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Abstract

Existing statistical methodology on dose finding for combination chemotherapies has focused on 

toxicity considerations alone in finding a maximum tolerated dose combination to recommend for 

further testing of efficacy in a phase II setting. Recently, there has been increasing interest in 

integrating phase I and phase II trials in order to facilitate drug development. In this article, we 

propose a new adaptive phase I/II method for dual-agent combinations that takes into account both 

toxicity and efficacy after each cohort inclusion. The primary objective, both within and at the 

conclusion of the trial, becomes finding a single dose combination with an acceptable level of 

toxicity that maximizes efficacious response. We assume that there exist monotone dose–toxicity 

and dose–efficacy relationships among doses of one agent when the dose of other agent is fixed. 

We perform extensive simulation studies that demonstrate the operating characteristics of our 

proposed approach, and we compare simulated results to existing methodology in phase I/II design 

for combinations of agents.
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1. Introduction

1.1. Background information

In general, the primary objective of phase I clinical trials is to identify the maximum 

tolerated dose (MTD) of the agent or agents being investigated. In a subsequent phase II 

trial, the agent is evaluated for efficacy at the recommended dose (MTD). In oncology trials 

of chemotherapeutic agents, identification of the MTD is usually determined by considering 

dose-limiting toxicity (DLT) information only, with the assumption that the MTD is the 

highest dose that satisfies some safety requirement, so that it provides the most promising 

outlook for efficacy. Usually, phase I and phase II trials are performed independently, 

without formally sharing information across the separate phases. There has been a recent 
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shift in the paradigm of drug development in oncology to integrate phase I and phase II trials 

so that drug development process may be accelerated, while potentially reducing costs [1]. 

To this end, several published phase I/II methods have extended dose-finding methodology 

to allow for the modeling of both toxicity and efficacy ([2–7], among others).

In general, the principal assumption driving the design of phase I trials is that the 

administration of higher doses can be expected to result in DLT in a higher percentage of 

patients and that higher doses will be more efficacious. These relationships are typically 

characterized by dose–toxicity and dose–efficacy patterns in which the probability of 

toxicity and the probability of efficacy increase monotonically with increasing dose. 

Situations in which the monotonicity assumption, for both toxicity and efficacy, may fail are 

becoming increasingly common in cancer research practice. Most notably, these studies are 

phase I trials that involve combinations of agents. Dose finding for multi-drug combinations 

can be broadened to the more general problem of partial ordering in clinical trials. Other 

partial order problems include patient heterogeneity and different treatment schedules [8, 9]. 

By partial ordering, we mean that it may be possible to identify the ordering of DLT 

probabilities for only a subset of the available combinations. This relaxes the assumption of 

monotonicity among all doses (i.e. combinations) in terms of their toxicity (and efficacy).

Various methods have been suggested by authors to handle the problem of dose finding in 

drug combination trials ([10–15], among others). These methods determine combinations to 

which to allocate patients solely on the basis of toxicity considerations, without accounting 

for efficacy. There has been limited research on early-phase designs for drug combination 

trials that account for both toxicity and efficacy. Huang et al. [16] proposed a parallel phase 

I/II design for combinations of agents. The phase I part of the design utilizes the ‘3 + 3’ 

dose-finding design [17] to identify a set of combinations with ‘acceptable’ toxicity. Once 

the initial dose-escalation process is completed, a response adaptive randomization 

procedure based on efficacy is performed using all combinations in the set found to be 

acceptable in the dose-finding portion. Li et al. [18] presented a dose-schedule finding 

method for partially ordered phase I/II clinical trials. Yuan and Yin [19] also proposed phase 

I/II design for combinations, in which the phase I component establishes a set of admissible 

doses on the basis of copula-type regression outlined in [20]. The phase II component takes 

the set of admissible doses and implements a novel procedure, known as moving-reference 

adaptive randomization, in order to compare efficacy among admissible treatments. Both of 

these phase I/II designs for combinations take a fixed set of admissible doses into the phase 

II portion of the study in order to assess efficacy. We contrast these designs with the one we 

propose here in that, throughout the duration of the trial, we continuously monitor safety 

data in order to adaptively update our set of acceptable dose combinations with which to 

make allocation decisions based on efficacy.

In this article, we propose a new phase I/II adaptive design that takes into account both 

toxicity and efficacy in order to make allocation decisions and find the optimal dose 

combination (ODC). The ODC is defined as the most efficacious dose combination with a 

tolerable toxicity profile. Because of the partial ordering among combinations, this may not 

be the combination with the highest DLT rate in the set of acceptable combinations. The 

overall strategy of the method proposed in this article is to use two binary responses, one for 
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toxicity and one for efficacy, from each entered patient to adaptively identify a set of 

‘acceptable’ toxicity combinations and allocate the next entered cohort to the combination in 

the set that the data indicate to be most efficacious. Simulation results will demonstrate that 

the new design will gravitate towards acceptable toxicity combinations with high efficacy. 

In the remainder of this section, we briefly describe the problem of partial ordering in dose-

finding trials. In the following section, we outline the models and inference for the proposed 

design. In Section 4, we present simulation results that illustrate the operating characteristics 

of the proposed work and compare them to those of Yuan and Yin [19]. Finally, we 

conclude with some discussion and directions for future research.

1.2. The problem of partial ordering

1.2.1. Toxicity—As an example, consider a FDA-approved drug combination trial 

designed at the University of Virginia Cancer Center. The example is a phase I/II trial 

designed to find an ODC of two agents, which we label agent A and agent B. Both agents 

have three dose levels, resulting in a total of nine combinations, {d1, d2, …, d8, d9} under 

consideration, creating a 3 × 3 matrix order, and the treatments are labeled as in Table I. A 

reasonable assumption to be made in these type of studies is that toxicity increases 

monotonically with dose of an agent, if the other agent is held fixed (i.e., across and up 

columns of the matrix). The DLT probabilities follow a complete order in that the 

relationship between all DLT probabilities for one of the agents, when the other agent is 

fixed, is completely known. Denoting the probability of a DLT at combination di by πT (di), 

if agent A is fixed at dose level 2, then we know πT (d4) ≤ πT (d5) ≤ πT (d6). It may not be 

possible to arrive at a complete ordering among the combinations along the diagonals of the 

drug combination matrix. Moving from d4 to d2 corresponds to decreasing the dosage of 

agent A from 2 to 1, while increasing the dosage of agent B from 1 to 2. Therefore, the 

conditions

hold without it being possible to order πT (d2) and πT (d4) with respect to one another, 

creating a partial order between πT (d1), πT (d2), and πT (d4). Taking into account known 

and unknown relationships between combinations, we proceed by laying out possible 

complete orders of the dose–toxicity relationship. Considering all possibilities in studies 

such as the example provided is not feasible because of the large number. We rely on the 

practical approach of Wages and Conaway [21] by formulating a reasonable subset of 

possible orders according to the rows, columns, and diagonals of the matrix of 

combinations. The resulting orderings, index by m, are as follows:

1. across rows [m = 1]

πT (d1) ≤ πT (d2) ≤ πT (d3) ≤ πT (d4) ≤ πT (d5) ≤ πT (d6) ≤ πT (d7) ≤ πT (d8) ≤ πT 

(d9)

2. up columns [m = 2]

πT (d1) ≤ πT (d4) ≤ πT (d7) ≤ πT (d2) ≤ πT (d5) ≤ πT (d8) ≤ πT (d3) ≤ πT (d6) ≤ πT 

(d9).
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3. up diagonals [m = 3]

πT (d1) ≤ πT (d2) ≤ πT (d4) ≤ πT (d3) ≤ πT (d5) ≤ πT (d7) ≤ πT (d6) ≤ πT (d8) ≤ πT 

(d9)

4. down diagonals [m = 4]

πT (d1) ≤ πT (d4) ≤ πT (d2) ≤ πT (d7) ≤ πT (d5) ≤ πT (d3) ≤ πT (d8) ≤ πT (d6) ≤ πT 

(d9)

5. alternating down-up diagonals [m = 5]

πT (d1) ≤ πT (d2) ≤ πT (d4) ≤ πT (d7) ≤ πT (d5) ≤ πT (d3) ≤ πT (d6) ≤ πT (d8) ≤ πT 

(d9) and

6. alternating up-down diagonals [m = 6]

πT (d1) ≤ πT (d4) ≤ πT (d2) ≤ πT (d3) ≤ πT (d5) ≤ πT (d7) ≤ πT (d8) ≤ πT (d6) ≤ πT 

(d9)

1.2.2. Efficacy—In the most common of cases, there exists a monotone efficacy 

relationship among doses of one of the agents when the other agents are fixed. Therefore, we 

focus our discussion of partially ordered dose–efficacy relationships under the assumption 

that single-agent efficacy profiles are monotone for the agents being investigated. If we 

assume, as we did with toxicity, that efficacy increases monotonically across rows and up 

columns of the matrix, then we can formulate possible orderings in the same way we 

described earlier with regard to DLT probabilities. Therefore, denoting the probability of 

efficacious response at combination di as πE(di), the possible dose–efficacy relationships can 

be expressed according to rows, columns, and diagonals as above, with πE’s replacing the 

πT ’s. Our pro-posed design has the ability to accommodate other subset sizes for toxicity, 

efficacy, or both, should we have more or less ordering information available. We do not 

make the assumption that the most likely ordering of probabilities for the combinations will 

be the same with regard to both toxicity and efficacy. For instance, suppose that along the 

diagonal in Table I πT (d8) = 0.25 and πT (d6) = 0.20. In single-agent trials, it would be 

reasonable to assume that higher toxicity is associated with higher efficacy so πE (d8) > πE 

(d6). This may not be a reasonable assumption in drug combination trials because of the 

unknown interactions between the drugs. It could be the case that πE(d8) < πE(d6) even 

though d8 has a slightly higher toxicity. Therefore, we formulate the subset of orderings for 

both toxicity and efficacy separately, allowing the observed data to tell us which toxicity 

ordering and which efficacy ordering are most likely.

2. Models and inference

Consider a trial investigating I drug combinations, {d1, …, dI}. Suppose there are M 

complete toxicity orders and K complete efficacy orders available for investigation, either in 

total or a chosen subset. For instance, if we choose to use the ‘default’ subset of orderings 

described earlier, then M = K = 6. Toxicity and efficacy are modeled as binary endpoints, so 

that for each subject j, we measure
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The combination, Xj for the j th entered patient, j = 1, …, n, can be thought of as random, 

taking values xj ∈ {d1, …, dk}.

2.1. Toxicity

Suppose that the doses follow a partial order with respect to toxicity for which there are M 

possible complete orders under consideration. For a particular ordering, m; m = 1, …, M, we 

model πT (di), the true probability of DLT response at di by

for a class of working dose–toxicity models, Fm(di, β), corresponding to each of the possible 

dose–efficacy orderings, and β ∈ ℬ. For instance, the power model, , is 

common to CRM designs [22], where ℬ = (−∞, ∞) and 0 < p1m < ⋯ < pIm < 1 are the 

standardized units (skeleton) representing the combinations di. Further, we may wish to take 

account of any prior information concerning the plausibility of each ordering and so 

introduce τ(m) = {τ(1), …, τ(M)}, where τ(m) ≥ 0 and where ∑m τ(m) = 1. Even when there 

is no prior information available on the possible orderings, we can formally proceed in the 

same way by specifying a discrete uniform for τ(m). After inclusion of the first j patients 

into the trial, we have toxicity data in the form of j = {(x1, y1), …, (xj, yj)}. Under ordering 

m, we obtain an estimate, βĵm, for the parameter β.

In the Bayesian framework, we assign a prior probability distribution g(β) for the parameter 

β of each model, and a prior probability τ(m) to each possible order. In order to establish 

running estimates of the probability of DLT at the available combinations, we need an 

expression for the likelihood for the parameter β. After inclusion of the first j patients into 

the study, the likelihood under ordering m is given by

(1)

which, for each ordering, can be used in order to generate a summary value, β̂
jm, for β. 

Given the set j and the likelihood, the posterior density for β is given by

This information can be used to establish the posterior probabilities of the orderings given 

the data as
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The prior probabilities, τ(m), for the ordering are updated by the toxic response data, j. It is 

expected that the more the data support ordering m, the greater its posterior probability will 

be. Thus, we appeal to sequential Bayesian model choice to guide allocation decisions. 

When a new patient is to be enrolled, we choose a single ordering, m*, with the largest 

posterior probability such that

We then take the working model, Fm*(di, β), associated with this ordering to generate 

toxicity probability estimates at each dose. Beginning with the prior for β and having 

included the j th subject, we can compute the posterior probability of a DLT for di so that

which we can use to define a set of acceptable (safe) combinations based on a maximum 

toxicity tolerance, ϕT.

2.2. Efficacy

Much of the modeling notation and convention is similar to the preceding section on 

toxicity. Suppose we have some class of models, G, corresponding to each of the possible 

dose–efficacy orderings, that model the true probability of efficacy at dose Xj = xj such that

for k = 1, …, K and θ ∈ Θ. Like toxicity, for efficacy, we appeal to the simple power model, 

, which has shown itself to work well in practice in single-agent CRM 

designs [22]. Here again, Θ = (−∞, ∞) and 0 < q1k < ⋯ < qIk < 1 is the skeleton of the 

model. Let ξ(k) be a set of prior probabilities placed on each of the orderings and h(θ) be a 

prior distribution placed on θ. Using the accumulated toxicity data from j patients, Ωj = {(x1, 

z1), …, (xj, zj)}, the posterior mean θ̂
jk and the posterior probabilities of k are generated for 

each ordering, based on the likelihoods Lk (θ | Ωj), which takes a similar form as (1). The 

procedure for choosing an ordering then follows as described earlier for toxicity on the basis 

of adaptive Bayesian model selection. The order k* with the largest posterior probability is 

chosen for the next cohort, and the estimate θ̂
jk* is used to estimate the efficacy probabilities 

for each combinations under ordering k* so that π̂E(di) = Gk*(di, θ̂
jk*); i = 1, …. I. The 

efficacy probability estimates, π̂
E(di), are used to make decisions regarding combination 

allocation as described in Section 3.
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3. Dose-finding algorithm

Overall, we are going to allocate each entered patient to the dose combination estimated to 

be the most efficacious, among those with acceptable toxicity. After obtaining the DLT 

probability estimates, π̂T (di), for each combination, we are going to first restrict our 

attention to those combinations with estimated probabilities less than a maximum acceptable 

toxicity rate, ϕT.

In general, after j entered patients, we define the set of ‘acceptable’ combinations as

We then allocate the next entered patient to a combination in j on he basis of estimated 

efficacy probabilities, π̂E(di). By incorporating an acceptable set, j, we exclude overly 

toxic dose combinations. The allocation algorithm depends upon the amount of data that 

have been observed so far in the trial. If a limited amount of data exist, we will rely on an 

adaptive randomization phase to allocate future patients to acceptable combinations. In the 

latter portion of the trial, when a sufficient amount of data have been observed, we will 

utilize a maximization phase in which we allocate according to the most efficacious 

treatment among the set of acceptable dose combinations.

3.1. Adaptive randomization phase

Early in the trial, there may not be enough data to rely entirely on maximization of estimated 

efficacy probabilities within j to accurately assign patients to the most efficacious 

combination with acceptable toxicity. There may be doses in j that have never been tried, 

and information on these can only ever be obtained through experimentation. Added 

randomization allows for information to be obtained on competing dose combinations and 

prevents the method from ‘locking in’ on a combination that has been tried early in the trial. 

Therefore, we do not rely entirely on the maximization of estimated efficacy probabilities 

for guidance as to the most appropriate treatment but rather implement adaptive 

randomization to obtain information more broadly. On the basis of the estimated efficacy 

probabilities, πÊ(di), for combinations in j, calculate a randomization probability Ri,

and randomize the next patient or cohort of patients to combination di with probability Ri. 

We are going to rely on this randomization algorithm for a subset of nR patients in order to 

allow information to accumulate on untried combinations, before switching to a phase in 

which we simply allocate according to the maximum estimated efficacy probability among 

the acceptable doses. The number of patients on which to implement the adaptive 

randomization (AR) phase can vary from trial to trial. Some may involve randomization for 

the entirety of the study, whereas others do not randomize any patients and treat according 

to which dose combination the data indicate is the most efficacious. We found that 
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performance, in terms of choosing desirable combinations, is optimized when some mixture 

of randomization and maximization is utilized. In the simulation results in the subsequent 

discussions, we explore performance of our method under various values of nR. The 

subsequent simulated results will demonstrate that the size of the adaptive randomization 

phase can be expanded or contracted according to the desire of the clinician/statistician team 

and operating characteristics, with regard to dose recommendation, will be relatively 

unaffected.

3.2. Maximization phase

Upon completion of the AR phase, the trial design switches to a maximization phase in 

which maximized efficacy probability estimates guide allocation. Among the doses 

contained in j, we allocate the (j + 1)th patient cohort to the combination xj+1 according to 

the estimated efficacy probabilities, πÊ(di), such that

Continuing in this way, the ODC is the recommended combination di = xN+1 for the 

hypothetical (N + 1)th patient after the inclusion of the maximum sample size of N patients 

or some stopping rule takes effect.

3.3. Starting the trial

In order to get the trial underway, we will choose the toxicity and efficacy ordering with the 

largest prior probability, τ(m) and ξ(k), respectively, among the orderings being considered. 

If several, or all, of the orderings have the same maximum prior probability, then we will 

choose at random from these orderings. Given the starting orderings, m* and k*, for toxicity 

and efficacy, respectively, the starting dose, x1 ∈ {d1…,dI}, is then chosen. Specifically, on 

the basis of the toxicity skeleton, pim*, for ordering m*, we define the acceptable set, a 

priori, to be

On the basis of the efficacy skeleton, qik*, corresponding to ordering k* for doses in j, we 

calculate the randomization probability Ri,

and randomize the first patient or cohort of patients to combination x1 = di with probability 

Ri.

3.4. Stopping the trial

Safety—Investigators will want some measure by which to stop the trial in the presence of 

undesirable toxicity. At any point in the trial, we can calculate an exact binomial confidence 
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interval for toxicity  at the lowest combination, d1. The value of 

provides a lower bound for the probability of toxicity at d1, above which we are 95% 

confident that the true toxicity probability for d1 falls. We want to compare this lower bound 

to our maximum acceptable toxicity rate, ϕT. If our lower bound exceeds this threshold, we 

can be confident that the new treatment has too high of a DLT rate to warrant continuing the 

trial. Therefore, if , stop the trial for safety, and no treatment is identified as the 

ODC.

Futility—If the new treatment is no better than the current standard of care, we would also 

like for the trial to be terminated. After j inclusions, we calculate an exact binomial 

confidence interval for efficacy  at the current combination, xj. The value 

of  provides an upper bound for the probability of efficacy at the current treatment, 

below which we are 95% confident that the true efficacy probability for that combination 

falls. We want to compare this upper bound to some futility threshold, ϕE, that represents the 

efficacy response rate for some current standard of care. If our upper bound fails to reach 

this threshold, we can be confident that the new treatment does not have a sufficient 

response rate to warrant continuing the trial. Therefore, if , stop the trial for 

futility, and no treatment is identified as the ODC. This stopping rule will only be assessed 

in the maximization phase, not the adaptive randomization phase, so that here j ≥ nR. The 

reason for this is that the upper bound will be calculated on the current treatment, which is 

based on the maximum estimated efficacy probability. We can be confident that if the 

maximum of the estimated probabilities did not reach the futility threshold, then none of the 

other acceptable toxicity combinations would reach it, because they are presumed to have 

lower efficacy than the selected treatment. In the adaptive randomization phase, when we 

randomize, there may exist a more efficacious treatment in the set j that was not selected 

purely because of randomization. Consequently, another treatment may have reached the 

futility threshold had it been selected, so we would not want to stop the trial in this case.

4. Simulated results

4.1. Design specifications

We examined the operating characteristics of the proposed design via simulation studies. 

Under each of the true probability scenarios provided in Table II, 1000 trials were simulated. 

The proposed design embodies characteristics of the CRM so we can utilize these features in 

specifying design parameters. It has been shown [23] that CRM designs are robust and 

efficient with the implementation of ‘reasonable’ skeletons. Simply defined, a reasonable 

skeleton is one in which there is adequate spacing between adjacent values. The toxicity and 

efficacy probabilities were modeled via the power models described in Section 2. The 

models correspond to multiple skeletons that represent the varying possible orderings of 

dose–toxicity (dose–efficacy) curves with the skeleton values for both models generated 

according to the algorithm of Lee and Cheung [25] using the getprior function in R 

package dfcrm [26]. For each ordering, we implemented a normal prior with mean 0 and 

variance 1.34 on the parameters so that g(β) = h(θ) = (0, 1.34) [24]. We assumed, a priori, 

that each of the six dose–toxicity/dose–efficacy orderings were equally likely and set τ(m) = 
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ξ(k) = 1/6. The maximum sample size for each simulated trial was set to N = 40, and we 

assessed the impact of various sizes, nR, for the adaptive randomization phase, the values of 

which can be found in the table of simulation results. Another design parameter that must be 

addressed is the association between toxicity and efficacy responses. The models and 

inference presented in Section 2 ignore the correlation between toxicity and efficacy, and 

thus model their respective probabilities independently without regard to an association 

parameter ψ. In the simulated studies, we initially assumed that ψ = 0 so that toxicity and 

efficacy are simulated independently with probability (πT (di), πE(di)) at each dose level di. 

Bivariate binary outcomes were generated using function ranBin2 in R package 

binarySimCLF [26]. We then evaluated the sensitivity of using two independent models 

with nonzero values for the association ψ. We fit the independent models using correlated 

binary data, generated according to various association (ψ) values. We ran simulations using 

outcomes generated with four fixed values of ψ used in Thall and Cook [6]; ψ = 

{−2.049,−0.814, 0.814, 2.049}. We present results for two of these values, ψ = {−2.0049, 

0.814}, with results for remaining values omitted for the sake of brevity. Overall, the 

following results will demonstrate our method’s robustness to the misspecification of the 

association parameter.

Software in the form of R code is available on request from the corresponding author. For 

each scenario in Table II, ‘target’ combinations are defined as any treatment with a true 

DLT rate less than 30% that has true response rate larger than 30%. Overall, the simulations 

study the operating characteristics of six sets of design specifications, which we describe 

subsequently.

A. Skeleton values for the DLT probabilities are generated using getprior(0.045, 

0.30, 5, 9) and ϕT = 0.30. Skeleton values for efficacy probabilities are generated 

using getprior(0.045, 0.50, 5, 9). The location of these values was then adjusted 

to correspond to each of the possible orderings considered in each subset, creating 

M = 6 different skeletons for toxicity and K = 6 different skeletons for efficacy. The 

data were generated as independent binary responses (i.e., ψ = 0), and the AR phase 

size was nR = 20.

B. Skeleton values for the DLT and efficacy probabilities are the same as A and ϕT = 

0.30. The data were generated as correlated binary responses with ψ = −2.049, and 

the AR phase size was nR = 20.

C. Skeleton values for the DLT and efficacy probabilities are the same as A and ϕT = 

0.30. The data were generated as correlated binary responses with ψ = 0.814, and 

the AR phase size was nR = 20.

D. Skeleton values for the DLT probabilities are generated using getprior(0.06, 

0.30, 4, 9) and ϕT = 0.30. Skeleton values for efficacy probabilities are generated 

using getprior(0.06, 0.50, 4, 9). The data were again generated as independent 

binary responses (ψ = 0), and the AR phase size was nR = 20.

E. Skeleton values for the DLT and efficacy probabilities are the same as A and ϕT = 

0.30. The data were again generated as independent binary responses (ψ = 0), and 

the AR phase size was nR = 10.
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F. Skeleton values for the DLT and efficacy probabilities are the same as A and ϕT = 

0.30. The data were again generated as independent binary responses (ψ = 0), and 

the AR phase size was nR = 30.

4.2. Operating characteristics

Tables III and IV provide summary statistics for the performance of the proposed design. 

The full distribution of selected combinations for the first set of design specifications can be 

found in the Supporting information. The distribution for the other sets of specifications was 

similar. Table III reports the proportion of trials in which three categories ((i) safe but 

ineffective, (ii) acceptable toxicity/high efficacy (i.e., target), and (iii) overly toxic 

combinations were selected as the ODC after the conclusion of the trial. Table III also gives 

the mean sample size after 1000 trial runs, and the proportion of patients enrolled on target 

combinations. Table IV reports the percent of trials stopped early for both safety and futility 

on the basis of the stopping rules described earlier, the overall observed DLT rate, and the 

overall observed response rate. The futility threshold was set at ϕE = 0.20. We also 

simulated trials with larger ϕE values, and as expected, the design stopped for futility more 

often than for ϕE = 0.20. We wanted to confirm that the method would indeed stop quicker 

and more often, although we do not report these results here. All simulations were carried 

out using R. The scenarios reflect a range of situations, with target combinations beginning 

at the highest level of the drug combination matrix in scenario 1 and moving down and left 

in the dose space as we go to scenario 5. There are no acceptable combinations in scenario 6, 

and all combinations are too toxic. We want to observe how often the design stops the trial 

in this situation and how frequently it recommends one of these overly toxic combinations.

It is clear from examining results from Tables III and IV that the proposed design is 

performing well in terms of recommending target combinations, as well as treating patients 

at these combinations. In scenario 1, the proposed design selects, as the ODC, the target 

combination in approximately 70% of simulated trials, while assigning between 38% and 

39% of patients to the target combination in situations in which nR = 20. In scenario 2, 

recommendation of target combinations as the ODC occurs in approximately half of 

simulated trials. About 35% of the patients enrolled are treated at one of the two target 

combinations in scenario 2. In scenario 3, there are three target combinations. The proposed 

design identifies one of these three treatments as the ODC in approximately 70% of 

simulated trials for the first set of design specifications, while allocating more than 50% of 

patients to target dose combinations. In scenario 4, target combinations are recommended in 

58–60% of simulated trials, and about half of the enrolled patients are allocated to target 

treatments, in situations in which nR = 20, which again indicates strong performance after 

only 40 patients. When looking at the percentage of patients treated on overly toxic 

combinations, one may notice that this percentage is higher in scenario 4 than in any other 

scenario, with the exception of scenario 6 in which all combinations are too toxic. For the 

first set of specifications, overly toxic combinations are selected as ODC in 39.7% of 

simulated trials. In 36.7% of trials (see Supporting information for full distribution), 

combinations with true DLT probabilities of 33% and 35% are selected, meaning that in 

only 3% does the method recommend a combination with DLT rate larger than 35%. Plus, 

with that extra toxicity, we were able to obtain a bit more efficacy for the patients enrolled 
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on those combinations. Similar conclusions can be made in regard to scenario 5, although 

the selection of target combinations is higher than in scenario 4. In fact, in scenario 5, we 

again a see strong performance for the method in recommending and allocating patients to 

target combinations. In scenario 6, there are no acceptable combinations, and the design 

demonstrates its ability to stop for safety by doing so in approximately 72% of trials. 

Overall, the simulation results indicate that the proposed design is a practical design for dose 

finding in a matrix of combination therapies on the basis of both toxicity and efficacy.

The recommendation percentages remain fairly consistent for nR = 10 and nR = 30, while the 

allocation percentages for true ODC’s are higher for nR = 10 and lower for nR = 30 in 

scenarios 1 and 2. This makes sense when thinking about the true dose–toxicity/efficacy 

curve. In scenario 1, there is only one combination considered a target combination (d9). 

Therefore, in the AR phase, there is a higher chance of a patient being randomized to a sub-

optimal combination in scenario 1 than in other scenarios in which there is more than one 

target combination. For instance, in scenario 3, in the AR phase, a patient has a very good 

chance of being randomized to one of the three target combinations. On the other hand, 

Table IV illustrates that in situations in which nR = 10, the methods tend to stop for futility 

slightly more often than larger values for nR. This is due to the amount of information 

available at the start of the maximization phase, at which point the futility stopping rule is 

triggered. With information on only 10 patients to make a stopping decision, it is possible 

that the trial could incorrectly stop for futility. Overall, it is difficult to recommend a single 

value for nR because optimal performance will depend upon the true, unknown dose–

toxicity/efficacy curve, as well as the maximum sample size N. In some cases, clinician/

statistician teams may choose to set nR according to their personal preference. However, 

simulation results demonstrate that our method, across a broad range of scenarios, is fairly 

robust to the choice of nR. As a general rule of thumb, adaptively randomizing for half of the 

maximum sample size seems to work well in a wide variety of scenarios, including those 

discussed in the following section.

4.3. Comparison to alternative method

In this section, we compared the performance of the proposed approach with that of Yuan 

and Yin [19] for finding target dose combinations in a melanoma clinical trial investigating 

three doses of one agent (drug A) and two doses of another agent (drug B), for nine true 

toxicity/efficacy scenarios contained in their paper. These scenarios are contained in Table 

V and have the property that both toxicity and efficacy increase with dose levels of each 

agent, which, as Yuan and Yin pointed out, ‘represent the most common cases’ [19]. All 

scenarios, with the exception of scenario 5, have a single target dose combination that is 

placed in various locations throughout the drug combination space. Scenario 5 contains two 

target doses that represent a toxicity and efficacy equivalence contour. In each set of 1000 

simulated trials, the maximum sample size was N = 80 patients, with n1 = 20 for phase I and 

n2 = 60 for phase II of the Yuan and Yin design. For the proposed method, the size of the 

AR phase was set equal to half the maximum sample size; that is, nR = 40. The prior 

specifications for the Yuan and Yin design can be found in their paper. For our proposed 

method, we again used skeletons chosen via the getprior function in R package dfcrm. 

For toxicity, we implemented getprior(0.04, 0.25, 4, 6) and for efficacy getprior(0.09, 
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0.50, 4, 6). We again assumed, a priori, that each of the dose–toxicity/dose–efficacy 

orderings was equally likely. The maximum acceptable toxicity was ϕT = 0.33 and the 

minimum efficacy threshold was ϕE = 0.20. For each scenario, the target dose combination 

is defined as the most efficacious combination that is contained in the set of acceptable 

combinations. User-friendly R-code for implementing the proposed design can be 

downloaded at http://faculty.virginia.edu/model-based_dose-finding/.

The results of the comparison are summarized in Figure 1, and the results of the full 

distribution of combination selection can be found in the Supporting information. Each bar 

in the Figure 1 represents the proportion of simulated trials that each method selected a 

target combination as the ODC. Overall, the proposed method is performing quite well in 

comparison to that of Yuan and Yin [19]. In scenario 1, the proposed method improves the 

recommendation percentage of Yuan and Yin by approximately 13% (55.9 vs. 42.8%). A 

similar improvement can be observed in scenario 2 (56.1 vs. 44.5%). In scenario 3, the 

target dose is located at the highest combination (e.g., d6) and is selected by the proposed 

design in 87.3% of simulated trials, which is approximately 20% higher than the selection 

percentage of Yuan and Yin (67.1%). Scenario 4 provides a case in which the Yuan and Yin 

method slightly outperforms the proposed method by a few percentage points (46.2% vs. 

42.8%). As was mentioned earlier, in scenario 5, there are two target dose combinations, 

each with true (toxicity, efficacy) rates of (0.20, 0.40), representing an equivalence contour. 

We want to assess how often each method selects either of these two combinations. Yuan 

and Yin selects combination d3 at the conclusion of 29.8% of simulated trials, and d5 at the 

end of 41.8% of trials, for a total of 71.6%. Our design selects d3 in 41.9% of trials, and d5 

in 45.4% of trials, for a total of 87.3%. In scenario 6, there is only one acceptable 

combination (d1), with regard to safety. The Yuan and Yin method selected d1 as the ODC 

in 23.9% of trials and stopped for safety in 71.9% of trials. This is a high stopping 

percentage for a true scenario that does in fact contain a target dose combination. By 

contrast, the proposed design stops for safety in only 0.6% of simulated trials, while 

selecting d1 as the ODC 55.3% of the time. The final three scenarios demonstrate similar 

performance in terms of improvement of our method over that of Yuan and Yin, with the 

proposed approach selecting target combinations as the ODC in approximately 20%, 17%, 

and 8% more trials than Yuan and Yin in scenarios 7–9, respectively. Overall, the strong 

showing of our method against published work in the area in extensive simulation studies 

makes us feel confident in recommending it as a viable alternative in phase I/II combination 

studies.

5. Conclusions and directions for future research

In this article, we have outlined a new phase I/II design for multi-drug combinations that 

accounts for both toxicity and efficacy. The simulation results demonstrated the method’s 

ability to effectively recommend target combinations, defined by acceptable toxicity and 

high efficacy, in a high percentage of trials with manageable sample sizes. The assumption 

made with regard to efficacy is that it increases with dose as one agent is being held fixed, 

which we feel is appropriate for chemotherapeutic agents. There certainly exist situations 

where this assumption would need to be relaxed, but we have not addressed them here. We 

feel that monotonicity across rows and up columns of the drug combination matrix in terms 
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of efficacy represents the most common cases encountered in oncology dose-finding trials. 

The proposed design is most appropriate when both toxicity and efficacy outcomes can be 

observed in a reasonably similar time frame. In some practical situations, this may not be 

possible because of the fact that efficacy may occur much later than toxicity. This would 

create a situation where we would be estimating DLT probabilities on the basis of more 

patient observations than efficacy probabilities. As we are ignoring their association in 

modeling these responses, we can fit the likelihood for each response on the basis of 

different amounts of data, and simply utilize the efficacy data that we have available, even 

though it may be less than that of the toxicity data. This idea requires further study, and we 

are exploring modifications to the proposed methodology to handle such practical issues. 

Along these same lines, incorporating time-to-event outcomes may be an effective extension 

of the method as a means of handling delayed response.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. 
Operating characteristics of the proposed design and Yuan and Yin [19]. Each bar represents 

the proportion of times that each method recommended target combination(s) as the ODC at 

the conclusion of a simulated phase I/II trial with a maximum sample size of N = 80 

patients.
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Table I

Combination labels for two agents forming a 3 × 3 matrix order.

Doses of
A

Doses of B

1 2 3

3 d7 d8 d9

2 d4 d5 d6

1 d1 d2 d3
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Table II

True (toxicity, efficacy) probabilities for scenarios 1–6 for nine treatment combinations.

Scenario
Doses of

A

True (toxicity, efficacy) rates

Doses of B

1 2 3

1 3 (0.08, 0.15) (0.10, 0.20) (0.18, 0.40)

2 (0.04, 0.10) (0.06, 0.16) (0.08, 0.20)

1 (0.02, 0.05) (0.04, 0.10) (0.06, 0.15)

2 3 (0.16, 0.20) (0.25, 0.35) (0.35, 0.50)

2 (0.10, 0.10) (0.14, 0.25) (0.20, 0.40)

1 (0.06, 0.05) (0.08, 0.10) (0.12, 0.20)

3 3 (0.24, 0.40) (0.33, 0.50) (0.40, 0.60)

2 (0.16, 0.20) (0.22, 0.40) (0.35, 0.50)

1 (0.08, 0.10) (0.14, 0.25) (0.20, 0.35)

4 3 (0.33, 0.50) (0.40, 0.60) (0.55, 0.70)

2 (0.18, 0.35) (0.25, 0.45) (0.42, 0.55)

1 (0.12, 0.20) (0.20, 0.40) (0.35, 0.50)

5 3 (0.45, 0.55) (0.55, 0.65) (0.75, 0.75)

2 (0.20, 0.36) (0.35, 0.49) (0.40, 0.62)

1 (0.15, 0.20) (0.20, 0.35) (0.25, 0.50)

6 3 (0.65, 0.60) (0.80, 0.65) (0.85, 0.70)

2 (0.55, 0.55) (0.70, 0.60) (0.75, 0.65)

1 (0.50, 0.50) (0.55, 0.55) (0.65, 0.60)

Combinations with acceptable toxicity (i.e., ≤ ϕT = 30%) and high efficacy (i.e., ≥ ϕE = 30%) are defined as ‘binations’ and are indicated in 

boldface type.
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Table V

True (toxicity, efficacy) probabilities for scenarios 1–9 for six treatment combinations.

Scenario
Doses of

A

True (toxicity, efficacy) rates

Doses of B

1 2 3

1 2 (0.10, 0.20) (0.15, 0.40) (0.45, 0.60)

1 (0.05, 0.10) (0.15, 0.30) (0.20, 0.50)

2 2 (0.10, 0.20) (0.20, 0.40) (0.50, 0.55)

1 (0.05, 0.10) (0.15, 0.30) (0.40, 0.50)

3 2 (0.10, 0.20) (0.15, 0.30) (0.20, 0.50)

1 (0.05, 0.10) (0.10, 0.20) (0.15, 0.40)

4 2 (0.10, 0.30) (0.40, 0.50) (0.60, 0.60)

1 (0.05, 0.20) (0.20, 0.40) (0.50, 0.55)

5 2 (0.10, 0.20) (0.20, 0.40) (0.50, 0.50)

1 (0.05, 0.10) (0.15, 0.30) (0.20, 0.40)

6 2 (0.40, 0.44) (0.72, 0.58) (0.90, 0.71)

1 (0.23, 0.36) (0.40, 0.49) (0.59, 0.62)

7 2 (0.24, 0.40) (0.56, 0.60) (0.83, 0.78)

1 (0.13, 0.32) (0.25, 0.50) (0.42, 0.68)

8 2 (0.15, 0.30) (0.25, 0.41) (0.40, 0.54)

1 (0.11, 0.15) (0.15, 0.22) (0.20, 0.31)

9 2 (0.15, 0.17) (0.19, 0.33) (0.23, 0.55)

1 (0.12, 0.10) (0.15, 0.22) (0.19, 0.39)

Combinations with acceptable toxicity (i.e., ≤ ϕT = 30%) and high efficacy (i.e., ≥ ϕE = 20%) are defined as ‘target combinations’ and are 

indicated in boldface type.
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