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Abstract

Presence-only data abounds in ecology, often accompanied by a background sample. Although 

many interesting aspects of the species’ distribution can be learned from such data, one cannot 

learn the overall species occurrence probability, or prevalence, without making unjustified 

simplifying assumptions. In this forum article we question the approach of Royle et al. (2012) that 

claims to be able to do this.

Modelling of species distributions is most convincing when presence–absence data is 

sampled in a systematic way. For example, researchers survey a collection of equal sized 

quadrats and record the presence or absence of a particular species of plant. They also record 

other features of the quadrat, such as annual precipitation, soil salinity, altitude, and so on. 

These features are then used in a statistical model such as logistic regression to build a 

model for the probability of species occurrence. Using this fitted model, species occurrence 

probability is predicted and can be projected onto a map of the region, if the features are 

available at each geographical unit. See Guisan and Zimmerman (2000) for a review of such 

methods.

Often the only species data available are the geographical coordinates of sites where the 

species was observed – so-called presence-only data – as recorded by observers. Also 

available is a large collection of background data, consisting of geographical coordinates 

and associated geographical features such as those available from GIS data. In many cases 

this background data is available at every geographical unit of area in a map of the region, 

and hence also at the presence sites. Apart from those locations where the species were 

observed, no species information is available for the background data.

For animal species, sampling time as well as area is relevant, since the species may wander 

around. Other complicating factors exist, such as the species being present but are not 

observed, and sampling bias (e.g. proximity to roads). For the purposes of this article, we 

keep the discussion simple and avoid these other sampling issues.

The question is what can one learn from such presence–background data? There are many 

approaches to this problem, which has become an active area of research. Our current 

favorite approach is to model the species occurrence rate (as in number of times the focal 

species is seen per unit area, per unit time). To this end the inhomogeneous Poisson point 
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process (IPP) (Wharton and Shepard 2010, Aarts et al. 2012) is attractive. Other popular 

approaches are: 1) MAXENT (Phillips and Dudik 2008) which models the feature density 

for the presence data. 2) Naive logistic regression, which treats the background data as 

absence data, and fits logistic regression models. 3) Manly's exponential model (Manly et al. 

2010), a precursor to the IPP model in this context. Fithian and Hastie (unpubl.) survey these 

methods, and shows that they are all equivalent to the IPP model, in particular for an 

exhaustive sample of background data. Similar conclusions appear in Aarts et al. (2012) as 

well as Warton and Shepherd (2010). The conclusion to be drawn from these comparisons is 

that while absolute occurrence rates are typically elusive, relative rates are more accessible 

and available from these type of data.

This forum article will step away from these sampling considerations, and address a simpler 

question. We can think of sampling units as geographical sites x ∈ χ; each x represents a cell 

or unit of area, and χ represents the domain of interest, or entire collection of such cells. At 

each site the vector z = z(x) records the values of som geographical attributes or features. Let 

the binary variable y denote presence (1) or absence (0) sites. We denote the marginal 

density of z by π(z), and the (conditional) density of z at presence sites by π1(z), and absence 

sites by π0(z). If the overall presence occurrence probability is Ψ(y = 1) and hence absence 

Ψ(y = 0) = 1 – Ψ(y = 1), then basic probability theory tells us two things:

1. the conditional occurrence probability at a site, given we observe feature z, is given 

by

(1)

2. The marginal feature density π(z) is a mixture of the two class-conditional 

densities:

(2)

Presence–background data consists of a random sample of values of z from π1(z), as well as 

a separate sample from π(z) (possibly the entire background distribution), which directly 

inform us about the densities π1 and π. However, even if both of these distributions were 

fully known, we can see from Eq. (1) that this would not be enough information to estimate 

Ψ(y = 1|z). We are missing the overall occurrence probability Ψ(y = 1), or at least some data 

that allow us to estimate this.

The reader might think that Eq. (2) offers some hope, but it does not. We know or have data 

on π(z) and π1(z) – this leaves a lot of flexibility in choosing somewhat arbitrary values for 

Ψ(y = 1) and π0(z) to make Eq. (2) work out – unless, that is, we impose strong parametric 

restrictions on some of the ingredients. But then we are manufacturing information via these 

assumptions when none exists in the data. We will see more of this in the next section. Ward 

et al. (2009) discuss this problem and the lack of identifi-ability of Ψ(y = 1) from such data. 

They warned of the folly in relying on arbitrary parametric assumptions to squeeze out 
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estimates of Ψ(y = 1). Phillips et al. (2009) raise similar issues. Most recently Phillips and 

Elith (2013) address the same issue, and reinforce some of the points we make here.

The parametric approach of Royle et al

Royle et al. (2012) discuss methods for estimating species occurrence probabilities from 

presence-only data – the same problem we outline above. They cite Ward et al. (2009), yet 

proceed to impose parametric assumptions on Ψ(y = 1|z) to enable estimation of Ψ(y = 1) – 

exactly what we warned against. Here we will strengthen our argument in the context of 

their model, and using their notation. We will also simplify the discussion further, as they 

did, and focus attention on geographic features x rather than environmental features z = z(x); 

in the appendix we show that this transition is benign.

Figure 1 (left panel, red) shows a plot of a very simple model for occurrence probability

(3)

This corresponds to a logistic regression model linear in x,

(4)

In this case β0 = 21 and β1 = 1. We assume here that the marginal distribution π(x) is 

uniform on [–2.5, 2.5], which makes the overall prevalence Ψ(y = 1) = ∫Ψ(y = 1|x; β) π(x)dx 

≈ 0.33 in this case, and the values of Ψ(y = 1|x; β) range between 0.03 and 0.83. Royle et al. 

(2012) use a linear logistic model similar to Eq. (4) for modeling occurrence probability.

With such a parametric assumption, one can perform inference on the data. As they point 

out, using Eq. (1) we can write

(5)

(6)

If π(x) is uniform, as it typically is in the geographic domain, and since Σx∈cχ Ψ(y = 1, x) = 

Ψ(y = 1), we can write

(7)

This is a model for the density of the observed data xi at the presence sites, and it is 

expressed in terms of the parameters of our logistic regression model if we replace Ψ(y|x) in 

Eq. (7) with Ψ(y|x; β). On the basis of this Royle et al. (2012) do maximum-likelihood 

estimation for β see Eq. (9) below. Note that the presence observations xi appear in the 

numerator; the background data are used to compute the sums in the denominator.

This sounds like statistical alchemy: why don't we need to know Ψ(y = 1) anymore? Note 

that β0 is playing a similar role as Ψ(y = 1) was before (Ψ(y = 1) multiplied all occur-rence 

Hastie and Fithian Page 3

Ecography (Cop.). Author manuscript; available in PMC 2014 December 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



probabilities, whereas eβ
0 multiplies the odds). Therefore, it should be surprising that 

suddenly we can estimate it from the data. The reason β0 = –1 vs β0 = +1 are distinguishable 

from each other in this model is that if we hold β1 fixed and change β0, it increases all of the 

probabilities Ψ(y = 1|x) in Eq. (7), increasing the numerator and the denominator. But 

because it changes some a little more than others, it subtly changes the density π1(xi) – 

‘subtly’ being the operative word. The problem is that other things can subtly change π1 too 

– such as the linear logistic model (Eq. 4) being subtly misspecified, as we see next.

The blue curve in this left hand plot of Fig. 1 corresponds to a different model for the 

occurrence probability,

(8)

For this model (Eq. 8) the overall prevalence Ψ*(y = 1) = 1/2 × Ψ(y = 1), i.e. 0.17 or exactly 

half of the prevalence for model (Eq. 3). Although Ψ*(y = 1|x) does not correspond to a 

linear logistic model, it is nearly linear on the logit scale (see the solid blue curve in the right 

plot of Fig. 1), and is still a simple parametric model; but more on that to come.

The critical point of this example is that the joint likelihood of the presence data (i.e. Eq. 4 

in Royle et al. (2012))

(9)

(10)

is identical for these two models. In other words, the likelihood would have nothing to say 

about whether model (Eq. 3) or model (Eq. 8) was preferred – two models, both with two 

parameters, but with one having prevalence half the other. We could change the 1/2 in (Eq. 

8) to any 0 = C ≥ 1 and the same statement would be true (with ‘half’ changed to ‘fraction 

C ’). We note that this lack of identifi-ability with propotional models that we exploit was 

pointed out by Lele and Keim (2006, p. 3023, top left), who originally proposed the 

approach used by Royle et al. (2012).

Now the second model is not a linear logistic model, so it would not be up for comparison in 

the Royle et al. (2012) framework. The right hand panel shows the logit transforms of each 

of these two models. Indeed, the second model is not a linear logistic model, but it is almost 

one. The dotted blue curve shows the best linear approximation to this logit in the 

population. Since the solid red line and solid blue curve are indistinguishable from each 

other with respect to the likelihood Eq. (9), distinguishing the dotted blue line from the red 

is no easier than distinguishing it from the solid blue. Determining whether or not this slight 

curvature is present is the entire basis upon which the Royle et al. (2012) procedure would 

estimate the prevalence at either 34% (solid red) or 17%. One would need an awfully large 
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amount of data to be able to detect a difference between the two blue lines, even with 

presence–absence data.

We now present a simulation to reinforce the points we have made. We simulate data from 

model (Eq. 8) (nearly linear logistic), and fit a linear logistic model using the likelihood (Eq. 

9). In detail, we generate a large sample of values of x via the uniform distribution π, 

generate 0/1 ‘presence/absence’ data using the probabilities (Eq. 8), and then take a random 

subset of 1000 values of x from those that came up as ‘present’. This sample of 1000 is fed 

into (Eq. 9), which is then maximized with respect to the two linear logistic parameters. 

Rather than show the parameter estimates  and  that result, we instead compute the 

implied estimated prevalence value . This was repeated B 

= 1000 times. The middle histogram in Fig. 2 shows the results. The histogram is peaked 

around 0.33 (the value from Eq. (3), not the true value 0.17). The flanking histograms repeat 

these simulations using 3/10 and 7/10 rather than the 1/2 in (Eq. 8). In all cases the estimated 

 bear no relationship to the true values (red lines).

The take-home message here is that: a) two perfectly good and parsimonious probability 

models are indistinguishable with respect to the likelihood (Eq. 9) for the presence data, 

despite the fact that one has half the prevalence of the other; i.e. prevalence is not 

identifiable in this extended family. b) By insisting on a particular parametric form, e.g. 

linear logistic, we are on extremely flimsy ground, as the subtle distinction in this example 

shows. c) When presence-only data arise via models that are nearly linear on the logistic 

scale, maximum likelihood using Eq. (9) and a linear logistic regression model can be 

incapable of estimating the correct parameter values, and in particular the correct implied 

prevalence. This is not trickery with data simulations or abstract ideas; it cuts to the core of 

how Royle et al.'s model estimates probabilities. They say you can estimate probabilities 

from presence-only data by using their model, which relies on a linear logistic framework. 

The problem is that in the real world, functional forms are almost never linear; linearity is 

just a useful approximation. We have shown here that data distributed just slightly 

differently to that allowed in their framework will lead to incorrect estimates of prevalence, 

and therefore incorrect estimates of probability of presence.

Stepping back a bit, we remake our earlier point. It should be clear that a sample of n1 sites, 

along with a sample of n0 unclassified samples (i.e. a mix of presence and absence), tells 

you nothing about the overall probability of occurrence, absent strong parametric 

assumptions about the form of the underlying densities. In other words, there is no 

information on prevalence in the data itself; it all comes from the model assumptions. Using 

such assumptions as the basis for estimating overall prevalence is not a good idea; as shown 

here, they are too fragile and arbitrary, and will not be robust in practical settings.

Acknowledgements

TH was partially supported by grant DMS-1007719 from the National Science Foundation, and grant RO1-
EB001988-15 from the National Inst. of Health. WF was supported by VIGRE grant DMS-0502385 from the 
National Science Foundation. The authors thank Jane Elith for helpful suggestions on an earlier draft.

Hastie and Fithian Page 5

Ecography (Cop.). Author manuscript; available in PMC 2014 December 07.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Appendix

Geographic vs environmental features

Usually we parameterize our conditional occurrence model in terms of environmental 

features zi = z(xi) rather than the geographic features xi themselves. For ease of exposition 

here, we treat z as discrete rather than continuous.

Then along the lines of Eq. (7) we would have

(11)

Here π(z) is the marginal environmental feature distribution, and is not uniform. However,

(12)

and so the denominator in Eq. (11) can be written

So then we have

(14)

So if π(x) is uniform, and we parameterize Ψ(yi = 1|z(xi); β), then the log-likelihood 

contribution from presence site i for β is

(15)

where Ci can be discarded, since it does not depend on β.
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Figure 1. 
Left panel: two different models for occurrence probabilities. The blue curve is half the red 

curve, and hence has exactly half the prevalence (marginal occurrence probability) of the red 

curve. The implied likelihood (Eq. 9) of the presence-data xi is identical for these two 

models. Right plot: the logits of the two models on the left. The broken blue curve is the best 

linear approximation to the solid blue curve – the approximation that would be imposed by a 

linear logistic regression model. Since the solid logit curves (red and blue) are 

indistinguishable with respect to the likelihood (Eq. 9), distinguishing the dotted blue line 

from the red is no easier than distinguishing it from the solid blue. Determining whether or 

not this slight curvature is present is the entire basis upon which the Royle et al. (2012) 

procedure would estimate the prevalence at either 34% (solid red) or 17% (dotted blue).
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Figure 2. 
Results of three separate simulation runs. The center histogram shows the estimated value 

 when a linear logistic regression model is fit to data generated from model (Eq. 8). 

The histogram summarizes B = 1000 different runs, each consisting of 1000 presence 

samples. The true value of Ψ(y = 1) is given by the vertical red line. The two flanking 

histograms change the 1/2 in (Eq. 8) to C = 3/10 (left) and C = 7/10 (right), with again the 

red line showing the true value of Ψ(y = 1). In all cases, irrespective of the true value of Ψ(y 

= 1), the histograms indicate that the value being estimated is centered around Ψ(y = 1) ≈ 

0.33, the value from Eq. (3).
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