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Abstract

The purpose of the current study was to explore the influence of the number of targets specified on 

the quality of exploratory factor analysis solutions with a complex underlying structure and 

incomplete substantive measurement theory. Previous research in this area was extended by (a) 

exploring this phenomenon in situations in which both the common factor model and the targeted 

pattern matrix contained specification errors and (b) comparing the performance of target rotation 

to an easier to use default rotation criterion (i.e., geomin) under conditions commonly observed in 

practice. A Monte Carlo study manipulated target error, number of targets, model error, 

overdetermination, communality, and sample size. Outcomes included bias (i.e., accuracy) and 

variability (i.e., stability) with regard to the rotated pattern matrix. The effects of target error were 

negligible for both accuracy and stability, while small effects were observed for the number of 

targets for both outcomes. Further, target rotation outperformed geomin rotation with regard to 

accuracy but generally performed worse than geomin rotation with regard to stability. These 

findings underscore the potential importance (or caution in the case of stability) of using extant, 

even if incomplete and somewhat inaccurate, substantive measurement theory to inform the 

rotation criterion in a non-mechanical way.
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MacCallum (2003) argued that the mathematical models used in practice (i.e., theoretical 

model) often only approximate a more complex reality (i.e., population model). Monte Carlo 

studies that assume that the theoretical model is identical to the population model (i.e., an 

absence of model error), “might be of interest to theorists, [but] they are of limited value to 

users of methods. A more realistic and relevant question is: How do our methods behave and 

perform when the model in question is not correct in the population?” (MacCallum, p. 135). 

The current study extended the literature by (a) investigating the performance of exploratory 

factor analysis with target rotation under conditions (e.g., model and target error) commonly 

observed in practice, and then (b) comparing the performance of target rotation to the 

performance of an easier to use default rotation criterion (i.e., geomin).

Factor analysis has been closely linked with investigations of construct validity in the social 

sciences for several decades (Nunnally, 1978). Investigations of construct validity have 

frequently occurred in studies where only factor analytic measurement models, exploratory 

(EFA) and/or confirmatory (CFA), were specified – typically guided by incomplete 

substantive measurement theory (DiStefano & Hess, 2005; Henson & Roberts, 2006). 

Incomplete measurement theory often manifests as model error and offers an explanation as 

to why nearly all construct validity studies fail the test of exact fit under a CFA approach 

(Jackson, Gillaspy, & Purc-Stephenson, 2009). Incomplete measurement theory may be 

better handled by EFA with rotation of the pattern matrix rather than a more restrictive CFA 

approach that relies on post hoc modifications (MacCallum, Roznowski, & Necowitz, 1992). 

EFA with target rotation can be conceptualized as “situated between CFA and EFA” 

(Asparouhov & Muthén, p. 399, 2009).

Direct analytic rotation of the pattern matrix is based on several decades of research within 

the EFA framework (e.g., Jennrich, 2007; Jennrich & Sampson 1966) as detailed in Browne 

(2001). Rotation of the pattern matrix is accomplished via post-multiplication of the pattern 

matrix by the inverse of an optimal transformation matrix:

(1)

An optimal transformation matrix, H*, is determined by minimizing a continuous 

complexity function of the elements in the pattern matrix, f (Λ). A mechanical rotation 

criterion can be thought of as being relatively easy to implement but providing little to no 

opportunity to incorporate a priori measurement theory into the f (Λ).Various rotation 

techniques define f (Λ) differently but each was typically designed to provide the simplest 

solution.

For decades a simple solution has often been interpreted as having one non-zero pattern 

coefficient per row (variable complexity, vc, = 1, for each “pure” variable); though this 

“perfect simple structure” is a more restrictive approach than advocated by Thurstone 

(1947). For example, Thurstone’s conceptualization of simple structure allowed for r − 1 

non-zero elements per row (i.e., vc ≤ = r – 1). Complex structures where r ≥ 2 and vc ≥ 2 for 

one or more variables are not uncommon in practice, though commonly used rotation 

criterion (e.g., direct quartimin) typically do not perform well in such situations (Yates, 
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1987). The failure of most rotation criteria to perform well with complex structures is not 

surprising given that most f (Λ) were designed in such a way that a (perfect) simple structure 

is sought (Browne, 2001).

Geomin rotation (Yates, 1987) minimizes row (e.g., variable) complexity in a way that is 

more consistent with Thurstone’s (1947) conceptualization of simple structure as compared 

to the more restrictive perfect simple structure. Accordingly, geomin has performed 

relatively well when vc > 1 both in empirical examples (e.g., Marsh et al., 2009; McDonald, 

2005) and in a simulation study when compared to other mechanical rotation criteria (Sass 

& Schmitt, 2010). Currently geomin is the default rotation criterion in Mplus (Muthén & 

Muthén, 1998–2012) and, therefore, may be used frequently in practice. The f(Λ) for geomin 

implemented in Mplus is:

(2)

where

ε is a small positive constant added by Browne (2001) to reduce the problem of 

indeterminacy.

In Asparouhov and Muthén (2009), geomin performed well when vc was moderate (vc ≤ 2), 

m was small (m = 2), and the factors were moderately correlated. Geomin, however, “…fails 

for more complicated loading matrix structures involving three or more factors and variables 

with complexity 3 and more;… For more complicated examples the Target rotation criterion 

will lead to better results” (Asparouhov & Muthén, p. 407). The performance of target 

rotation as compared to geomin rotation, however, has yet to be systematically studied. For 

example, the previous quote from the seminal work of Asparouhov and Muthén seemed to 

be based on results where the outcome was either bias (p. 427) or coverage (p. 428) and not 

directly on variability for complex loading matrix structures. Additional studies are 

important, in part, because target rotation requires more from the user than a mechanical 

rotation criterion does. This additional demand on the user is especially noteworthy because 

a solution will be mathematically equivalent under competing rotation criterion.

Target rotation has been developed over several decades and can be thought of as “a non- 

mechanical exploratory process, guided by human judgment” (Browne, 2001, p.125). Early 

versions of target rotation were indirect and based on a fully specified target matrix (e.g., 

Horst, 1941; Tucker, 1944). Later versions of target rotation in EFA were direct and could 

be based on only a partially specified target matrix, Bpxr (Browne, 1972a, 1972b; Gruvaeus, 

1970). The f(Λ) for target rotation can be written as:

(3)
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where

aij = 1 if λij is a target and 0 if λij is not a target, and

bij = the targeted value.

Note that the user must provide aij and bij, and therefore, helps to define f (Λ) for target 

rotation. Thus, target rotation does not seek a (perfect) simple structure unless specified to 

do so.

Target rotation was designed to rotate Λ to a least squares fit to a targeted pattern matrix, B, 

which can utilize incomplete a priori measurement theory without fixing coefficients to 

particular values as in CFA. For example, Figure 1 provides a matrix A that designated 

whether each pattern coefficient was (1) or was not (0) a target, and a B that provided 

correct values (i.e., bij = λij) that targeted elements would be rotated towards. Under the 

assumption that the targeted values are correct the observed rotated pattern matrix, Λ̂*, 

generally should more accurately and reliably recover Λ as the number of targets increase. 

Target error (i.e., bij ≠ λij) would likely be present in practice because the true value of any 

particular λij would likely be unknown. It has long been believed that target rotation may be 

relatively robust to such misspecification due to the least squares fit to B (Browne, 2001). 

However, the potential role for target error to influence the quality of the rotated solution 

has yet to be systematically studied. For example, all of the relevant previous studies of 

which we are aware have either assumed the absence of target error and/or have set all 

targets to a single value (e.g., 0) often consistent with a pure variable approach.

The role for systematically increasing the number of error-free targets specified per factor to 

influence the quality of the rotated solution with a complex underlying structure and 

incomplete measurement theory has been studied by Myers, Ahn, and Jin (2013). A positive 

effect of the number of targets specified on the accuracy and stability of Λ̂* was observed 

but the magnitude of this effect varied by level of communality (h; where hi is the 

proportion of variance in the ith variable accounted for by the common factors) and 

overdetermination of Λ (i.e., the ratio of the number of observed variables to the number of 

underlying factors, p:r). The effect of the number of targets specified generally was 

strongest when h = .20 to .40 (i.e., low) and p = 10 (i.e., small) or 20 (i.e., average) and r = 3 

(i.e., average). For all levels of h and p:r, however, a positive effect of the number of targets 

specified on the accuracy and stability of Λ̂* generally was observed. Further, only a small 

number of targets (e.g., r) per factor needed to be specified in order to achieve good 

accuracy when p:r = 10:3 or 20:3, h > low, and N ≥ 100. Limitations of the Myers et al. 

study included the absence of: (a) model and target error and (b) a comparison of the 

performance of target rotation to an easier to use mechanical rotation criterion.

A strength of Myers et al. (2013) was conceptualizing the performance of target rotation 

within MacCallum and Tucker’s (1991) broader mathematical framework for identifying 

sources of error in factor analysis. This framework informed hypotheses in the current study 

and is summarized below with an emphasis on model error. The purpose of the emphasis on 

model error was to inform expectations (which will be stated in the hypotheses section) 
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regarding the degree to which the findings of Myers et al. may hold under the presence of 

model error.

Model error is the discrepancy between the true covariance matrix for the observed 

variables, Σyy, and the implied covariance matrix that would result from fitting the 

theoretical model to Σyy, Σ̃
yy (θ), where θ is a vector of parameter values If the theoretical 

model is fit to sample data, Syy, the covariance matrix implied from the fitted model is Σ̂yy 

(θ̂), where θ̂ is a vector of parameter estimates. The discrepancy between Σ̃ yy (θ), and Σ̂
yy 

(θ̂), is due to sampling error. Overall discrepancy is the difference between Σ̂
yy (θ̂), and Σyy, 

which under model misspecification and sufficiently large N is given by the sum of model 

error and sampling error (Cudeck & Henly, 1991).

Under standard assumptions of the common factor model the structure for both Σyy and Syy 

in the presence of model error can be made explicit. The structure for Σyy is given by:

(4)

where

Φ = population correlation matrix for the common (and standardized) major factors,

Θ = diagonal matrix of unique pattern coefficients, and

ΔME (P) = model error in the population covariance structure.

The structure of Syy is given by:

(5)

where

ΔME (S) = model error in the sample covariance structure, and

ΔSE = sampling error.

Holding estimation method constant, differences between θ and θ̂ are due to the differences 

between the error terms in Equation 4, ΔME (P), and Equation 5, ΔME (S) +ΔSE. MacCallum, 

Widaman, Preacher, and Hong (2001) demonstrated that ΔME (S) ≈ ΔME (P) over repeated 

sampling, and thus, ΔSE is the primary unique factor accounting for differences between θ 

and θ̂.

Sampling error introduces differences between the sample, Cxx, and population, Σxx, 

covariance matrix for the common and unique factor scores (MacCallum, Widaman, Zhang, 

& Hong, 1999). Submatrices of Cxx can be viewed as weights for the Syy implied by the 

common factor model by expanding Equation 5 (while ignoring ΔME (S)):

(6)

Myers et al. Page 5

Behav Res Methods. Author manuscript; available in PMC 2016 June 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



where subscripts c and u denote common and unique factors, respectively. Equation 6 is 

useful for identifying some key consequences of ΔSE (e.g., Σuu ≠ Cuu ≠ I; Σcu ≠ Ccu ≠ 0) 

that provide a general framework to explain why fitting Syy to a reduced form of Equation 5, 

ΛΦΛ′ + Θ2, generally results in a θ̂ that differs from θ.

MacCallum et al. (1999) hypothesized and then demonstrated in a Monte Carlo study that 

some key specific factors affecting the quality of an EFA solution include N, h, and p:r. 

Outcomes included a measure of accuracy and a measure of stability with regard to Λ̂*. The 

problematic effects of ΔSE decreased under conditions when the right-hand side of Equation 

6 moved toward a reduced, yet familiar, form: ΛΦΛ′ + Θ2. Movement toward this reduced 

form of the right-hand side of Equation 6 occurred when Θ approached a null matrix (e.g., 

level of h = high) and/or submatrices of Cxx approached population values, Σuu ≈ Cuu ≈ I, 

Σcu ≈ Ccu ≈ 0,(e.g., N was large), and/or the common factors became more overdetermined 

(e.g., moving from p:r = 20:7 to p:r = 20:3) decreasing the size, and hence the influence, of 

Ccu and Cuc.

The major findings of MacCallum et al. (1999) summarized in the previous paragraph were 

also observed in MacCallum et al. (2001) who extended the earlier study by demonstrating 

the same general patterns in the presence of model error in addition to sampling error. A 

feature of the MacCallum et al. (2001) study was that population pattern matrices were used 

as target matrices following direct quartimin rotation. The role for systematically increasing 

the number and/or the accuracy of targets specified to influence the quality of the rotated 

solution after controlling for the influence of other well-known factors (e.g., model error) 

was not studied.

Hypotheses for the Current Study

Myers et al. (2013) provided evidence for the unique role of the number of targets specified 

and replicated the findings of MacCallum et al. (1999) with regard to N, h, and p:r. Based on 

MacCallum et al. (2001), the findings of Myers et al. with regard to the number of targets 

should be observed in the presence of model error in addition to sampling error. Hypotheses 

unique to this study in regard to the accuracy and stability of Λ̂* are provided below.

Hypothesis 1

Target error would not exert a meaningfully large impact due to the flexibility afforded by 

the least squares fit to B.

Hypothesis 2

There would be an effect for the number of targets specified. As the number of targets 

increased Λ̂* would become more accurate and more stable because each Λ̂ would be rotated 

toward a common B that was increasingly overdetermined (i.e., more targets) and thereby 

reduce the effect of sampling error.
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Hypothesis 3

There would be an interactive effect between h and the number of targets specified. 

Specifically, when h was high the effect of the number of targets would be smaller because 

Θ would approach a null matrix and thereby reduce the effect of sampling error.

Hypothesis 4

Target rotation would perform at least as well as geomin rotation with regard to accuracy, 

particularly as the number of targets specified increased, due to the ability of target rotation 

to be specified in such a way as to search for a complex underlying structure. An a priori 

hypothesis regarding the performance of target rotation versus geomin rotation with regard 

to stability was not put forth due to a lack of directly related research.

Method

The design consisted of two studies. Study 1 tested Hypothesis 1 through Hypothesis 3. 

Study 2 tested Hypothesis 4 under some of the conditions imposed in Study 1. Both studies 

used the same 18 population models.

Eighteen population models were specified for the purpose of achieving the desired 

characteristics with regard to overdetermination of Λ, h, and model error (detailed in the 

Manipulated Factors section). Nine of the 18 Λ were nearly identical to nine of the Λ used in 

MacCallum et al. (2001) where p = 20, r = 3.1 The remaining nine Λ in the current study 

were specified in order to achieve the desired characteristics for population models where p 

= 10, r = 3 because MacCallum et al. did not study population models where p = 10, r = 3.

The set of population models in the current study was selected for three reasons. First, the 

population models logically followed previous research regarding target rotation by Myers 

et al. (2013). Second, the population models had a link to two seminal studies in the factor 

analysis area as the population model generation approach taken in MacCallum et al. (2001) 

closely followed the approach taken by Tucker, Koopman, and Linn (1969). Third, the 

population models had some key characteristics that were similar to EFA in practice 

(Henson & Roberts, 2006). For example, each Λ was realistic in the sense that there was 

“variation in importance of major factors as well as numerous small to moderate secondary 

loadings” (MacCallum, et al., p. 620). As an example, values within a Λ are provided in 

Figure 1. Table 1 summarizes some key characteristics of the common factors for each of 

the 18 Λ. Population correlation values between the common factors equaled zero which 

was consistent with MacCallum et al.

1 Population parameter values for Λ20x3 were retrieved at the website of Robert C. MacCallum (http://www.unc.edu/~rcm/
article_material.htm). Occasionally a value within a Λ20x3 was altered slightly in order to achieve the desired level of either h or 
model error via minor factors.
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Study 1

Manipulated Factors

Six factors were manipulated: overdetermination of Λ (p:r; two conditions), model error 

(three conditions), h (three conditions), N (three conditions), number of targets (nine or four 

conditions depending on the level of p:r), and target error (four conditions). Manipulation of 

the first three factors was accomplished via specification of 18 population models. Table 2 

provides an overview of the experimental design, which had a total of 1404 cells. The p:r = 

20:3 (i.e., Model 1 – Model 9) and the p:r = 10:3 (i.e., Model 10–18) conditions contributed 

972 (3*3*3*9*4) and 432 cells (3*3*3*4*4), respectively.

Overdetermination of Λ (p:r)—Two conditions were specified for p:r: highly 

overdetermined (i.e., p:r = 20:3) or weakly overdetermined (i.e., p:r = 10:3). The highly 

overdetermined condition was consistent with EFA models in practice where the median p is 

~20 and median r is ~3.00 (Henson & Roberts, 2006). The weakly overdetermined condition 

(i.e., relatively small p:r) was consistent the questionable, but often observed, practice of 

discarding complex, yet substantively important, items (Marsh, Hau, Balla, & Grayson, 

1998).

Model error (me)—Three conditions were specified for me: low (i.e., population RMSEA, 

ε, = .025) moderate (ε = .065), or high (ε, = .090), These values were equal to those reported 

in MacCallum et al. (2001) and were conceptualized in the same way: very good fit, fair fit, 

and poor fit, respectively (Browne & Cudeck, 1993; Steiger, 1989). Model error conditions 

were consistent with levels commonly observed in practice (Jackson et al., 2009).

Model error was integrated into the simulation of the current study through the use of minor 

factors (n=180) as described in Hong (1999).2 For each of the 18 population models a 

pattern matrix for the minor factors, Λm, was generated. Each Λm was initially generated by 

using multivariate random normal deviates. The standard deviation of the first minor factor 

was equal to 1. The standard deviation of each successive minor factor was .9 times the 

standard deviation of the preceding minor factor. After generating random pattern values for 

the minor factors the rows of Λm were rescaled to achieve a specific amount of variance 

accounted by the minor factors. The specific amount of total variance accounted by the 

minor factors ranged from 12.5% (i.e., ε = .025 and communality equaled high) to 60.6% 

(i.e., ε = .090 and communality equaled low) and was manipulated so that the desired level 

of me (i.e., ε, = .025 or .065 or .090) was integrated into each of the 18 population 

correlation matrices. The population correlation matrices were formed from Λm, Λ and 

unique variances and were used for data generation.

Communality (h)—Three conditions were specified for h: high (i.e., hi = .60 to .80; h̄ high 

= .70 ), wide (i.e., hi = .20 to .80; h̄ wide = .50 ), or low (i.e., hi = .20 to .40; h̄ low = .30 ).3 

These values were consistent with those used in MacCallum et al. (2001). Henson and 

2 The R code written for this is available upon request.
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Roberts (2006) reported that for EFA models in practice, the average total variance 

explained by the extracted factors (R2 ) ≈ 52% (R2
min ≈ 17% and R2

max ≈ 87%).

Sample size (N)—Three conditions were specified for N: 100, 300, or 500. Henson and 

Roberts (2006) reported that the distribution of sample size for EFA models in practice is 

positively skewed (minimum = 42, median = 267, M = 436, maximum = 3113).

Number of targets per factor (t)—Two sets of conditions were specified for t based on 

level of p:r (see Table 3). For all 18 population models, t was increased systematically from 

a minimum number necessary for rotation identification, r − 1 per column, up to 50% of 

targeted elements in each column of B (i.e., r + 7 when p:r = 20:3 and r + 2 when p:r = 

10:3). Fifty percent of targeted elements in each column of B was selected as the maximum 

to reflect the incomplete measurement theory commonly observed in practice (Myers et al., 

2013).

A total of 117 unique B (holding target error = 0) were specified across all 18 population 

models (i.e., 81 B in p:r = 20:3 case and 36 B in p:r = 10:3 case). For all B, the first t 

condition (i.e., r − 1) included two small pattern coefficients in each column (M = .00, SD 

= .08). From there the smallest non-targeted pattern coefficient in each column was specified 

as a target as t increased (e.g., from r − 1 to r).4 See Figure 1 for an example of a B where 

50% of the elements were targeted. Specifying many small valued pattern coefficients as 

targets was consistent with previous research (Browne, 1972a, 1972b; Gruvaeus, 1970). A 

conceptual rationale for targeting only small valued pattern coefficients is that for any 

particular indicator the targeted value(s) may frequently be more accurate if the column(s) 

that the indicator is(are) not intended to measure is(are) targeted (e.g., values near zero) than 

if the column(s) that the indicator is(are) intended to measure is(are) targeted.

Target error (te)—Four conditions were specified for te: exact, Bexact (bij = λij), close, 

Bclose, (bij = λij or bij = λij ± 1SE), approximate, Bapprox (bij = λij or bij = λij ± 1SE or bij = λij 

± 2SE), or poor, Bpoor (bij = λij ± 2SE). Within each B condition, the assignment of each bij 

to a particular value was systematic and continuous (from factor 1 to factor 3) as t increased. 

For example, when B = Bapprox and t = r − 1, the first target in the first column was specified 

as bi1 = λi1, the second target in the first column was specified as bi1 = λi1 + 1SE, the first 

target in the second column was specified as bi2 = λi2 − 1SE,..., the second target in the third 

column was specified as bi3 = λi3. Continuing with t = r for B = Bapprox, the additional target 

in the first column was specified as bi1 = λi1 + 1SE,..., and so forth.

3 The expression communality is used for simplicity of presentation in the current study as in MacCallum et al. (2001). The variance 

accounted for by the major factors was denoted  in Tucker et al. (1969) to more clearly distinguish this variance from the variance 

accounted for by the minor factors. While  for each observed variable, h varied with  and the values of  used in this study 
were consistent with Tucker et al. (1969) and MacCallum et al.
4 This procedure was altered slightly occasionally due to problems with rotation identification. For example, sometimes specifying the 
smallest non-targeted pattern coefficient as a target in each column led to a poorly identified rotated solution (e.g., insufficient rank of 
a submatrix, Λs – see pp. 409-411 of Asparouhov & Muthén, 2009). To remedy this problem, one of the previously targeted 
coefficients was re-specified as a non-target and another small pattern coefficient in that column was identified as a suitable 
replacement. Each B is available upon request.
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Empirical standard errors for each λij within each of the 18 Λ were estimated in 18 Monte 

Carlo studies (i.e., one for each population model) where, N = 300, the number of 

replications, NR, = 10,000, and the rotation criterion was direct quartimin. A modest N was 

selected to reflect sample sizes in practice, while a relatively large NR was selected to 

increase the accuracy of the empirical standard errors (Hoogland & Boomsma, 1998). For 

each λij, the average of the estimated standard error over the replications was used as the 

empirical standard error. Figure 2 provides the four te conditions for the Λ previously 

depicted in Figure 1. A total of 468 unique B were specified (i.e., 117 for each of the four te 

conditions).

Rotation Identification

Some known conditions for rotation identification in factor analysis exist (e.g., Algina, 

1980; Hayashi & Marcoulides, 2006). Under oblique rotation H* is a non-symmetric square 

matrix that results in r2 indeterminacies. Imposing r2 constraints on Λ and Ψ is a necessary 

condition for rotation identification. Fixing the variance for each of the common factor to 1 

provided r constraints. A set of sufficient conditions for imposing the remaining r(r – 1) 

constraints included: (a) each column of Λ has r – 1 elements specified as zeros, and (b) 

each submatrix Λs, where s = 1,…,r, of Λ composed of the rows of Λ that have fixed zeros 

in the rth column must have rank r – 1. For each t specification, it was confirmed that both 

conditions were met with regard to the population values.5

Population-level rotation—In each of the 18 population models the parameter values 

represented one possible rotated solution. In order to operate under the assumption that the 

particular set of parameter values in Λ was the simplest in each case, population-level 

rotation, Λ*, was obtained from a Monte Carlo study where N =1,000,000 and NR, = 1 

(Asparouhov & Muthén, 2009). This was done for each t condition (because each t condition 

represented a unique rotation criterion) in each of the 18 population models when B = Bexact. 

Across all 117 Monte Carlo studies the average difference between each element within the 

relevant Λ* and the relevant Λ was −.02 with SD = .04.

Data Generation

The experiment was performed within the exploratory structural equation modeling 

framework (ESEM; Asparouhov & Muthén, 2009) as implemented in Mplus 7 (Muthén & 

Muthén, 1998–2012). Data were drawn from a multivariate normal distribution (0, Σ). 

Number of iterations was set to 10000 for both the unrotated and the rotated solution. 

Parameter values were provided in the model statement to define the alignment criteria in 

order to avoid factor order switching and reduce the likelihood of negative factors 

(Asparouhov & Muthén, 2009).

Within each cell NR = 100 for each initial run though it was expected that non-convergence 

and/or inadmissible solutions would frequently be observed in some cells (e.g., Velicer & 

Fava, 1998). Consistent with the goal of maximizing the representativeness of the results to 

practice, replications that did not converge to a (rotated) solution or that converged to an 

5 Consistent with Asparouhov and Muthén (2009), small values (in this case, ≤ |.08|) were counted as approximately zero.
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improper solution were discarded (Bandalos, 2006). Each replication was screened because 

the program retained all completed replications – even if the solution was improper. Taking 

this approach was a primary reason that NR was relatively small. Replications were added as 

necessary to achieve 100 acceptable solutions in each cell.

Outcomes

To investigate the similarity between Λ and Λ̂* mean bias, δ, was calculated for each 

replication:

(7)

where

 is the observed rotated pattern coefficient for variable i on factor j, and

λij is the true pattern coefficient for variable i on factor j.

Bias was used to assess the accuracy of Λ̂*.

To investigate the stability of Λ̂* a measure of variability for the entire matrix, V, was 

calculated for each replication:

(8)

where

 = was the mean observed rotated solution over 100 replications in a given cell. V 

was used to assess the stability of Λ̂*.

Testing Hypotheses 1 through Hypothesis 3

A six-way ANOVA modeled δ and then V by p:r, me, h, N, t, and te. All main and 

interaction effects were modeled and α was set .05 from this point forward. Effect size was 

emphasized over statistical significance and was categorized as small, .01 < ω̂2 < .05, 

medium, .05 ≤ ω̂2 < .13, and large, ω̂2 ≥ .13, consistent with general guidelines from Cohen 

(1988).

Study 2

Study 2 tested Hypothesis 4 under some of the conditions imposed in Study 1. The 

manipulated factor t was re-conceptualized as rotation criterion, rc, and geomin rotation was 

added as a condition (where ε = .001; the default value in Mplus for three factors). Target 
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error was reduced from four conditions to one condition, Bpoor, for textual parsimony and to 

potentially provide a more conservative test with regard to target rotation. All other 

manipulated factors, data generation procedures, and outcomes were identical to Study 1.

Testing Hypothesis 4

A five-way ANOVA modeled δ and then V by p:r, me, h, N, and rc. All main and interaction 

effects were modeled but the focus was on post hoc comparisons within rc factor (i.e., 

geomin versus levels of t) by h. Thus, there was a total of 54 post hoc comparisons (27 for 

each outcome). Effect size was categorized as small, .1 ≤ |d| < .5, medium, .5 ≤ |d| < .8, and 

large, |d| ≥ .8, consistent with general guidelines from Cohen (1988). A somewhat liberal 

definition of small was considered reasonable given that both target and geomin rotation are 

somewhat flexible in that neither f (Λ) was confined to search for a perfect simple structure, 

and, that rotation occurs after estimation of the unrotated solution.

Results

The number of acceptable solutions from the first 100 replications in each cell was 

consistent with results from Velicer and Fava (1998). The percentage of acceptable solutions 

when p:r ≥ 20:3 was high (i.e., ≥ 83% in each of these cells; M = 98% across these cells), 

while the percentage of acceptable solutions when p:r = 10:3 was more variable (i.e.,≥ 45% 

in each of these cells; M = 86% across these cells). A total of 152,056 datasets were 

generated in order to achieve 140,400 datasets that yielded an acceptable solution.

Study 1

Bias (δ) summary

Average (across the 100 replications within each of the 1404 cells of the design) mean bias, 

δ̄, was small: M = −0.02, SD = 0.03. The small amount of δ observed in the current study 

was consistent with result reported in MacCallum et al. (2001). Given the small amount of δ 

and its location around zero, the absolute value of δ (i.e., unsigned bias) was calculated for 

each replication because the magnitude of δ was viewed as more important than the 

direction of δ, and, to avoid cancelling due to δ of opposite signs in subsequent analyses.

Effects from the six-way ANOVA that were greater than small and not directly related to the 

hypotheses in the current study were: h (ω̂2 = .16 ), p:r (ω̂2 = .10), p:r*h (ω̂ 2 = .05 ).6 These 

main and interaction effects were consistent with MacCallum et al. (1999) and are not 

discussed further. The major patterns (e.g., statistically significant but small effects) found 

in MacCallum et al. (2001) with regard to the main and interaction effects of me were 

replicated and are not discussed further in the main text. The smaller main and interaction 

effects of N in the current study (as compared to MacCallum et al. 2001) was likely 

attributable to the omission of a very small N (e.g., = 60 as in MacCallum et al. 2001) 

condition in the current study.

6 The full six-way ANOVA table for each outcome is available upon request to the first author.
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Variability (V) summary

Average (across replications within each of the 1404 cells of the design) mean variability, V̄, 

was: M = 0.31, SD = 0.14. Effects from the six-way ANOVA that were greater than small 

and not directly related to the hypotheses in the current study were: p:r (ω̂ 2 = .09) and h (ω̂

2 = .07 ). Both of these main effects, along with the statistically significant but small main 

and interaction effects for me and N, were consistent with MacCallum et al. (2001) and are 

not discussed further. Hypotheses unique to this study are discussed below.

Hypothesis 1

Effect size for the main effect of te, and all interaction effects involving te, on both δ and V 

was ω̂ 2 ≤ .01 and in the vast majority (58 out of 64) cases ω̂ 2 = .00. Thus, there was support 

for Hypothesis 1 in that target rotation was relatively robust to the target error conditions 

studied.

Hypothesis 2 and Hypothesis 3

There was a small main effect for t on both δ (i.e., ω̂ 2 = .01) and V (i.e., ω̂ 2 = .04 ) but in 

both cases the magnitude of this effect depended somewhat on level of h (i.e., ω̂2 = .01 and 

ω̂ 2 = .01, respectively). For example, as can be viewed in Figure 3, the negative effect of t 

on V was strongest/weakest when h was high/low. For example, as can be viewed in Figure 

4, the negative effect of t on δ was weakest/strongest when h was high/low. The negative 

effect of t on δ was weaker and likely due to a floor effect previously described in the bias 

summary. Thus, there was some support for both Hypothesis 2 and Hypothesis 3 in that the 

negative effect of t on both δ and V depended somewhat on level of h.

Study 2

Hypothesis 4

Target rotation outperformed geomin rotation in each of the 27 post hoc comparisons within 

levels of rc by h in regard to δ (see Figure 3). The magnitude of the effect tended to differ 

somewhat by level of h and t. When h = high, d ranged from 0.21 to 0.98 and was 

consistently large (i.e., d ≥ .84) when t ≥ r + 3. When h = wide, d was consistently large and 

ranged from 1.10 to 1.76. When h = low, d ranged from 0.17 to 0.99 and was consistently 

moderate to large (i.e., d ≥ .74) when t ≥ r + 3. For all comparisons, the magnitude of d was 

heavily influenced by the by the precision of the pooled SD as the largest mean difference 

for any comparison was 0.08. Similarly, and as can be viewed in Figure 4, both rotation 

criteria tended to produce solutions of relatively good accuracy as δ̄ ≤ .10.

Geomin rotation outperformed target rotation in 20 of the 27 post hoc comparisons within 

levels of rc by h in regard to V (see Figure 4). The magnitude of the effect tended to differ 

somewhat by level of h and t. When h = high and t ≥ r +2, d ranged from 0.13 to 0.86 in 

favor of geomin rotation and this effect tended to shrink as t increased. When h = high and t 

> r +2, d ranged from 1.01 to 1.25 in favor of target rotation. When h = wide and t ≥ r +5, d 

ranged from 0.17 to 1.19 in favor of geomin rotation and this effect tended to shrink as t 

increased. When h = wide and t > r + 5, d ranged from 0.16 to 0.29 in favor of target 

rotation. When h = low, geomin rotation always outperformed target rotation and d ranged 
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from 0.74 (t = r + 7) to 1.58 (t = r). An a priori hypothesis regarding the performance of 

target rotation versus geomin rotation with regard to stability was not put forth due to a lack 

of directly related research; results from these comparisons will be tentatively discussed in 

relation to the partially specified target matrix.

Discussion

The purpose of the current Monte Carlo study is to explore the influence of the number of 

targets specified on the quality of EFA solutions with a complex underlying structure and 

incomplete substantive measurement theory. Study 1 extends previous research by exploring 

this phenomenon in situations in which specification errors are present in both the common 

factor model (i.e., model error) and the targeted pattern matrix (i.e., target error). Study 2 

extends previous research by comparing the performance of target rotation to geomin 

rotation under some of the conditions imposed in Study 1. Established sources of error in 

factor analysis manipulated in both studies include overdetermination of the pattern matrix, 

communality, and sample size. Outcomes are a measure of accuracy and a measure of 

stability with regard to the rotated pattern matrix. Findings are discussed with respect to the 

hypotheses tested with an emphasis on potential implications for applied research.

There is support for Hypothesis 1 in that the magnitude of the main effect of target error, 

and all interactive effects involving target error, on both the accuracy and stability of the 

rotated solution is negligible. This finding is consistent with long held methodological 

speculation that target rotation may be relatively robust to such misspecification due to the 

inherent flexibility of the least squares fit to the targeted pattern matrix. This finding also 

may have important implications for practice given that the true value of any particular 

pattern coefficient, let alone the true value for each of the several pattern coefficients 

necessary for rotation identification, is likely to be unknown in any particular application. 

More broadly, the fact that target rotation may be relatively unaffected by both model and 

target error suggests that this rotation criterion may be useful under conditions frequently 

observed in practice: important substantive measurement theory is available yet it is both 

incomplete and less than perfectly accurate.

There is some support for both Hypothesis 2 and Hypothesis 3 in that the magnitude of the 

effect of the number of targets specified on both the accuracy and stability of the rotated 

solution depends somewhat on level of communality (but not on target error). Like in the 

Myers et al. (2013) study, these findings can be viewed as analogous to the interactive effect 

of communality and degree of overdetermination of the pattern matrix (substituting the 

number of targets per factor for p:r) predicted and found in both MacCallum et al. (1999) 

and MacCallum et al. (2001). In general, when communality is high, the effect of the 

number of targets on increasing accuracy is smaller (likely due to a floor effect) than when 

communality is not high. From an applied perspective, these findings make clear the 

potential importance of using extant, even if incomplete and somewhat inaccurate, 

substantive measurement theory to specify the target matrix to the full extent possible – 

particularly when the observed variables are not uniformly highly reliable indicators of the 

underlying factors.
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There is some support for Hypothesis 4 in that target rotation outperforms geomin rotation 

in regard to accuracy. While the size of the effect generally is at least medium it should be 

noted that both rotation criteria tend to produce solutions of relatively good accuracy thus 

the effect size was largely achieved by the precision of the pooled SD. From a 

methodological perspective the accuracy findings are consistent with the fact that neither 

rotation criterion is restricted to search for a perfect simple structure, and, that target rotation 

can be specified in such a way as to search for a complex underlying structure. From an 

applied perspective, the potential importance of using extant, even if incomplete and 

somewhat inaccurate, substantive measurement theory to inform the rotation criterion in a 

non-mechanical way may be worthwhile in general with regard to accuracy. Most simply, 

the additional demand placed on the user under target rotation versus geomin rotation may 

be worthwhile with regard to accuracy.

Geomin rotation outperforms target rotation in most conditions of this study in regard to 

stability. As can be viewed in Figure 1, the target matrix typically is only partially specified 

and thus the complexity function that is minimized is based on partial information. For this 

reason, target rotation may yield relatively less stable results as compared to rotation 

criterion whose complexity function is based on fuller information, particularly when only a 

small percentage of possible targets are specified. As can be viewed in Figure 3, instability 

tended to decrease as the number of targets increased but the magnitude of this decrease 

tended to depend on level of communality. From an applied perspective, when the observed 

variables are less than uniformly reliable indicators of the underlying factors, geomin 

rotation may be expected to outperform target rotation. When, however, the observed 

variables are uniformly reliable indicators of the underlying factors and several targets are 

specified, target rotation may be expected to outperform geomin rotation. In summary, using 

incomplete substantive measurement theory to inform the rotation criterion in a non-

mechanical way may be worthwhile only in limited circumstances, as compared to a fuller 

information mechanical approach, with regard to stability.

The ability to broadly generalize results from this study is constrained by the conditions 

imposed. Specific conditions in this study that are restrictive include the exclusion of: large 

pattern matrices, structural coefficients in the latent variable model, and egregiously 

incorrect targeted values. Subsequent studies that examine the performance of the number of 

targets per factor for large pattern matrices (e.g., several factors) under conditions 

commonly observed in practice (e.g., model and target error), and compare this performance 

to mechanical rotation criteria, could advance the literature. Subsequent studies also could 

expand the form of the structural equation to include structural coefficients in the latent 

variable portion of the model, while examining the performance of target rotation as 

compared to other rotation criteria. Subsequent studies that examine the performance of the 

number of targets per factor when the targets are more incorrect than in the current study 

could advance the literature. Finally, the correct number of factors always is specified in the 

current study, which is a limitation consistent with known limits of factor analysis (e.g., 

Fava & Velicer, 1996). The potential studies proposed in this paragraph may be timely as 

the recently proposed ESEM framework (and by extension potential specification of a 

rotation criterion) appears to offer a viable alternative to CFA in some instances in theory 
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(Asparouhov & Muthén, 2009) and in practice (e.g., Marsh et al., 2009; Morin & Maïano, 

2011; Myers, Chase, Pierce, & Martin, 2011).
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Figure 1. 
Matrix A designated whether each pattern coefficient was (1) or was not (0) a target. Matrix 

B provided values that targeted elements would be rotated towards and denoted non-targeted 

elements with a ? symbol. Matrix Λ provided population values.
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Figure 2. 
Four target error conditions for the Λ depicted in Figure 1. Non-targeted elements were 

denoted with a ? symbol.
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Figure 3. 
The effect of rotation criterion, where t = the number of targets per factor and implies target 

rotation, on variability by communality (h) when target error was poor. Symbols represent 

an average variability while error bars represent the 95% confidence interval around this 

average.
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Figure 4. 
The effect of rotation criterion, where t = the number of targets per factor and implies target 

rotation, on mean absolute value of bias by communality (h) when target error was poor. 

Symbols represent an average absolute bias value while error bars represent the 95% 

confidence interval around this average.
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