences, also known as enhancers, are commonly associated with promoter 

regions and other protein binding sites [108]. For example, the native SV40 enhancer 

contains both the SV40 origin of replication and early/late promoters [109]. Following 

microinjection, plasmids with a minimal SV40 enhancer (72 bp long [104]) rapidly 

accumulate in the nucleus and express levels of luciferase that are 100-fold higher than 

plasmids without enhancers (pBr322) [104]. The SV40 enhancer was also shown to enhance 

transgene expression 20-fold in mouse muscle cells [110]. Therefore, it is no surprise that 

this simple genetic element is included in most commercial expression plasmids.

Direct conjugation of viral proteins containing NLS tags to polymers has also been shown to 

significantly enhance non-viral gene delivery. For example, a peptide consisting of four 

repeats of the SV40 NLS (4×PKKKRKV) was shown to bind DNA and transfect cells 100–

1000 times better than poly-lysine and twice as well as PEI. Gene expression was also 

observed in as little as 2 hours after transfection, while PEI transfections took at least 8–24 h 

[111]. The SV40 NLS has also been improved by adding a phosphorylation site (SSDDE) to 

the C-terminus [112,113]. Finally, conjugation of the hexon protein from adenovirus (hex) 

to PEI also enhanced transfection 8×, even though there were no significant differences in 

polyplex uptake between PEI and the hex–PEI conjugate [114].
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2.6. Transgene maintenance – Integration and episomes

Once viral DNA enters the nucleus, it may integrate into the host cell genome or remain an 

independent nuclear plasmid or “episome”. Viruses have developed many different 

intriguing ways to integrate into specific areas of the genome [115–118], but they pose 

significant risks of host gene modification and oncogenesis, making them unfavorable for 

non-viral gene delivery. However, a new technique which uses a zinc finger recombinase to 

target specific genomic locations may be a much safer way to integrate transgenes into the 

genome [119].

Episomal replication is a relatively safer way to maintain transgenes in the nucleus, but it is 

also much more complex. Viral episomes must contain origins of replication (ori) [120] and 

scaffold/matrix attachment regions (S/MARs) [121] to ensure replication of the episome and 

segregation of episomes into daughter cells following mitosis. Some episomal viruses, such 

as the Epstein–Barr Virus (EBV), also require another viral protein (EBNA-1) to initiate 

episomal replication [122]. Plasmids containing the EBV origin (oriP) and an expression 

cassette for EBNA-1 have been shown to maintain steady levels of luciferase expression in 

mouse heart and lung tissue up to 11 weeks after initial transfection [123]. Likewise, 

papovavirus episomes have also been shown to persist in human cells for up to 2 months 

[124,125].

2.7. Transgene expression – Promoters and enhancers

Even after plasmids enter the nucleus, transgene expression can still be challenging. Viruses 

have developed several different genetic elements to enhance transgene expression, 

including promoters and various enhancers. Viral promoters from Simian Virus 40 (SV40) 

[126], Cytomegalovirus (CMV) [127] and Rous Sarcoma Virus (RSV) [128] are commonly 

used in both viral and non-viral gene therapy, since they provide a high level of expression 

in a variety of cell lines. However, several studies have shown that specific cell types favor 

one promoter over another [129]. For example, CMV and RSV expression are roughly 

equivalent in A5 cells, but 100 times more effective than SV40 [130]. Despite the efficiency 

of these viral promoters, it is important to note that they are prone to silencing by interferons 

and tumor necrosis factors as part of the innate immune system in some cell types [131–

133]. Consequently, some gene therapy plasmids now include human promoters, such as the 

ubiquitously active elongation factor 1 α (EF1α) promoter, which gives similar expression 

levels as CMV or RSV, but for longer periods [130].

Viruses have also been found to enhance transgene expression by incorporating specialized 

RNA sequences into their open reading frames which increase mRNA stability 

(polyadenylation tails) and nuclear export (post-transcriptional regulatory elements PREs). 

Addition of polyA tails to mRNA transcripts is a well known way to protect transcripts from 

exonuclease digestion, thereby prolonging the life of the transcript and potentially increasing 

transgene expression. Indeed, addition of the SV40 polyA tail to a CMV-driven luciferase 

vector significantly enhanced expression 17–50 fold in a variety of cell lines (HeLa, HepG2, 

and ECV304) in vitro and up to 125 fold in vivo [134]. Much like the SV40 enhancer 

mentioned previously, the SV40 polyA tail is also included in many commercial expression 

plasmids.
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Another interesting enhancer of transgene expression is the Woodchuck hepatitis Post-

translational Regulatory Element (WPRE). When the WPRE is added to the 5′ end of 

mRNA transcripts, expression is enhanced as much as 700-fold in mouse liver [135]. It has 

been suggested that the WPRE enhances expression by assuming a tertiary structure which 

is bound by the host protein CRM-1 and assists in nuclear export. Alternatively, it has also 

been shown that the structure of the WPRE may prevent read-thru and excessive 

transcription.

3. Parasitic HGT: A. tumefaciens

A. tumefaciens is a unique bacterial parasite that invades a wide variety of plants to induce 

tumor formation (i.e. crown gall disease). Other species in the Agrobacterium genus also 

cause similar infections in plants, including Agrobacterium rhizogenes (hairy root disease) 

[136], Agrobacterium rubi (cane gall) [137] and Agrobacterium vitis (crown gall in grape) 

[138], but A. tumefaciens is the most well-known and studied for its ability to transfer genes 

into plant cells. The transduced bacterial genes initiate uncontrolled cell division, production 

of substrates and enzymes beneficial to the bacterium, and formation of a tumor (“crown 

gall”) in which the bacterium feeds [139]. Interestingly, only strains of A. tumefaciens which 

possess a tumor-inducing (Ti) plasmid are virulent [140]. The Ti plasmid consists of 

segments of transfer DNA (T-DNA) that are ultimately incorporated into the plant host 

genome for tumor formation and synthesis of opines, which are utilized by A. tumefaciens as 

a carbon/nitrogen source. The Ti plasmid also contains a virulence (Vir) region, which 

encodes several genes (VirA-H [141]) that are necessary for the transformation process 

itself.

While crown gall disease is a common problem in the agricultural industry, Agrobacterium-

mediated gene transfer has become the leading method of transgenic plant production [141]. 

A. tumefaciens plant infection may occur in vitro, in which case the plant cells or tissues are 

cultivated before plant regeneration, or in planta, during which a portion of the whole plant 

is targeted. Many different crop species (including corn [142,143], wheat [144], soybeans 

[145], rice [146], and many others) have been stably transformed with A. tumefaciens by 

replacing the existing genes in the T-DNA region of the Ti plasmid with transgenes. 

Examples of successful Agrobacterium transformation include the transfer of beneficial 

genes for drought [147,148] or herbicide resistance [149,150]. Many other excellent reviews 

describing the mechanisms of A. tumefaciens gene delivery in plants are available [141,151–

155]. This section will highlight the existing and potential applications of this phenomenon 

to non-viral gene delivery, including the roles of bacterial and host proteins in the 

transformation process.

3.1. Mechanism of Agrobacterium-mediated T-DNA delivery

The A. tumefaciens transformation process begins in the soil, where signaling molecules 

(sugars, phenols, and/or acetosyringone [156,157]) released by wounded plants activate the 

VirA receptor (Fig. 2). VirA then phosphorylates the transcription factor VirG, which 

expresses several more virulence (Vir) genes on the Ti plasmid [158]. Several chromosomal 

proteins are also expressed (chvA, chvB, and exoC) which are involved in bacterial/plant 

cell attachment [159]. Meanwhile, the endo-nucleases VirD1 and VirD2 cut the T-DNA 
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region out of the Ti plasmid to yield single stranded T-DNA (i.e. the T-strand). The VirD2 

protein also stabilizes the T-strand by covalently binding to its 5′ end [151]. Following plant 

cell adhesion, 11 VirB proteins (VirB1-11) and VirD4 form a type IV secretion system 

(T4SS) that transports the VirD2/T-strand complex into the plant cell. In addition to the 

VirD2/T-strand complex, the VirD5, VirE2, VirE3, and VirF proteins are also shuttled into 

the plant cell [160]. These additional proteins are involved in downstream processes 

including T-DNA protection from cellular nucleases [161] and nuclear import [162].

3.2. Transformation events within the host cell

Even after the T-strand and Vir proteins are transported into the host cell, the formidable 

challenges of nuclear membrane transport and genomic integration still remain. Both 

bacterial and host proteins play key roles in these processes and understanding their 

interactions is an important step in potentially applying Agrobacterium-mediated gene 

transfer techniques to enhance gene delivery to mammalian hosts. A key bacterial protein in 

nuclear transport is VirE2, which coats the VirD2-T strand to form a “T-complex”. Both 

VirD2 and VirE2 have NLS tags which enhance nuclear transport in plant cells, but it has 

also been suggested that VirE2 changes the conformation of the T-strand to ease transport 

through the nuclear pore [163]. It is interesting to note that VirE2 alone is unable to facilitate 

nuclear transport of T-DNA in non-plant cells, suggesting that the NLS sequence of VirE2 is 

host-specific. However, point mutations in the VirE2 NLS or addition of VirD2 enables T-

strand nuclear transport in Xenopus oocytes [164], Drosophila embryos [164], and HeLa 

cells [165]. Additionally, VirD2 has been shown to strongly interact with plant TATA box-

binding protein (TBP) in Arabidopsis cells in vivo, suggesting a potential bacterially-

encoded role in chromosomal targeting and/or T-DNA integration [166].

Another bacterial protein involved in transformation within the host cell is VirE3, which has 

been shown to interact with the host transcription factor pBrp to activate genes necessary for 

tumor formation in tobacco, sunflowers, and tomatoes [167]. VirE3 also has 2 NLS 

sequences and interacts with karyopherin α and VirE2 to enhance T-complex nuclear 

transport in plant cells [162]. In a similar fashion, the plant protein VIP1 (VirE2-interacting 

Protein 1) has been shown to interact with virD2/ssDNA complexes to facilitate nuclear 

import in mammalian and yeast cells [168]. Indeed, deliberate overexpression of VIP1 in 

plants strongly increases transformation by A. tumefaciens [169]. However, since VIP1 is 

not abundantly expressed in all plants, A. tumefaciens must still express VirE3 to 

complement VIP1 activity. In plants lacking VIP1 expression, VirE3 can actually rescue 

VirE2 nuclear import and T-DNA expression [162]. In contrast to VIP1 and VirE3, the plant 

protein phosphatase 2C (PP2C) encoded by DIG3 interacts with VirD2 and actually reduces 

its nuclear uptake [170], suggesting a potential mechanism by which a plant defends itself 

against infection.

Unfortunately, the mechanism of A. tumefaciens T-strand genomic integration is still poorly 

understood. However, Lacroix et al. showed that VIP1 can bind to core histones, allowing 

the T-complex to associate with plant nucleosomes (a precursor to genomic integration). 

Lacroix also showed that the bacterial protein VirF binds the T-complex after it associates 

nucleosome [171]. It has recently been shown that VirF contains an F-box motif which 
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targets both VirE2 and VIP1 for protease degradation, thereby releasing the T-strand for 

subsequent genomic integration [172]. No bacterial proteins which integrate the T-strand 

into the genome have been identified, implying that T-strand integration may rely on host 

proteins. There is now strong evidence suggesting that the T-strand may randomly integrate 

into the genome at double stranded breaks (DSBs) with the help of host cell DNA repair 

enzymes involved in the homologous recombination (HR) and non-homologous end joining 

(NHEJ) pathways (reviewed in detail here [173]). It has been demonstrated in yeast that the 

plant proteins Yku70, Rad50, Mre11, Xrs2, Lig4 and Sir4, involved in the NHEJ pathway 

are involved in host genome T-DNA integration [174]. Proteins involved in HR that are 

required for T-DNA integration into yeast genome include Rad51 and Rad52 [174].

Histones and chromatin packaging may also influence T-strand integration. Indeed, 

overexpression of certain histones significantly enhances transient transgene expression 

[160]. It has also been shown that interactions between VIP1 and histone H2A are necessary 

for tumor formation, suggesting that H2A and other histones may play a role in T-strand 

integration [175]. Additionally, a high throughput screen of plant gene expression levels of 

tobacco BY-2 cells during A. tumefaciens infection revealed an increase during the late stage 

of infection in the expression of core histones (including H2A) around which genomic DNA 

is wound [176]. A virus-induced gene silencing approach in Nicotina benthamiana also 

implicated the importance of core histones in genomic integration during A. tumefaciens 

infection, as H3 silencing did not reduce transient transformation but did reduce T-DNA 

integration [177]. Other plant genes identified with variable expression levels during the 

latter stage of A. tumefaciens infection included those involved in cell cycle progression and 

growth [176]. Identifying these plant genes directly involved in A. tumefaciens infection and 

their interactions with bacterially-encoded genes is vital in obtaining a thorough 

understanding of the transformation process, which can lead to better design of plants 

recalcitrant to Agrobacterium infection (i.e. protection from crown gall tumor formation in 

crops) and provide insight into methods by which human gene therapy can be improved.

3.3. Examples of human cell transfection with A. tumefaciens

In addition to plants, A. tumefaciens is able to infect and transform a wide range of other 

eukaryotic hosts. In 1995, the first example of A. tumefaciens infection of a non-plant host 

was demonstrated with the budding yeast Saccharomyces cervisiae [178]. In the years since, 

A. tumefaciens transformation has also been achieved (with mixed success) in many other 

eukaryotic hosts. Cases of Agrobacterium infection and proliferation have been observed in 

human patients, suggesting that Agrobacterium may have some clinical potential as a gene 

delivery vector [179,180]. However, tail vein injections of A. tumefaciens in mice yielded no 

transgene expression, even though the bacteria remained viable [181].

On the other hand, some limited success with Agrobacterium mediated transformation of 

animal cells has been achieved in vitro. HeLa, HEK393, and PC12 cells were transformed 

by A. tumefaciens with a low efficiency (10–20 cells per million) [182]. Interestingly, 

mutations to the chromosomal chv proteins prevented attachment of A. tumefaciens to HeLa 

cells and independent mutations in the VirA, VirB, VirD, VirE, and VirG loci all resulted in 

complete loss of transformation [182]. Therefore, while the same proteins may be 
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responsible Agrobacterium-mediated transformation of plant and animal cells, key 

differences in animal cells limit the efficiency of the process.

While the efficiency of Agrobacterium mediated transformation may be limited in 

mammalian hosts, it is interesting to note that some human pathogens possess similar 

machinery for host cell manipulation. For example, Helicobacter pylori [183] and 

Legionella pneumonia [184] both use a T4SS to inject effector proteins into human cells that 

enhance infection. It has also recently been shown that the mammalian parasite Bartonella 

henselae can transfer plasmid DNA into human endothelial cells in vitro. While a T4SS and 

a VirD2 analog (Mob) have been identified in B. henselae, no NLS containing proteins have 

been observed, suggesting that nuclear transport of B. henselae DNA relies on the 

breakdown of the nuclear envelope during mitosis [185]. These findings point to similarities 

in transfer and processing of T-DNA in B. henselae and A. tumefaciens, but their 

mechanisms between of nuclear import may be quite different. Elucidating the complete set 

of proteins involved in B. henselae transformation of human cells may prove valuable in 

developing new human gene therapy techniques.

4. Accidental HGT: T.cruzi

T. cruzi is an intracellular parasite which causes Chagas disease, a potentially fatal illness 

that causes heart disease in millions of people in Latin America [186–188]. Early treatment 

with benzidazole or nifurtimox can eradicate the parasite in 60–90% of patients [189], but 

some patients still suffer an autoimmune response that affects the heart after the parasite has 

been eliminated [190,191]. Teixeira et al. reported that this immune response is triggered by 

a HGT event between T. cruzi and human cells which induces the expression of cell surface 

antigens [192–194]. In addition, T.cruzi may also infect germ line cells and vertically 

transfer its genetic material to the offspring of the original patient [193,195].

T. cruzi has some unique characteristics (intracellular replication and special genetic 

elements) which enhance HGT. The intracellular stage of the T. cruzi life cycle (see Fig. 3) 

[196] significantly increases the exposure of the host nucleus to T. cruzi DNA. In fact, HGT 

appears to be relatively common between endosymbionts and their hosts. The most common 

examples are mitochondria and chloroplasts, which have successfully transferred many of 

their genes to the nuclei of various eukaryotes [197]. Buchnera aphidicola, a bacterial 

symbiont of aphids, has also transferred several of its own essential genes to the nuclei of 

specialized “bacteriocyte” cells in aphids [198]. In this curious case of obligate mutualism, 

B. aphidicola cannot replicate outside of bacteriocyte cells, while the aphid host relies on B. 

aphidicola to produce essential nutrients [199,200]. Aphids and other insects have also 

obtained large numbers of genes from the endosymbiotic bacteria Wolbachia pipientis. Like 

T. cruzi, this endosymbiont also infects reproductive cells, thereby allowing both horizontal 

and vertical transfer of its genetic material [201].

While endosymbiosis definitely increases the probability of HGT, the preceding examples 

only occurred very gradually over millions of years. In contrast, multiple HGT events have 

been observed in up to 30% of patients with active T. cruzi infections [14]. This relatively 

high HGT frequency may be due to a unique feature of T. cruzi – minicircle DNA. Aside 
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from its nuclear DNA, T. cruzi also has a dense network of concatenated plasmids within its 

mitochondrion called a kinetoplast (see Fig. 3). Like other mitochondria, the DNA in the 

kinetoplast contains essential genes for mitochondrial function (cytochrome oxidase, NADH 

dehydrogenase, etc.) on large plasmids called “maxicircles” (20–40 kb) [202–204]. 

However, the kinetoplast also contains approximately 15,000 small “minicircle” plasmids 

(∼1.5 kb) which contain genes for guide RNAs that edit maxicircle transcripts prior to 

translation [205–208]. Interestingly, the diameter of these minicircles (30 nm [209]) is close 

to the maximum diameter of the nuclear pore complex (9–40 nm [210,211]), potentially 

easing nuclear transport of T. cruzi minicircles into the nucleus for HGT [212].

It is important to mention that there are other parasites with kinetoplasts (order 

Kinetoplastida) that have minicircles, yet they have not been observed to cause HGT. The 

crucial difference between T. cruzi and other kinetoplastids lies in its minicircle DNA 

sequence. All minicircles contain variable regions with species-specific “guide RNA” genes 

and conserved sequence regions (CSRs) consisting of three conserved sequence blocks 

(CSBs) that help form the dense kinetoplast network by providing sites for concatenation 

[213–215]. CSR sequences from many different species are highly similar (see [215] for a 

detailed comparison), but each species differs in the number of CSBs per minicircle. For 

example, the minicircles of Leishmania tarentolae only have 1 CSR [213], while T. cruzi 

minicircles have four CSRs that are evenly distributed within each minicircle [216]. This 

relatively high number of CSRs in T. cruzi may significantly increase the probability of 

HGT [217], since the minicircle CSB sequences bear some similarity to the Long 

Interspersed Nuclear Element-1 (LINE-1) retrotransposon, which is ubiquitous in the human 

genome [218]. Indeed, genomic analysis of patients with Chagas disease reveals that T. cruzi 

minicircle sequences are frequently inserted into LINE-1 sequences throughout each 

chromosome [14,217].

In summary, the high frequency of HGT events associated with T. cruzi is probably due to 

three unique traits. First of all, its intracellular nature directly exposes the host cell nuclei to 

large amounts of DNA from T. cruzi. The small size of T. cruzi minicircles eases their entry 

into nuclear pores, while the sequence of CSBs may allow the minicircle genes to 

permanently integrate into the host genome. It is still unclear how these HGT events may 

cause heart disease in patients without active T. cruzi infections and further work will need 

to be done to determine if any T. cruzi genes are actively expressed after integration into the 

host genome. Future work should also focus on the effects of minicircle DNA integration 

into LINE-1 retrotransposons, which are known to disrupt genes [219–221] and have been 

associated with certain diseases [222,223].

4.1. T. cruzi as a delivery vector

The abilities of T.cruzi to evade the immune system, invade cells, and transfer genetic 

material to the host genome make it an attractive system for drug or gene delivery, following 

appropriate engineering. Techniques have been developed to transfect T. cruzi [224,225] and 

one patent even describes the use of genetically modified T. cruzi as vectors for gene 

delivery [226]. This technology has not yet been tested in vivo, but there have been 

intriguing studies on minicircle DNA plasmids and transposons for gene delivery.
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4.2. Synthetic minicircle DNA plasmids

Traditionally, cationic polymers or lipids are mixed with bacterial plasmids to prepare 

polyplexes for non-viral gene delivery [227]. The size of these polyplex can have a 

significant effect on transfection efficiency [228], since polyplex size can influence polyplex 

uptake [229] and nuclear transport [212]. No gene delivery studies have been performed 

with T. cruzi minicircle plasmids to our knowledge, but Kay et al. developed a bacterial 

system which produces synthetic minicircle plasmids for transfection [230]. In this system, 

parental plasmids are split into two daughter plasmids after arabinose induction of a ϕ31 

integrase gene in a genetically modified Escherichia coli strain. Arabinose also induces 

expression of an I-SceI restriction endonuclease that degrades the bacterial backbone 

plasmid. The remaining minicircle plasmid, which contains an expression cassette for the 

gene of interest, may then be purified using conventional plasmid isolation techniques [230]. 

Polyplexes made with these synthetic minicircles have been used to transfect a variety of 

cell lines and found to increase target gene expression upto560-fold higher than polyplexes 

made with traditional plasmids [231]. Minicircle plasmids have also been shown to maintain 

stable target gene expression three times longer than conventional plasmids [232].

Aside from their small size, minicircle plasmids have other advantages over traditional 

plasmids. Minicircle polyplexes are more resistant to the shear stresses which occur during 

polyplex formation and transfection [233]. Minicircles also lack bacterial DNA elements 

(e.g. origins of replication and antibiotic resistance genes) which have been previously 

observed to silence expression of target genes [234]. These bacterial DNA elements may 

contain unmethylated CpG motifs, which activate an innate immune responses that interfere 

with gene delivery in vivo and silence transgene expression [235,236]. Finally, since 

minicircle plasmids lack bulky bacterial elements, they require considerably less cationic 

polymer or lipid per plasmid for polyplex formation, making minicircle polyplexes much 

less toxic than other polyplexes [237]. One interesting alternative to minicircle plasmids is 

plasmids which use other genes for selection instead of antibiotic resistance markers, 

including genes that confer resistance totoxins or complement bacterial growth. While these 

plasmids are still much larger than minicircle plasmids, the absence or antibiotic resistance 

genes prevent the transfer of antibiotic resistance to bacteria living within the patient and 

some potential sequence-specific host responses to the foreign DNA [238].

4.3. Transposon-mediated gene delivery and expression

Transposons similar to the CSBs in T. cruzi minicircles have also been used to enhance and 

maintain target gene expression in vitro. The most efficient transposons used to date include 

the Sleeping Beauty (SB) [239], Tol2 [240], and PiggyBac (PB) transposons [241]. The SB 

transposon has been successfully used to integrate a nitric oxide synthase gene into rat lung 

cells to prevent pulmonary hypertension [242]. A clinical trial is also underway which uses 

T cells that have been permanently transformed with the SB transposon to treat lymphoid 

malignancies [243]. In addition, the PB transposon has been used to create induced 

pluripotent stem cells by genetically reprogramming fibroblasts [244–246]. The CSBs of T. 

cruzi minicircles may be an interesting new type of transposon-like elements, but further 

work will need to be done to determine how CSBs promote integration into the host genome 

and detect any side effects associated with such integration.
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5. Intercellular nucleic acid (RNA/DNA) transfer between eukaryotic cells

In addition to parasitic or viral gene transfer, several examples of nucleic acid transfer 

between eukaryotic cells of the same organism have also been reported (thoroughly 

reviewed in [247]). For example, intercellular transfer of short interfering RNAs (siRNAs) 

was first observed in the propagation of systemic RNA interference. In plants, siRNA 

transfer occurs mostly through channels in the cell wall called plasmodesmata that allow the 

transport of proteins, RNA, and other small molecules between neighboring plant cells 

[248,249]. Interestingly, extracellular RNA transport may be facilitated by the Phloem Small 

RNA-binding Protein (PSRP1), which selectively binds small (∼25 nucleotide) single 

stranded RNAs [250].

Even though mammalian cells lack plasmodesmata, systemic RNAi propagation has also 

been observed in animals. In C. elegans, siRNA transport has been shown to rely on the 

transmembrane proteins SID– 1 and SID–2, which bind extracellular siRNAs and facilitate 

their uptake [251,252]. Another avenue for cell-to-cell RNA transfer is tunneling nanotubes 

(TNT's), which are fragile extensions of the plasma membrane that physically connect 

neighboring cells [253,254]. TNT diameters may be as large as 700 nm and they have been 

implicated in intercellular transport of HIV-1 particles [255], endosomes, and organelles 

[254,256]. However, they seem to restrict the passage of small molecules, suggesting that 

nucleic acid transport must be facilitated by endosomes or some type of carrier molecule 

[247].

Recent evidence has shown that RNAs may also be transported by exosomes or 

microvesicles. Exosomes are small membrane-bound vesicles (40–100 nm) that are formed 

inside endosomes during endosomal maturation and recycling, while microvesicles are much 

larger (50–1000 nm) and are formed by budding of the plasma membrane. Isolated 

exosomes and microvesicles have been shown to contain up to 1300 different mRNA 

molecules which are functionally active [257]. For example, vesicles secreted by embryonic 

stem cells have been shown to deliver mRNAs to hematopoetic progenitor cells and affect 

their gene expression profiles [258]. Vesicles containing small RNAs have been found in a 

wide variety of bodily fluids, including breast milk, suggesting a possible mechanism of 

genetic transfer between parent and offspring [259,260].

While the majority of intercellular nucleic acid transport deals with RNAs, there have been a 

few observations of intercellular DNA transport as well. For example, transfer of both 

nuclear and plastid DNA has been observed at graft junctions in plants [261]. Exosomes 

secreted from cardiomyocytes have also been found to contain DNA and these 

“cardiosomes” have even been used to transform fibroblasts [262]. Astrocytes and 

glioblastoma cells have also been shown to secrete exosomes containing mitochondrial 

DNA [263]. Aside from exosomes, DNA within apoptotic bodies can also transform cells 

[264]. Finally, a human antimicrobial peptide (LL-37) is capable of binding extracellular 

DNA, protecting it from serum nucleases, and facilitating transport across both the cellular 

and nuclear membranes [265].
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Of all the examples discussed in this section, exosomes and microvesicles have shown the 

highest potential for clinical gene therapy [266]. Electroporation can be used to insert 

siRNA into exosomes isolated from human blood to produce RNAi delivery vehicles that 

have successfully silenced MAPK-1 expression in monocytes in vitro [267]. Exosomes have 

also been labeled with membrane proteins (Lamp2b [268] and rabies virus glycoprotein 

peptide [269]) to target specific regions in the brain (e.g. neurons, microglia, and 

oligodendrocytes). Human exosomes from liver stem cells were even shown to transform rat 

hepatocytes and accelerate hepatic regeneration following partial hepadectomy, suggesting 

that exosomes are able to cross species barriers for RNA delivery [270]. In addition, 

microvesicles from endothelial progenitor cells have been shown to promote angiogenesis 

following pancreas transplantation [271] or ischemia-reperfusion injury in the kidney [272]. 

Likewise, microvesicles secreted from mesenchymal or liver stem cells have been shown to 

alleviate the effects of acute and chronic kidney injuries [273,274], peripheral arterial 

disease [275], myocardial ischemia [276], and myocardial infarction [277]. Altogether, these 

examples clearly demonstrate the significant role of exosomes and microvesicles in 

intercellular signaling and suggest that they may be promising vehicles for RNA (and 

potentially DNA) delivery in vivo.

6. Conclusions

Effective gene delivery techniques could potentially cure hundreds of genetic diseases (e.g. 

cancer, hemophilia, etc.), but current non-viral gene delivery suffers from low efficiency. 

However, applying lessons from pathogens that employ horizontal gene transfer has 

dramatically improved non-viral gene delivery. Viral proteins and gene sequences have been 

used to improve gene delivery to both the cytoplasm and nucleus. A. tumefaciens has 

revolutionized the field of plant biotechnology and B. henselae may have a similar impact 

on human gene therapy. HGT by T. cruzi is still poorly understood, but further investigation 

of this intracellular parasite will hopefully yield new treatments for patients with Chagas 

Disease and perhaps new methods to enhance gene delivery. All of these examples clearly 

show how pathogenic traits that originally caused diseases can be used to cure genetic 

diseases by significantly enhancing non-viral gene delivery techniques. Exosomes and 

microvesicles are also exciting new delivery vehicles for RNA and DNA, while new viruses 

or pathogens with unique HGT techniques may also be awaiting discovery. Therefore, 

elucidating and applying HGT phenomena to the development of novel non-viral gene 

delivery techniques may eventually yield safe and effective methods to cure many different 

genetic diseases.
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Fig. 1. 
Useful traits of viral gene delivery and expression that have been used to enhance non-viral 

gene delivery. From left to right: in the extracellular space, viruses protect their nucleic acid 

cargo from plasma scavengers and nucleases with protein capsids and/or lipid membranes 

(envelopes). Antigens on the capsid or envelope surface allow viruses to bind one or more 

receptors on specific cell types and directly fuse with the cell membrane (enveloped viruses) 

or induce endocytosis. As pH decreases within the maturing endosome, capsid proteins 

change conformation and destabilize the endosomal membrane to release viral nucleic acids, 

with or without the capsid. Nuclear import of viral nucleic acids is then facilitated either by 

binding to host transcription factors or viral proteins with nuclear localization signals that 

interact with nuclear pore complexes. Finally, viral gene expression within the nucleus is 

enhanced by highly efficient promoters and enhancers while origins of replication (Ori) 

and/or scaffold/matrix attachment regions (S/MAR) ensure plasmid replication and 

sustained gene expression.
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Fig. 2. 
(1) A plant wound releases signal molecules which initiate the infection process by 

activating VirA and chvE. (2) VirA phosphorylates VirG, resulting in transcriptional 

activation of other Vir genes. (3) Chromosomal proteins (chv A/B) initiate plant cell 

attachment. (4) VirD1 and VirD2 prepare single stranded T-DNA through endonuclease 

activity. (5) VirD2 covalently binds T-DNA. (6) VirD2/T-DNA and other Vir proteins are 

transferred to the plant via the VirB/VirD4 T4SS complex. (7) VirD2/T-DNA is coated with 

VirE2, VirE3, and VIP1 to form the mature T-complex. (8) Importin α facilitates nuclear 

uptake of the T-complex and VirF. (9) The T-complex binds to the nucleosome and 

integrates into the genome. Alternatively, PP2C may bind to the T-complex for nuclear 

export.
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Fig. 3. 
(A) Life cycle of T. cruzi. The parasite is transmitted by the triatomine insect via ingestion 

of the epimastigote form from infected human hosts. Epimastigotes mature to 

trypomastigotes in the insect gut and are excreted after the triatomine bites a human host. 

The trypomastigotes invade host cells and convert to a non-flagellar amastigote form for 

replication. The amastigotes then mature into trypomastigotes that infect other host cells or 

are ingested by the triatomine insect. (B) Anatomy of a T. cruzi trypomastigote. Aside from 

the nuclear DNA, T. cruzi cells also have a single mitochondrion which has a densely 

packed disk of plasmid DNA (kinetoplast) at the base of its flagellum. (C) The kinetoplast 

consists of large maxicircles and smaller minicircles that are concatenated at conserved 

sequence regions (CSRs).
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