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Abstract

Statistical modeling of presence-only data has attracted much recent attention in the ecological 

literature, leading to a proliferation of methods, including the inhomogeneous Poisson process 

(IPP) model, maximum entropy (Maxent) modeling of species distributions and logistic regression 

models. Several recent articles have shown the close relationships between these methods. We 

explain why the IPP intensity function is a more natural object of inference in presence-only 

studies than occurrence probability (which is only defined with reference to quadrat size), and why 

presence-only data only allows estimation of relative, and not absolute intensity of species 

occurrence.

All three of the above techniques amount to parametric density estimation under the same 

exponential family model (in the case of the IPP, the fitted density is multiplied by the number of 

presence records to obtain a fitted intensity). We show that IPP and Maxent give the exact same 

estimate for this density, but logistic regression in general yields a different estimate in finite 

samples. When the model is misspecified—as it practically always is—logistic regression and the 

IPP may have substantially different asymptotic limits with large data sets. We propose “infinitely 

weighted logistic regression,” which is exactly equivalent to the IPP in finite samples. 

Consequently, many already-implemented methods extending logistic regression can also extend 

the Maxent and IPP models in directly analogous ways using this technique.
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1. Introduction

In recent years ecologists have devoted significant attention to the problem of estimating the 

geographic distribution of a species of interest from records of where it has been found in 

the past. There are many motivations for solving this problem, including planning wildlife 

management actions, monitoring endangered or invasive species, and understanding species' 
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response to different habitats. A great variety of experimental designs and statistical 

methods exist for tackling this problem, and can be found in the literature on resource-

selection functions [Manly et al. (2002), Lele and Keim (2006)], case-augmented designs 

[Lee, Scott and Wild (2006), Dorazio (2012)] and site occupancy modeling [MacKenzie 

(2006)].

Ecologists have proposed many statistical methods for modeling such data, including the 

inhomogeneous Poisson process (IPP) model [Warton and Shepherd (2010)], maximum 

entropy (Maxent) modeling of species distributions [Phillips, Dudík and Schapire (2004), 

Phillips, Anderson and Schapire (2006), Phillips and Dudík (2008)] and the logistic 

regression model along with its various generalizations such as GAM, MARS and boosted 

regression trees [Hastie, Tibshirani and Friedman (2009)]. See Elith et al. (2006) for 

discussion and comparison of these and other methods in common use.

In recent years several articles have emerged detailing connections between the three 

modeling methods above. Each method takes as its input a presence-only data set along with 

a set of background points consisting of a regular grid or random sample of locations in 

some geographic region of interest. Warton and Shepherd (2010) showed that logistic 

regression estimates converge to the IPP estimate when the size of the presence-only data set 

is fixed and the background sample grows infinitely large. Aarts, Fieberg and Matthiopoulos 

(2012) additionally described a variety of models for presence-only and other data sets 

whose likelihoods may all be derived from the IPP likelihood. Renner and Warton (2013) 

further explore the connection between Maxent and the IPP, taking up the important issue of 

how we might check the IPPs modeling assumptions.

Our primary aim in writing this paper is to provide additional clarity to this topic, 

recapitulating and deriving the results in a unified framework and extending them in several 

directions. We view all three major methods as solutions to the same parametric density 

estimation problem.

1.1. Presence-only data

Modeling of species distributions is simplest and most convincing when the observations of 

species presence are collected systematically. In a typical design, a surveyor visits a one-

square-kilometer patch of land for one hour and records how many specimens she discovers 

in that interval. The records of unsuccessful surveys are called absence records, a mild 

misnomer since ecologists recognize that specimens could be present but go undetected. A 

data set reflecting presence or absence of a species in each sampling unit is called presence–

absence data.

Unfortunately, dedicated surveys recording sampling effort are expensive, especially for rare 

or elusive species. For many species of interest, the only data available are museum or 

herbarium records of locations where a specimen was found and reported, for instance, by a 

motorist or hiker. Typically these presence-only records are collected haphazardly and 

frequently suffer from unknown sampling bias such as that illustrated in Figure 1. The 

clustering of koala sightings near roads and cities probably has more to do with the behavior 

of people than of koalas.
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In recent years many such presence-only data sets have become available electronically, and 

geographic information systems (GIS) enable ecologists to remotely measure a variety of 

geographic covariates without having to visit the actual locations of the observations. As a 

result, presence-only data has become a popular object of study in ecology [Elith et al. 

(2006)].

1.2. What should we estimate?

Before we can sensibly decide how to model presence-only data, we must address the issue 

of what it is we are modeling in the first place. How should we think of “species 

occurrence,” the scientific phenomenon nominally under study? This issue arises with 

presence-only and presence–absence data alike.

1.2.1. Occurrence probability—Figure 2 is a typical “heat-map” output of a study of the 

willow tit in Switzerland using count data [Royle, Nichols and Kéry (2005)]. The map 

reveals which locations are more or less favored by the species (in this case, high elevation 

and moderate forest cover appear to be the bird's habitat of choice). The legend tells us that 

the color of a region reflects the local probability of “occurrence.”

But precisely what event has this probability? Reading the paper, we discover that 

occurrence means that there is at least one willow tit present on a survey path through a 1 

km × 1 km quadrat of land. In this case, the authors analyze a presence–absence data set 

using a hierarchical model that explicitly accounts for the possibility that a bird was present 

but not detected at the time of the survey.

Because the survey path length varies across sampling units, the authors use it in their model 

as a predictor of presence probability. It is not specified which value of this predictor is used 

in generating the heat map, which makes the map difficult to interpret.

Even if we could interpret the heat map as the probability of a bird being present anywhere 

in the quadrat (not just along a path of unspecified length), this probability would still be 

larger in a 2 km × 2 km sampling unit and smaller in a 100 m × 100 m one. Therefore, the 

very definition of “occurrence probability” in a presence–absence study depends crucially 

on the specific sampling scheme used to collect the presence–absence data. Consequently, 

interpreting the legend of such a heat map can only make sense in the context of a specific 

quadrat size, namely, whatever size was used in the study. We would recommend that this 

information always be displayed alongside the plot to avoid conveying the false impression 

(suggested by a heat map) that occurrence probability is an intrinsic property of the land, 

when it is really an extrinsic property.

Though the choice of quadrat size used to define occurrence probability is ecologically 

arbitrary, it can in principle yield estimates with meaningful interpretations. By contrast, 

estimating occurrence probability in a presence-only study is a murkier proposition. Any 

method purporting to do so without reference to quadrat size would be predicting the same 

occurrence probability within a large or small quadrat, which cannot make sense.
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1.2.2. Occurrence rate—Since occurrence probability is only meaningful with reference 

to a specific quadrat size, it is a somewhat awkward quantity to model in a presence-only 

study. In this context it is more natural to estimate an occurrence rate or intensity: that is, a 

quantity with units of inverse area (e.g., 1/km2) corresponding to the expected number of 

specimens per unit area. Under some simple stochastic models for species occurrence, 

including the Poisson process model considered here, specifying the occurrence rate is 

equivalent to specifying occurrence probability simultaneously for all quadrat sizes.

Unfortunately, a presence-only data set only affords us direct knowledge of the expected 

number of specimen sightings per unit area. The absolute sightings rate is reflected in the 

number of records in our data set, but, at best, this rate is only proportional to the occurrence 

rate discussed above, which typically is the real estimand of interest. We must assume that 

our sightings only constitute a small fraction of the species' population over our study 

region, possibly with repeated sightings of the same specimen. Without other data or 

assumptions we would have no way of knowing what this constant of proportionality might 

be.

In other words, the absolute sightings rate is observable but usually not of direct interest, 

while the absolute occurrence rate is interesting but not observable without another source 

of information. Using presence-only data alone, we can at best hope to estimate a relative, 

not absolute, occurrence rate. Even assuming that the sightings and occurrence rates are 

proportional is optimistic, since it rules out sampling bias like that in Figure 1, an issue we 

take up again in Section 2.5.

1.3. Notation

We now introduce notation we will use for the remainder of the article. We begin with some 

geographic domain of interest , typically a bounded subset of ℝ2. If the time of an 

observation is an important variable, we might alternatively take  ⊆ ℝ3 so that our 

observations haveboth space and time coordinates. Associated with each geographic location 

z ∈  is a vector x(z) of measured features.

Our presence-only data set consists of n1 locations of sightings Zi ∈  for i = 1,2,…, n1, 

accompanied by n0 “background” observations zt for i = n1+ 1,…, n1+ n0 (typically a 

regular grid or uniformly random sample from ). Finally, let xi = x(zi) be the features for 

observation i, and yt be a 0/1 indicator that i is a presence sample. Our treatment of these 

data as random or fixed will vary throughout the article.

1.4. Outline

The rest of the paper is organized as follows. In Section 2 we define the log-linear 

inhomogeneous Poisson process (IPP) model and its application to presence-only data, with 

special focus on interpreting its parameters and their maximum likelihood estimates. In 

particular, the estimate of the intercept α reflects nothing more than the total number of 

presence samples and, as such, is typically not of scientific relevance for the reasons 

discussed in Section 1.2.2. In fact, IPP model estimation amounts to parametric density 

estimation in an exponential family model, followed by multiplication of the fitted density 
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by n1. The density thus obtained reflects the relative rate of sightings as a function of 

geographic coordinates z.

Aarts, Fieberg and Matthiopoulos (2012) showed that many methods in species distribution 

modeling can be motivated by the IPP model. We review these connections and generalize 

them for several illuminating examples. In Section 3 we consider a particularly important 

example, showing that the popular Maxent method of Phillips, Dudík and Schapire (2004) 

follows immediately from partially maximizing the IPP log-likelihood with respect to α, a 

result which is explored further in Renner and Warton (2013). Hence, given any set of 

presence and background points, the Maxent and IPP methods obtain identical estimates for 

the slope β̂ and for the density.

In Section 4 we discuss so-called “naive” logistic regression and its connections to the IPP 

model. We derive its likelihood as a conditional form of the IPP likelihood, but show that if 

the log-linear model is misspecified this convergence may not occur until the background 

sample is quite large. The need for a large background sample is due not only to variance, 

but also to bias that persists until the proportion n1/n0 becomes negligibly small. We show, 

however, that if we upweight all the background samples by large weight W ≫ 1, we can 

use logistic regression to recover the IPP estimate β̂ precisely with any finite presence and 

background sample. This procedure, which we call “infinitely weighted logistic regression,” 

is a device for using GLM software to maximize the IPP log-likelihood. Section 5 

recapitulates the relationships and contains discussion.

2. The inhomogeneous Poisson process model

The IPP is a simple model for a random set of points Z falling in some domain . Both the 

number and locations of points are random. It can be defined by its intensity function

(1)

which indexes the likelihood that a point falls at or near z. For A ⊆ , write

(2)

and assume Λ( ) <∞.

There are two main ways to formally characterize an IPP with intensity λ. One simple 

definition is that the total number of points is a Poisson random variable with mean Λ( ) 

and, conditionally on the number of points, their locations are independent and identically 

distributed with density pλ (z) = X(z)/Λ( ). That is, an IPP is an i.i.d. sample from pλ whose 

size is itself random.3

3Cressie (1993) and Aarts, Fieberg and Matthiopoulos (2012) refer to an IPP conditioned on n1 as a “Conditional IPP”; this is exactly 
an i.i.d. sample of size n1 from the density pλ(z).
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Alternatively we can think of an IPP as a continuous limit of an independent Poisson count 

model for ever-finer discretizations of . If N(A) = #(Z ∩ A), the number of points falling in 

set A, then

(3)

with N(A) and N(B) independent for disjoint sets A and B. For more on the IPP and other 

point process models, see Gaetan and Guyon (2009) or Cressie (1993).

In the case of a finite discrete domain  = {z1, z2,…, zm}, the IPP model reduces to a 

discrete Poisson model, with N(zi) ∼ Poisson(λ(zi)). In this sense, the IPP model may be 

seen as a limit of finer and finer discretizations of . We discuss this connection further in 

Section 2.4.

Warton and Shepherd (2010) proposed modeling species sightings z1,…,zn1 as arising from 

an IPP whose intensity is log-linear in the features x(z):

(4)

The formal linearity assumption is less restrictive than it seems, since our features x(z) could 

include polynomial terms, interactions, splines or other basis expansions, which 

substantially broaden the space of possible λ(z).

Interpreting the IPP as an i.i.d. sample with random size, we see that α and β play very 

different roles. Since α only multiplies λ(z) by a constant, it has no effect on pλ(z) = 

λ(z)/Λ( ). The “slope” parameters β completely determine pλ, while α scales the intensity 

up or down to determine the expected sample size Λ( ).

2.1. Geographic space and feature space

In the context of logistic regression, it can be more natural to think of the xi as a sample of 

points in “feature space” [i.e., the range of x(z)] rather than as the features corresponding to 

a sample in the geographic domain . There is no real distinction between these two 

viewpoints, so long as we adjust for the fact that some values of x are more common in 

than others.

Let Ax = {z: x(z) = x} and h(x) =∫Ax 1 dz. Then if the set Z is an IPP with intensity λ(x(z)), 

the corresponding set x(Z) is an IPP with intensity λx(x) = λ(x) ·h(x) and, conditionally on n1, 

their distribution is px(x) ∝ pλ(x)·h(x). For more detailed discussion see Elith et al. (2011) 

and Johnson et al. (2006).

2.2. Maximum likelihood for the IPP

The score equations for the log-linear IPP are simple and enlightening. The IPP log-

likelihood in terms of the presence samples is
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(5)

Differentiating with respect to α, we obtain the score equation

(6)

That is, whatever β̂ is, α̂ plays the role of a “normalizing” constant guaranteeing that λ(z) 

integrates to n1, the number of total presence records. Hence, if n1 is not of scientific 

interest, then neither is α̂.

Solving for α in (6) and ignoring constants, we obtain the partially maximized log-

likelihood

(7)

which is the same log-likelihood we would obtain by conditioning on n1 and treating the zi 

as a random sample with density .

Finally, differentiating (7) with respect to β and dividing by n1 gives the remaining score 

equations:

(8)

Solving (8) amounts to finding β for which the expectation of x(z) under Pλ(z) matches the 

empirical mean over the presence samples.

Hence, maximum likelihood for a log-linear IPP may be thought of as an algorithm with two 

discrete steps:

1. Estimate the density pλ: find β̂ for which p̂λ x(z) matches the empirical means of 

the presence sample xi.

2. Multiply p̂λ by n1: find α̂ for which λ̂(z) = n1 ⋅ p̂λ (z).

Unless n1 is meaningful, then, the IPP is essentially density estimation. In our view, it is rare 

that n1 merits much scientific interest, but there are important cases where it might. For 

instance, if we are comparing multiple species, study areas or periods of study, and if we 

believe that sampling effort is comparable across the different studies, then comparing the n1 

from each data set may teach us something.

Note, however, that in each of these cases our inference target can be viewed as a relative 

intensity across the different data sets. If we wish to make such comparisons, the right 
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approach may simply be to expand the survey area  to include multiple regions or time 

periods and add region identity or species identity as a feature, then perform a combined 

analysis. n1 for the combined analysis (the total number of sightings across all the different 

data sets) would then typically not be of much interest.

2.3. Numerical evaluation of the integral

When we cannot evaluate the integrals in equations (5)–(8) analytically, we replace them 

with numerical integrals based on the background samples. Hence, (5) becomes

(9)

where | | = ∫  1 dz represents the total area of the region.

The background points may be either a uniform sample from  or a regular grid. Quadrature 

weights may also be assigned to the background points to approximate the integral with a 

weighted sum, instead of the unweighted sum represented above.

We could repeat the derivation of Section 2.2 to obtain the criteria

(10)

Throughout, we will refer to (9) as the numerical IPP log-likelihood to distinguish it from 

(5). In practice, fitting the IPP means solving (10) for some background sample.

2.4. Connection to Poisson log-linear model

If the background zi comprise a regular grid, we can discretize  into n0 pixels Ai, each of 

roughly the same size  and centered at zi. If x(z) is continuous, then

(11)

The IPP model implies that the counts N(Ai) arise independently via

(12)

Hence, the approximate log-likelihood is
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(13)

Let Si = {k:zk ∈ Ai,yk = 1} contain the presence samples in pixel i. Then

(14)

Hence, the only difference between (9) and (13) is that in the latter we also discretize the 

location of each presence sample to match its nearest background point.

Berman and Turner (1992) proposed using this approximation to fit the IPP model using 

Poisson GLM software, and Baddeley and Turner (2000) show how to generalize it to other 

point-process models including generalized additive models. This device provides a simple 

means of accessing the modeling flexibility of GLM methods at a cost of some loss of data, 

since it effectively replaces the covariate vector xi for each presence sample with that of its 

nearest background sample.

Baddeley et al. (2010) discuss the bias incurred by the discretization, showing in particular 

that it vanishes in the small-pixel limit. They also propose a strategy for improving the bias, 

which splits pixels into subpixels whose covariates are closer to constant.

As we will see later, this discretization is not really necessary. In Section 4 we propose a 

different procedure, infinitely weighted logistic regression, that also allows us to fit an IPP 

model using GLM software but produces exactly the same estimates we would obtain by 

maximizing (9) on the original presence and background data.

2.5. Identifiability and sampling bias

Sampling bias poses a serious challenge to valid inference in presence-only studies. 

Scientifically, we are interested in the occurrence process consisting of all specimens of the 

species of interest. However, our data set consists of what we might call the sightings 

process, consisting only of the occurrences observed and reported by people.

We can model the sightings process as an occurrence process thinned by incomplete 

observation, as proposed by Chakraborty et al. (2011) and Renner and Warton (2013). That 

is, suppose that specimens occur with intensity λ̃(z), but that most occurrences go 

unobserved. Each occurrence is observed with probability s(z), which may depend on 

features of the geographic location z (e.g., proximity to the road network). If detection is 

independent across occurrences, then the observation process is an IPP with intensity

(15)

The trouble is that our presence-only data set only directly reflects A, the intensity of 

sightings, and not λ̃.
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Optimistically, we might assume that s is constant (no sampling bias). In that case, by 

estimating λ(z) we are also estimating λ̃(z) up to an unknown constant of proportionality s, 

so pλ̃= pλ but λ̃ ≠ λ. Even in this optimistic scenario we can only estimate relative, not 

absolute, occurrence intensities. Phillips and Elith (2013) also elaborate the same point in 

the context of logistic regression models.

Slightly less optimistically, we might assume that s is an unknown function of z, but that s 

and λ̃ are known to depend on z through two disjoint feature sets. For instance, we could 

model λ̃ and s as log-linear in features x1(z) and x2(z), respectively:

(16)

(17)

Then the sightings process follows the log-linear model λ(z) = eα+β′x(z) with 

 and . Note that α̃ and β̃ are the quantities of primary 

scientific interest, whereas α and β are the parameters governing the process we actually 

observe. Nevertheless, β̃ is still identifiable from the data because β is.4

As n0,n1 → ∞, our estimate β̂ converges to the true value of β̃, the slope coefficients of λ̃. 

However, α̃ will converge not to α̃ but rather to α̃ + γ. Without knowing γ, we have no way 

of estimating α̃. By the same token, if some features appear both in x1 and x2—or if x1 and 

x2 are not linearly independent—the model is unidentifiable.

To be concrete, suppose koala occurrence is known to depend only on elevation (x1), and 

that sampling bias is known to depend only on proximity to roads (x2). Then, despite the 

obvious sampling bias in Figure 1, we could still estimate what elevations koalas tend to 

frequent, by making the correct adjustments for road proximity. By contrast, we could not 

estimate from presence-only data alone whether koalas tend to avoid roads, since that is 

confounded by sampling bias.

Whether or not s is constant, our estimate for α = α̃ + γ carries no real information about α̃ 

unless we have independent knowledge of γ. Indeed, we have already seen that the only role 

α̂ plays in estimation is to make λ integrate to n1.

The distinction between β and β̃ may be very important for some problems, but for the 

remainder of this article we focus on estimation of β, the slope parameters of the process we 

get to observe.

4As with any regression adjustment scheme, we should proceed with caution here. If our linear model is misspecified (perhaps we 

should have included ) and x1 is correlated with the missing variables, even regression adjustment will not remove all bias. In 
perverse situations it could even make the situation worse.
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3. Maximum entropy

Another popular approach to modeling presence-only data, which we will see is equivalent 

to the IPP, is the Maxent method proposed by Phillips, Dudík and Schapire (2004). The 

authors begin by assuming that the presence samples z1,…,zn1 are a random sample from 

some probability distribution p(z), called the species distribution.

The authors adopt the view, inspired by information theory that our estimate p̂ should have 

large entropy H(p) =−∫ p(z) log(p(z)) dz. Large H(p) means roughly that p is close to the 

uniform density 1/| |, the species distribution we would observe if the species were 

indifferent to all geographic features. The idea is that p̂ should be “nearly geographically 

uniform,” subject to constraints that make it resemble the observed data.

Phillips, Dudík and Schapire (2004) propose to choose the p which maximizes H(p) subject 

to the constraint that the expectation of the features x(z) under p̂ matches the sample mean of 

those features, that is,

(18)

They show that this criterion is equivalent to maximizing the likelihood of the parametric 

exponential family density:

(19)

This is exactly the form of pλ for our log-linear IPP, and its log-likelihood is exactly the 

partially maximized log-likelihood ℓ*(β), the log-likelihood for an IPP conditioned on n1. 

The constraint (18) is precisely the score criterion (8) for β in an IPP, so the Maxent β̂ is the 

same as the IPP β̂. This result may also be found in Appendix A of Aarts, Fieberg and 

Matthiopoulos (2012).

The popular software package Maxent implements a method slightly more complex than the 

one originally proposed in 2004. First, it automatically generates a large basis expansion of 

the original features into many derived features: quadratic terms, interactions, step functions 

and hinge functions of the original features. Then, it fits a model by optimizing an ℓ1-

regularized version of the conditional IPP likelihood (7):

(20)

The regularization parameters rj are chosen automatically according to rules based on an 

empirical study of various presence-only data sets [Phillips and Dudík (2008)].5

5The notation of the Maxent papers uses λ and β to denote what we call β and r, respectively.
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Mathematically, the basis expansion increases the dimension of x(z) but changes nothing 

else. Moreover, the ℓ1 regularization scheme does not constitute an essential difference with 

the other methods considered here. One could (and often should) regularize β when fitting 

an IPP model as well especially if x(z) contains many features resulting from a large basis 

expansion.

Penalizing the Maxent log-likelihood does not change the equivalence between the two 

models, so long as α is left unpenalized. If we add a penalty term J(β) to the IPP log-

likelihood (5), we still obtain (6) after differentiating with respect to α. Then, partially 

maximizing ℓ(αβ) –J(β) gives us ℓ*(β) – J(β), the penalized Maxent log-likelihood. This 

equivalence depends on our not penalizing α in (5).

This argument generalizes immediately to a generic penalized likelihood method with any 

parametric form for log λ(z). We have established the following general proposition:

PROPOSITION 1. Given some parametric family of real-valued functions {fθ: θ ∈ ℝd} with 

penalty function J(θ), consider the penalized log-likelihood g1 for an IPP with intensity 

eα+fθ(x(z)),

(21)

and the penalized log-likelihood g2 for a sample with density ∝eα+fθ(x(z)):

(22)

Then θ maximizes g2 iff (θ, β) maximize g1 for some α. The same applies if we replace the 

integrals in (21)–(22) with sums over the background sample.

PROOF. Partially maximize g1 over α as in (7) to obtain g2.

Thus, we see that, while Maxent and the IPP appear to be different models with different 

motivations, they result in the exact same density estimate p̂ (z). In terms of the two-step 

algorithm we derived in Section 2.2, Maxent is identical to step 1, but it skips step 2. The 

IPP fit λ̂ is n1 times the Maxent fit λ̂.

4. Logistic regression

Another ostensibly different model for presence-only data is so-called “naive” logistic 

regression, which casts presence-only modeling as a problem of classifying points as 

presence (y = 1) or background (y = 0) on the basis of their features. The logistic regression 

model treats n1, n0 and the xi as fixed and the yi as random with
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(23)

Superficially, this approach may appear ad hoc and unmotivated compared to IPP or 

Maxent. Nevertheless, it has enjoyed some popularity, in part because logistic regression is 

an extremely mature method in statistics, enjoying myriad well-understood and already-

implemented extensions such as GAM, MARS, LASSO, boosted regression trees and more.

Logistic regression modeling of presence-only data has often been motivated by analogy to 

logistic regression for presence-absence data. Since it is not known whether the species is 

present at or near the background examples, these are sometimes referred to as “pseudo-

absences,” and the supposed naivete of the method is that it appears to treat background 

samples as actual absences. For instance, Ward et al. (2009) introduced latent variables 

coding “true” presence or absence and proposed fitting this model via the EM algorithm.

This interpretation raises once again the troublesome question of what it would mean for one 

of our randomly sampled background points to be a “true presence.” Need there be a 

specimen sitting directly on the location, or is it enough for it to be within 100 m? 1 km?

Fortunately, we can sidestep these concerns, since connections between the logistic 

regression and IPP models yield a more straightforward interpretation.

4.1. Case-control sampling

Suppose the background data are a uniform random sample, and the presence data arise from 

a log-linear IPP. Then if we condition on n1, the zi are a mixture of two i.i.d. samples, one 

from density eα+β′x(z)/Λ( ) and the other from density 1/| |. By Bayes' rule, for a random 

index i,

(24)

(25)

(26)

with . Since ℙ(yi = 1|zi) depends only on xi = x(zi), we could just as well 

condition on xi instead, giving (23). Therefore, if the log-linear IPP model is correct, it 

implies the individual yi|xi follow a logistic regression with the same slope parameters β.6

6The yi are technically not conditionally independent (if we knew the other n1 + n0 -1 labels, we would know the last as well). This is 
always true in case-control studies, but it is typically ignored since the dependence is weak for large samples.
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Thus, given any finite sample of presence and background points, if we believe in the IPP 

model, then we could either maximize the numerical IPP likelihood or the logistic regression 

likelihood, and in either case we would be estimating the same population parameter β. This 

does not guarantee we will obtain the same estimates β̂ in any given finite sample, but if the 

model is correct, then either method gives a consistent estimator of β.

Note that if we change the marginal class ratio n1/n0 by some factor ec, the only effect will 

be to multiply the odds of yi = 1 given xi by the same factor, that is, add c to η and leave β 

unchanged. Hence, under correct specification, β̂ → β regardless of the limiting ratio n1/n0.

4.2. Case-control sampling under misspecification

Now, suppose that λ(z) is not really log-linear in our features x. Then, the fitted slopes β̂ for 

logistic regression and the numerical IPP will not converge to the same limiting β if n1 and 

n0 grow large together. In fact, the limiting logistic regression parameters depend on the 

limiting ratio of n1/n0 [Xie and Manski (1989)].

To gain some intuition for why this is so, suppose we have a single covariate x, with λ(z) = 

eα+x(z)2. Then the derivation of (24)–(26) gives

(27)

with η as before. In the large-sample limit, then, our estimation problem amounts to finding 

η̂, β̂ for which

(28)

in the population from which we are sampling. Now, since changing n1/n0 only adds a 

vertical shift to the right-hand side of (28), it may seem rather counterintuitive that this 

should have any impact on the slope β̂ of our approximation on the left-hand side.

To understand why, we must come to grips with the sense in which we make the 

approximation in (28). The logistic regression log-likelihood is

(29)

Its first derivatives with respect to η and β can be written in terms of the fitted conditional 

probabilities ŷi (η, β) = ℙη,β(y = 1| x = xi):

(30)
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(31)

If we define ri = yi − ŷi, then η̂, β̂ maximize the likelihood if and only if Σi ri = 0 and x ⊥ r. 

The crucial point is that the residuals of our approximation, yi − ŷi, are measured on the 

probability scale, and not the log-odds scale.

The black and red curves in the left panel of Figure 3 show the conditional log-odds 

 for our misspecified model with two different values of η, 0 and -8 

respectively. On the log-odds scale, one is no steeper than the other. But when we look at 

the same two curves on the conditional probability scale (right panel), now the red looks 

steeper than the black. This is due to a “ceiling” effect for the black curve: in the region 

where the log-odds x2 is changing fast, the probability  has already saturated at 1. 

The actual estimates of η̂ and β̂ depend on the background density of x as well as n1/n0; see 

Section 4.5 for a full simulation.

As Warton and Shepherd (2010) prove, this ceiling effect vanishes in the limit where n1/n0 

→ 0; in that case η̂ → − ∞, , and the logistic regression and IPP 

estimates are identical. Hence, there is no difference when the background sample grows so 

large that it dwarfs the presence records in the population from which we are sampling. 

Dorazio (2012) considers a similar framework, called the case-augmented design, and 

proves a similar equivalency to the IPP as n0 → ∞.

4.3. Infinitely weighted logistic regression

If we modify the logistic regression procedure a bit, we can resolve the discrepancy in the 

previous section and recover the same β̂ that we would estimate with an IPP using the same 

presence and background samples.

We can remove the ceiling effect of the previous section if we add case weights to the 

samples

(32)

for some large number W. We then obtain the weighted log-likelihood

(33)
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(34)

PROPOSITION 2. Let J(β) be any convex penalty, and suppose ℓIPP (α,β)–J(β) has a unique 

maximizer (α 〲 IPP, β̂
IPP). Then if (η̂W, β̂W) maximize ℓWLR(η,β)–J(β) for weight W,

(35)

PROOF. Reparameterizing (33) with α= η + log(Wn0/| |) and ignoring constants, we obtain

(36)

Fixing (α,β) and taking W → ∞, each term in the second sum converges to  while 

the third sum converges to 0. Hence, ignoring constants, (36) converges to the numerical IPP 

log-likelihood (9), and this convergence occurs uniformly on compact subsets of the 

parameter space.

Now, both ℓWLR(α,β) – J(β) and ℓIPP(α,β) – J(β) are concave, and the latter is strictly 

concave by assumption; hence, the maximizer of the first converges to the maximizer of the 

second.

From the above, we see that IWLR is not really a new statistical method, but rather a 

technical device for optimizing the IPP/Maxent log-likelihood using already-implemented 

GLM software.

Although technically β̂
W ≠β̂

IPP for any finite W (hence the name “infinitely weighted”), in 

practice, we only need W large enough that the approximation of ℓWLR(α,β) to ℓIPP(α,β) is 

good near (α̂, β̂).

Essentially, if  for each i (say, all are less than 0.001), then the Taylor 

approximation should be good. We can assess this easily if we observe that

(37)

when all of the above are small. To rephrase, then, if maxi ŷi from the logistic regression is 

less than 0.001 or so, it seems to us that W should be sufficiently large. If not, we can set 

 and check that the fitted ŷi are now small enough. If any uncertainty 
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remains whether W is large enough, one can always increase it by (say) another factor of 100 

and check that the estimates do not change appreciably.

4.4. Logistic regression as density estimation

One interpretation of the results we have just reviewed is that in the context of presence-only 

data, logistic regression solves the same parametric density estimation problem as Maxent 

and the IPP do. Moreover, our infinitely weighted logistic regression yields an identical 

estimate of the density.

Using logistic regression for density estimation has been proposed before. For example, 

Hastie, Tibshirani and Friedman (2009) discuss it as a means for turning an unsupervised 

density estimation problem into a supervised classification problem. Their proposal uses a 

different weighting scheme (assigning half the total weight to the presence samples) which, 

unlike infinitely weighted logistic regression, does not give exactly the IPP solution.

4.5. Simulation study: Weighted vs unweighted logistic regression

We have seen that both infinitely weighted logistic regression (a.k.a. numerical IPP) and 

unweighted logistic regression estimate the same β parameter of the same log-linear IPP 

model, and when the background sample is much larger than the presence sample the 

estimates β̂ are close to each other.

However, the infinitely weighted logistic regression estimate can converge much faster to 

the large-background-sample limit if the linear model is misspecified, as we illustrate here 

with a simulation study.

Consider a geographic region with a single covariate x whose background density is p0(x) = 

N(0,1). Now, suppose a species follows our log-linear IPP model with slope β, so that 

λ(x(z)) ∝ eβx. Then the density of presence samples in feature space is P1(x) = 

eβxp0(x)/(∫eβup0(u) du) = N(β, 1).

Suppose our species is in fact a mixture of two subspecies, one of which comprises 95% of 

the population and prefers x large, while the remaining 5% prefer x small. If each subspecies 

follows our model with coefficients 1.5 and -2, respectively, then

(38)

which no longer follows the log-linear model. p0(x) and p1(x) are depicted in the upper panel 

of Figure 4 as the dashed and solid black lines. The black line in the left panel shows λ(x) = 

P1(x)/p0(x), the relative intensity as a function of the covariate x. In the left panel all the 

curves have been normalized so that Λ( ) = ∫ λ(x)p0(x) dx =1.

If we fit an infinitely-weighted logistic regression (or, equivalently, a log-linear IPP) to a 

large presence and background sample, our fitted β̂(IWLR)will tend to μ1 = p1 (x) = 1.325. 

We have plotted the corresponding large-sample estimates λ̂(IWLR)(x) and p̂1 (x) as blue 

lines in the respective panels of Figure 4.
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If, alternatively, we fit an unweighted logistic regression to the same data set with large n0 = 

n1, the estimate β̂(LR) will tend to roughly 1.04. The resulting large-sample estimates 

p ̂(LR)(x) and λ̂(LR)(x) are plotted in red.

If we fit an unweighted logistic regression to a large sample with a different ratio n1/n0, we 

would get a different estimate, which would tend toward the IPP estimate of 1.325 if and 

only if this ratio tended to 0. By the same token, when n1 and n0 are fixed, the ratio between 

them can play a significant role in determining the estimated β. In contrast, the IWLR/IPP 

estimate tends to 1.325 in large samples no matter what the ratio n1/n0.

The left panel of Figure 5 illustrates this with a simulation study of the example just 

discussed. We first generate a single presence sample of size n1 = 3000 from this species, 

then generate 20 sets of n0 background samples from p0 = N(0,1) for each of a range of 

values n0 ranging from 103 to 106.

For each background sample, we fit both an “infinitely” weighted (W = 104) and unweighted 

logistic regression to the combination of presence and background points. For relatively 

large sizes of background sample, there is very little sampling variability, but the logistic 

regression estimates carry a large bias that depends greatly on the size of the background 

sample. The limiting β̂, to which both methods would converge given an infinite background 

sample, is depicted with a horizontal line.

In the right panel, we repeat this study with a presence sample from N(μ1,1), the correctly-

specified model with the same mean as our misspecified model. Now the situation is very 

different; no matter what the mix of presence and background samples, the log-odds are 

truly linear with slope β = μ1. Consequently,  as n0 → ∞ and n1 → ∞, regardless 

of the limiting ratio n1/n0.

Since the choice of background sample size is primarily a matter of convenience, it is 

preferable to use an estimator that depends on it as little as possible. When the linear model 

is misspecified (which is nearly always the case), we recommend the infinitely weighted 

logistic regression over unweighted logistic regression for this reason.

We emphasize here that although IWLR resolves the issue of bias that we discussed in 

Section 4.2, using IWLR does not guarantee that we will obtain a good estimate for small 

n0. The smaller n0 is, the larger the variance of our estimate, so a larger background set is 

always better unless computational constraints apply.

What is more, the variability in our estimate due to the background sample is not reflected in 

the default standard error outputs from GLM software—only the variability due to the 

presence records is. Because ℓIWLR (α,β) ≈ ℓIPP (α,β) for large W, its Hessian will also 

converge to the Hessian of the IPP.

Even if our background sample was extremely large, the standard error estimates for any of 

the models we have discussed are based on asymptotic normal approximations that hold 

when the log-linear model is correctly specified. Resampling methods such as the bootstrap 

are more generally reliable, but even the bootstrap will depend crucially on the assumption 
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that presence records (and in the case of logistic regression, background records) are 

independent observations. In terms of the IPP model, this assumption rules out spatial 

clustering of presence records. Renner and Warton (2013) provide evidence that this 

assumption may not hold for presence-only data. Therefore, model-based estimates of 

standard error should be viewed with suspicion no matter what method we choose.

5. Discussion

We have discussed several closely related models for a single presence-only sample. In this 

section we collect them all in one place and review their relationships:

Inhomogeneous Poisson process

The “mother” model, from which the others can be derived, is the inhomogeneous Poisson 

process (IPP), whose log-likelihood is

(39)

In practice, (39) is approximated numerically via

(40)

Fitting this model amounts to solving for the density pλ(z)∝ eβ′x(z) for which the expected 

features pλx(z) match the empirical mean , then multiplying that density by 

n1.

Maxent

Conditioning on n1, we obtain the exponential family density model p (z)∝ eβ′x(z), resulting 

in the log-likelihood

(41)

or its numerical counterpart. This is the log-likelihood maximized by Maxent, and it 

corresponds exactly to the log-likelihood (39) partially maximized with respect to α. Hence, 

both procedures give exactly the same estimates of β and p.

Logistic regression

The logistic regression log-likelihood is
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(42)

When the log-linear IPP model is correctly specified, this model is as well (aside from the 

fact that the yi|xi are only approximately independent), with the same true β as in the IPP 

model. However, in finite samples the estimates for β given by maximizing (42) instead of 

(40) may be substantially different.

Infinitely weighted logistic regression

We can resolve this difference by upweighting all the background points by W ≫ 1, 

obtaining weighted log-likelihood

(43)

In the limit where W → ∞, we recover exactly the same β̂ as we would by maximizing (40).

Discretized Poisson LLM

Another means for approximating the IPP log-likelihood with a GLM log-likelihood is the 

Berman and Turner method, which simply discretizes geographic space into pixels and 

assigns each presence point to a bin belonging to its nearest background point:

(44)

This discretization of presence features is unnecessary given that we can exactly fit the IPP 

likelihood using the infinitely weighted approach of (43).

5.1. Extending the IPP model

Logistic regression is one of the most widely applied methods in statistics. For decades, 

applied statisticians have been developing, studying and using variations on logistic 

regression to solve classification problems in statistics. R packages exist for fitting 

generalized additive models (GAMs), boosted regression trees, MARS and every manner of 

tailored regularization schemes [see, e.g., Hastie, Tibshirani and Friedman (2009)].

All of these methods are well understood within the context of logistic regression. We 

believe that the most important practical implication of the finite-sample equivalence 

between the IPP model and infinitely weighted logistic regression is that all of these 

methods can now be equally well understood and easily applied within the context of the 

IPP model.

For instance, we can fit an IPP / Maxent version of boosted regression trees with the 

following single line of R:
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boosted.ipp <- gbm(y∼., family=“bernoulli,”

data=dat, weights=1E3^(1-y)).

For an IPP / Maxent version of LASSO, ridge, or the elastic net:7

lasso.ipp <- glmnet(dat.x, dat.y, family=“binomial,”

weights=1E3^(1-y)).

For an IPP GAM:

gam.ipp <- gam(y∼s(x1)+x2, family=binomial, data=dat,

weights=1E3^(1-y)).

This added flexibility promises to provide a powerful tool to modelers of presence-only 

data.

5.2. Model selection

Regardless of which of the various related likelihoods we choose, there remains the issue of 

model selection. With the use of geographic information systems, ecologists often have 

access to a large number of predictor variables and may wish to winnow the field before 

modeling to avoid overfitting. Conversely, if some continuous variables are known to be 

important predictors, assuming a linear effect on the log-intensity may be too restrictive, and 

we may wish to expand the basis using splines, interactions, wavelets, etc. In either case, 

regularization may be called for.

Though it would be impossible to give a full treatment here of the many important 

considerations governing model selection, we note that these choices need not be governed 

by which likelihood we take as our starting point. In particular, the large set of derived 

features and ℓ1 regularization used by Maxent software can just as well be applied to the IPP 

model or, for that matter, to logistic regression. Using the infinitely weighted logistic 

regression method, we can implement the exact loss function used by the Maxent with 

software for penalized GLMs.
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Fig. 1. 
Sampling bias in presence-only data for koalas. Taken from Margules et al. (1994).
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Fig. 2. 
Heat map of occurrence probabilities. Taken from Royle, Nichols and Kéry (2005).
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Fig. 3. 
The dashed red curve in the left panel is a vertical shift of the solid black curve. However, 

vertically shifting the log-odds changes the conditional probability in a more complex way.
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Fig. 4. 
Large-sample estimates for the simulation study, misspecified case. The black curves 

represent the true presence density (left panel) and intensity (right panel). The blue and red 

curves show the fitted densities using IWLR and standard logistic regression with n0 = n1.
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Fig. 5. 
β̂ estimates for simulation study with n1 = 3000 and varying n0. Unweighted logistic 

regression may require a very large background sample before convergence when the model 

is misspecified.
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