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Abstract

For classification problems with significant class imbalance, subsampling can reduce 

computational costs at the price of inflated variance in estimating model parameters. We propose a 

method for subsampling efficiently for logistic regression by adjusting the class balance locally in 

feature space via an accept–reject scheme. Our method generalizes standard case-control 

sampling, using a pilot estimate to preferentially select examples whose responses are 

conditionally rare given their features. The biased subsampling is corrected by a post-hoc analytic 

adjustment to the parameters. The method is simple and requires one parallelizable scan over the 

full data set.

Standard case-control sampling is inconsistent under model misspecification for the population 

risk-minimizing coefficients θ*. By contrast, our estimator is consistent for θ* provided that the 

pilot estimate is. Moreover, under correct specification and with a consistent, independent pilot 

estimate, our estimator has exactly twice the asymptotic variance of the full-sample MLE—even if 

the selected subsample comprises a miniscule fraction of the full data set, as happens when the 

original data are severely imbalanced. The factor of two improves to  if we multiply the 

baseline acceptance probabilities by c > 1 (and weight points with acceptance probability greater 

than 1), taking roughly  times as many data points into the subsample. Experiments on 

simulated and real data show that our method can substantially outperform standard case-control 

subsampling.
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1. Introduction

In recent years, statisticians, scientists and engineers are increasingly analyzing enormous 

data sets. When data sets grow sufficiently large, computational costs may play a major role 

in the analysis, potentially constraining our choice of methodology or the number of data 

points we can afford to process. Computational savings can translate directly to statistical 

gains if they:

1. enable us to experiment with and prototype a variety of models, instead of trying 

only one or two,

2. allow us to refit our models more often to adapt to changing conditions,

3. allow for cross-validation, bagging, boosting, bootstrapping or other 

computationally intensive statistical procedures or

4. open the door to using more sophisticated statistical techniques on a compressed 

data set.

Bottou and Bousquet (2008) discuss the tradeoffs arising when we adopt this point of view. 

One simple manifestation of these tradeoffs is that we may run out of computing resources 

before we run out of data, in effect making the sample size n a function of the efficiency of 

our fitting method.

1.1. Imbalanced data sets

Class imbalance is pervasive in modern classification problems and has received a great deal 

of attention in the machine learning literature [Chawla, Japkowicz and Kotcz (2004)]. It can 

come in two forms:

Marginal imbalance. One of the classes is quite rare; for instance, ℙ(Y = 1) ≈ 0. Such 

imbalance typically occurs in data sets for predicting click-through rates in online 

advertising, detecting fraud or diagnosing rare diseases.

Conditional imbalance. For most values of the features X, the response Y is very easy to 

predict; for instance, ℙ(Y = 1|X = 0) ≈ 0 but ℙ(Y = 1|X = 1) ≈ 1. For example, such 

imbalance might arise in the context of email spam filtering, where well-trained 

classifiers typically make very few mistakes.

Both or neither of the above may occur in any given data set. The machine learning 

literature on class imbalance usually focuses on the first type, but the second type is also 

common.

If, for example, our data set contains one thousand or one million negative examples for 

each positive example, then many of the negative data points are in some sense redundant. 

Typically in such problems, the statistical noise is primarily driven by the number of 

representatives of the rare class, whereas the total size of the sample determines the 

computational cost. If so, we might hope to finesse our computational constraints by 

subsampling the original data set in a way that enriches for the rare class. Such a strategy 

must be implemented with care if our ultimate inferences are to be valid for the full data set.
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This article proposes one such data reduction scheme, local case-control sampling, for use in 

fitting logistic regression models. The method requires one parallelizable scan over the full 

data set and yields a potentially much smaller subsample containing roughly half of the 

information found in the original data set.

1.2. Subsampling

The simplest way to reduce the computational cost of a procedure is to subsample the data 

before doing anything else. However, uniform subsampling from an imbalanced data set is 

inefficient since it fails to exploit the unequal importance of the data points.

Case-control sampling—sampling uniformly from each class but adjusting the mixture of 

the classes—is a more promising approach. This procedure originated in epidemiology, 

where the positive examples (cases) are typically diseased patients and negative examples 

(controls) are disease-free [Mantel and Haenszel (1959)]. Often, an equal number of cases 

and controls are sampled, resulting in a subsample with no marginal imbalance, and costly 

measurements of predictor variables are only made for selected patients [Breslow, Day et al. 

(1980)]. This method is useful in our context as well, since a logistic regression model fitted 

on the subsample can be converted to a valid model for the original population via a simple 

adjustment to the intercept [Anderson (1972), Prentice and Pyke (1979)].

However, standard case-control sampling still may not make most efficient use of the data. 

For instance, it does nothing to exploit conditional imbalance in a data set that is marginally 

balanced. Even with some marginal imbalance, a control that looks similar to the cases is 

often more useful for discrimination purposes than one that is obviously not a case.

We propose a method, local case-control sampling, which attempts to remedy imbalance 

locally throughout the feature space. Given a pilot estimate (α̃, β̃) of the logistic regression 

parameters, local case-control sampling preferentially keeps data points for which Y is 

surprising given X. Specifically, if , we accept (xi, yi) with probability |yi − 

p̃(xi)|, the ℓ1 residual of the pilot model. In the presence of extreme marginal or conditional 

imbalance, these errors will generally be quite small and the subsample can be many orders 

of magnitude smaller than the full data set.

Just as with case-control sampling, we can fit our model to the subsample and make an 

equally simple correction to obtain an estimate for the original data set. When the logistic 

regression model is correctly specified and the pilot is consistent and independent of the 

data, the asymptotic variance of the local case-control estimate is exactly twice the variance 

of a logistic regression fit on the (potentially much larger) full data set. This factor of two 

improves to  if we accept with probability c|yi − p̃(xi)| ∧ 1 and weight accepted points 

by a factor of c|yi − p̃(xi)| ∨ 1. For example, if c = 5 then the variance of the subsampled 

estimate is only 20% greater than the variance of the full-sample MLE. The subsample we 

take with c > 1 is no more than c times larger than the subsample for c = 1, and for data sets 

with large imbalance is roughly  times as large.
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Local case-control sampling also improves on the bias of standard case-control sampling. 

When the logistic regression model is misspecified, case-control sampling is in general 

inconsistent for the risk minimizer in the original population. By contrast, local case-control 

sampling is always consistent given a consistent pilot, and is also asymptotically unbiased 

when the pilot is. Sections 5 and 6 present empirical results demonstrating the advantages of 

our approach in simulations and on the Yahoo! webspam data set.

1.3. Notation and problem setting

Our setting is that of predictive classification: we are given n independent and identically 

distributed observations, each consisting of predictors xi ∈  and a binary response yi ∈ {0, 

1}, with joint probability measure ℙ. For our purposes, we assume the predictors are mapped 

into some real covariate vector space, so that  ⊆ ℝp Our aim is to learn the function

(1)

or equivalently to learn

(2)

which could be infinite for some x.

A linear logistic regression model assumes f is linear in x; that is,

(3)

where θ = (α, β) ∈ ℝp+1. This is less of a restriction than it might seem, since x may 

represent a very large basis expansion of some smaller set of “raw” features.

Nevertheless, in the real world, f is unlikely to satisfy our parametric model for any given 

basis x. When the model is misspecified, we can still view logistic regression as an M-

estimator with convex loss equal to the negative log-likelihood for a single data set:

(4)

As an M-estimator, under general conditions logistic regression in large samples will 

converge to the minimizer of the population risk R(θ) = (θ; X, Y) [Huber (2011)]. That is, θ 

converges to the population maximizer of the expected log-likelihood

(5)

(6)

If f = fθ0 for some θ0, then θ* = θ0; otherwise fθ* is the best linear approximation to f in the 

sense of (5). For a misspecified model, fθ̂ cannot possibly converge to f no matter what 
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sampling scheme or estimation procedure we use, or how much data we obtain. Consistency, 

then, will mean that .

Model misspecification is ubiquitous in real-world applications of regression methods. For 

reasons of exposition, the misspecification always takes a simple form in our simulations, 

for example, in Example 1 there are two binary predictors, and we would have correct 

specification if only we added one interaction—but in the real world it usually is neither 

possible nor even desirable to expand the feature basis until the model is correctly specified. 

For instance, if p = 1000, then there are  quadratic terms. Even if we 

included all those terms as features, we would still be missing cubic terms, quartic terms, 

and so on.

Some kinds of misspecification are milder than others, and some are easier to find and fix 

than others. Seeking better-specified models (without adding too much model complexity) is 

a worthy goal, but realistically perfect specification is unattainable.

Our goal, then, is to speed up computation while still obtaining a good estimate of θ*, the 

population logistic regression parameters. As we will see, standard case-control sampling 

achieves the first goal, but may fail at the second.

1.4. Related work

Recent years have seen substantial work on classification in imbalanced data sets. See 

Chawla, Japkowicz and Kotcz (2004) and He and Garcia (2009) for surveys of machine 

learning efforts on this problem. Many of the methods proposed involve some form of 

undersampling the majority class, oversampling the minority class, or both. Owen (2007) 

examined the limit of marginally imbalanced logistic regression and proved it is equivalent 

to fitting an exponential family model to the minority class.

One recurring theme is to preferentially sample negative examples that lie near positive 

examples in feature space. For example, Mani and Zhang (2003) propose selecting majority-

class examples whose average distance to its three nearest minority examples is smallest. 

Our method has a similar flavor since the probability of sampling a negative example (x, 0) 

is p̃(x), which is large when the features x are similar to those characteristic of positive 

examples.

Our proposal lies more in the tradition of the epidemiological case-control sampling 

literature. In particular, case-control sampling within several categorical strata has been 

studied by Fears and Brown (1986), Breslow and Cain (1988), Weinberg and Wacholder 

(1990), Scott and Wild (1991). Typically, the strata are based on easy-to-measure screening 

variables available for a wide population, with more laborious-to-collect variables being 

measured on the sampled subjects. Lumley, Shaw and Dai (2011) discuss survey calibration 

methods for efficient regression in two-stage sampling schemes, which are interesting but 

too computationally intensive for our purposes here.
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2. Case-control subsampling

Case-control sampling is commonly carried out by taking all the cases and exactly c times as 

many controls for some fixed c (e.g., c = 1, 2, 5). However, for our purposes it will be 

simpler to consider a nearly equivalent procedure based on accept–reject sampling.

Define some acceptance probability function a(y) and let , the log-selection bias. 

Consider the following algorithm:

1. Generate independent zi ~ Bernoulli(a(yi)).

2. Fit a logistic regression to the subsample S = {(xi, yi) : zi = 1}, obtaining unadjusted 

estimates θŜ = (α̂
S, β̂

S).

3. Assign α̂ ← α̂
S − b and β̂ ← β̂

S.

Specifically, we could generate the zi by first generating ui ~ U(0, 1) mutually independent 

of the pilot, the data, and each other, then taking zi = 1ui≤a(yi). Note that steps (2)–(3) are 

equivalent to logistic regression with offset b for each data point.

This variant is convenient to analyze because the subsample thus obtained is an i.i.d. sample 

from a new population:

(7)

with ā = a(1)ℙ(Y = 1) + a(0)ℙ(Y = 0), the marginal probability of Z = 1.

The estimate (α̂, β̂) is motivated by a simple application of Bayes’ rule relating the odds of Y 

= 1 in ℙ and ℙS. If g(x) is the true conditional log-odds function for ℙS, we have

(8)

(9)

(10)

That is, the log-odds g(x) in our biased population is simply a vertical shift by b of the log-

odds f(x) in the original population, so given an estimate of g we can subtract b to estimate f. 

If the model is correctly specified, logistic regression on the subsample yields a consistent 

estimate for the function g(x), so the estimate for f(x) is also consistent.

Note that the derivation (8)–(10) is equally valid if the sampling bias b depends on x, in 

which case we have g(x) = f(x) + b(x). Local case-control sampling exploits this more 

general identity.
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2.1. Conditional probability and the logit loss

If X is integrable, then upon differentiating the population risk (5) with respect to θ we 

obtain the population score criterion:

(11)

Informally, the best linear predictor is the one that gets the conditional probabilities right on 

average. Note this is not the same as a predictor that gets the conditional log-odds right on 

average.

To illustrate the difference between approximating probabilities and approximating logits, 

suppose that X ~ U(0, 1) and f(x) = −10 + 5x + 3 · 1x>0.5. The left panel of Figure 1 shows 

f(x) as a solid line and its best linear approximation as a dashed line. On the logit scale, the 

dashed line appears to be a very poor fit to the black curve. It fits reasonably well for large x, 

but it appears more or less to ignore the smaller values of x.

The right panel of Figure 1 shows why. When we transform both curves to the probability 

scale, the fit looks much more reasonable. fθ*(x) need not approximate f(x) particularly well 

for small x, because in that range even a large change in the log-odds produces a negligible 

change in the conditional probability p(x). By contrast, fθ*(x) needs to approximate f(x) well 

for larger x, where p(x) changes more rapidly.

In general, logistic regression places highest priority on fitting f where  is largest: 

where f(x) ≈ 0 and p(x) ≈ 0.5. In this example, with its strong marginal imbalance, the 

regions that matter most are those where p(x) is largest. This often makes sense in 

applications such as medical screening or advertising click-through rate prediction, where 

accuracy is most important when the probability of disease or click-through is nonnegligible. 

In Section 7, we consider how to modify the method to obtain classifiers that prioritize 

correctness near some other, user-defined level curve of p(x).

Finally, note that Figure 1 suggests the case-control sampling estimate is unlikely to be 

consistent for θ* in general. The nature of our linear approximation in the left panel is 

intimately related to the fact that f(x) < 0 everywhere in the sample space. If f(x) were shifted 

upward by some constant, the response of the dashed curve would be more complicated than 

a simple constant shift by b, since the relative importance of the two segments would 

change. Therefore, estimating f(x) + b and then subtracting b may not be a successful 

strategy.

2.2. Inconsistency of case-control under misspecification

If the linear model is misspecified, the case-control estimate is generically not consistent for 

the best linear predictor θ* as n → ∞ [Xie and Manski (1989), Manski and Thompson 

(1989)]. The unadjusted estimate will instead converge to the best linear predictor of g for 

the distribution ℙS, which solves the score criterion
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(12)

Let  be the large-sample limit of the adjusted case-control sampling estimate with 

bias b. Then  solves the population score criterion

(13)

which differs from (11) in two ways. First, the integral is taken over a different distribution 

for X. Second, and more importantly, the integrand is different. We are now approximating 

f(x) in a different sense than we were.

In general under misspecification,  is different for every b. If we sample cases and 

controls equally, in the limit we will get a different answer than if we sample twice as many 

controls; and in either case we will get a different answer than if we use the entire data set or 

subsample uniformly.

These differences can be quite consequential for our inferences about β or the predictive 

performance of our model, as we see next.

Example 1 (Oatmeal and disease risk). In this fictitious example, we consider estimating the 

effect of exposure to oatmeal on a person’s risk of developing some rare disease. Suppose 

that 10% of the population has a family history of the disease, half the population eats 

oatmeal (independently of family history), and that both exposure and family history are 

binary predictors. Suppose further that the true conditional log-odds function f(x) is given by 

the top-left panel of Table 1.

The corresponding conditional probabilities p(x) are given in the lower-left panel of Table 1. 

Notice that oatmeal increases the risk for people who are already at risk by virtue of their 

family history, but has a protective effect for everyone else. This interaction means that the 

additive logistic regression model is misspecified.

Because only the probabilities in the “History +” column are large enough to matter, the 

fitted model for f(x) pays more attention to the at-risk population, for whom oatmeal elevates 

the risk of disease. A logistic regression on a large sample from this population estimates the 

coefficient for oatmeal as , implying an odds ratio of about 4.0. This is close to 

the marginal odds ratio of roughly 4.3 that we would obtain if we did not control for family 

history.

Suppose, however, that we sampled an equal number of cases and controls. Then the 

conditional log-odds of disease in our sample would reflect the top-right panel of Table 1, 

with all cells increased by the same amount.
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For large samples, the case-control estimate is , implying an odds ratio of 

about 0.44. Using case-control sampling has reversed our inference about the effect of 

oatmeal exposure, because after shifting the log-odds the left column becomes much more 

important.

Example 2 (Two-class Gaussian model). Suppose that ℙ(Y = 1) = 1%, and that X|Y ~ N(μY, 

ΣY). Let

(14)

(15)

Data simulated from this model are shown in the left panel of Figure 2. In this example, the 

true log-odds f(x) is an additive quadratic function of the two coordinates X1 and X2.

In this example as in the previous one, the population-optimal case-control parameters differ 

substantially from the optimal parameters in the original population, with dramatic effects 

for the predictive performance of the model. The decision boundaries for the two estimates 

are overlayed on the left panel of Figure 2. In the right panel, we plot the precision–recall 

curves resulting from each set of parameters on a large test set.

2.3. Weighted case-control sampling

A simple alternative to standard case-control sampling is to weight the subsampled data 

points by the inverse of their probability of being sampled. We include weighted case-

control sampling as a competitor in our simulation studies in Section 5. Because it is a 

Horvitz–Thompson estimator with positive sampling probabilities for any (x, y) pair, this 

method is , and asymptotically normal and unbiased under general 

conditions [Horvitz and Thompson (1952)].

Although weighting succeeds in removing the bias induced by the case-control sampling, 

this consistency comes at a cost of increasing the variance, since the effective sample size is 

reduced [Scott and Wild (1986, 2002)].

Despite its inefficiency, the weighted case-control method can be an attractive means of 

obtaining a consistent pilot if another good pilot is not immediately available, and we later 

will use it to that end in our experiments.

3. Local case-control subsampling

In this section, we describe local case-control subsampling, a generalization of standard 

case-control sampling that both improves on its efficiency and resolves its problem of 

inconsistency. To achieve these benefits, we require a pilot estimate, that is, a good guess θ̃ 

= (α̃, β̃) for the population-optimal θ*.
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3.1. The local case-control sampling algorithm

Local case-control sampling differs from case-control sampling only in that the acceptance 

probability a is allowed to depend on x as well as y. Our criterion for selection will be the 

degree of “surprise” we experience upon observing yi given xi:

(16)

where  is the pilot estimate of ℙ(Y = 1|X = x). The algorithm is:

1. Generate independent zi ~ Bernoulli(a(xi, yi)).

2. Fit a logistic regression to the sample S = {(xi, yi) : zi = 1} to obtain unadjusted 

estimates θ̂S = (α̂
S, β̂

S).

3. Assign α̂ ← α̂
S + α̃ and β̂ ← β̂

S + β̃.

As before, steps (2)–(3) are equivalent to fitting a logistic regression in the subsample with 

offsets −α̃ − β̃′xi. The zi are generated as in Section 2, and the adjustment is again justified 

by (8)–(10), only now with the constant b replaced by

(17)

In other words, the subsample is drawn from a measure with

(18)

If f(x) is well approximated by the pilot estimate, then g(x) ≈ 0 throughout feature space. 

That is, conditional on selection into S, yi given xi is nearly a fair coin toss.

To motivate this choice heuristically, recall that the Fisher information for the log-odds of a 

Bernoulli random variable is maximized when the probability is : fair coin tosses are more 

informative than heavily biased ones. In effect, local case-control sampling tilts the 

conditional distribution of Y given X = x to make each yi in the subsample more informative. 

We then fit a logistic regression in the more favorable sampling measure, and “tilt back” to 

obtain a valid estimate for the original population.

In marginally imbalanced data sets where ℙ(Y = 1|X = x) is small everywhere in the predictor 

space, a good pilot has p̃(x) ≈ 0 for all x, and the number of cases discarded by this 

algorithm will be quite small. If we wish to avoid discarding any cases, we can always 

modify the algorithm so that instead of keeping (x, 1) with probability a(x, 1), we keep it 

with probability 1 and assign weight a(x, 1).
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3.2. Choosing the pilot fit

In many applications, there may be a natural choice of pilot fit θ̃; for instance, if we are 

refitting a classification model every day to adapt to a changing world, then yesterday’s fit is 

a natural choice for today’s pilot.

If no pilot fit is available from such a source, we recommend an initial pass of weighted 

case-control sampling (described in Section 2.3) to obtain the pilot. Weighted case-control 

sampling using a fixed fraction of the original sample is itself  and 

asymptotically unbiased for the true parameters. Consequently, if the pilot were fit using an 

independent data set the second-stage estimate would enjoy consistency and asymptotic 

unbiasedness per the results in Section 4.

Our experiments suggest that mild inaccuracy in the pilot estimate, and using a data-

dependent pilot, do not unduly degrade the performance of the local case-control algorithm. 

For example, is Simulation 2 of Section 5.2, the pilot is fifty times less efficient than the 

final local case-control estimate. The main role of the pilot fit is to guide us in discarding 

most of the data points for which yi is obvious given xi while keeping those for which yi is 

conditionally surprising.

In our example and simulations, we use a pilot sample about the same size as the local case-

control subsample, on the principle that we can afford to spend about as much time 

computing the pilot as computing the second-stage estimate. When ℙ(Y = 1|X) is small 

throughout , this rule amounts roughly to weighted case-control sampling using all the 

cases and one control per case. Although the above rule has worked reasonably well for us, 

at this time we can offer no finite-sample guarantees that any given pilot sample size is large 

enough.

Because standard case-control sampling amounts to local case-control sampling with a 

constant-only pilot fit, we might expect that the pilot fit need not be perfect to improve upon 

case-control sampling. Our experiments in Sections 5 and 6 support this intuition.

3.3. Taking a larger or smaller sample

As we will see in Section 4.3, under correct model specification, and with an independent 

and consistent pilot, the baseline procedure described above has exactly twice the 

asymptotic variance as a logistic regression estimated with the full sample, despite using a 

potentially very small subset of the data. We can improve upon this factor of two by 

increasing the size of the subsample.

One simple way to achieve this is to multiply all acceptance probabilities by some constant 

c, for example, c = 5. When deciding whether to sample the point (xi, yi), we would then 

generate zi ~ Bernoulli(ca(xi, yi) ∧ 1) and assign weight wi = ca(xi, yi) ∨ 1 to each sampled 

point. This amounts to a larger, weighted subsample from ℙS, and we can make the same 

correction to the estimates from the subsample. We see in Section 4.4 that for c > 1 the 

factor of two is replaced by a factor of .
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In the case of large imbalance, most of the p̃(xi) are near 0 or 1. For c > 1, the marginal 

acceptance probability at xi becomes

(19)

(20)

where the approximation holds for p(x) ≈ p̃(x) ≈ 0 or 1. For c = 1, the marginal acceptance 

probability is p(x)(1 − p̃(x)) + (1 − p(x))p̃(x) ≈ 2p(x)(1 − p(x)), so for c > 1 we take roughly 

 times as many data points as for c = 1. For example, if c = 5, the subsample accepted is 

roughly 3 times as large, and the relative efficiency improves from 1/2 to 5/6.

Alternatively, if n is extremely large, even a small fraction of the full data set may still be 

more than we want. In that case, we can proceed as above with c < 1, or simply sample any 

desired number ns of data points uniformly from the local case-control subsample.

4. Asymptotics of the local case-control estimate

We now turn to examining the asymptotic behavior of the local case-control estimate. We 

first establish consistency, assuming a consistent pilot estimate θ̃. We expressly do not 

assume that the pilot estimate is independent of the data, since in some cases we may recycle 

into the subsample some of the data we used to calculate the pilot.

By assuming independence of θ̃ and the data, we can obtain finer results about the 

asymptotic distribution of θ̂. We show it is asymptotically unbiased when θ̃ is, and derive 

the asymptotic variance of the estimate. When the logistic regression model is correctly 

specified, the local case-control estimate has exactly twice the asymptotic variance of the 

MLE for the full data set.

4.1. Preliminaries

For better clarity of notation in this section, we will use the letter λ in place of θ̃ to denote 

pilot estimates. Additionally, we drop the notation  and absorb the constant term into 

x, so that fθ(x) = θ′x. To avoid trivialities, assume without loss of generality that there is no υ 

∈ ℝp for which υ′X| = 0 (if not, we can discard redundant features).

For π ∈ [0, 1] define the “soft hinge” function

(21)

and note that

(22)
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As a function of η, h is positive and strictly convex, its magnitude is bounded by 1 + |η|, and 

it has Lipschitz constant max(π, 1 − π) ≤ 1. If π < 1, h diverges as η → ∞, and if π > 0 h 

diverges as η → −∞.

As a function of λ,  has Lipschitz constant ≤ ‖x‖. Hence, ā(λ) 

= aλ(X, Y) ∈ (0, 1) with Lipschitz constant ≤ X‖. The marginal acceptance probability 

given x is

(23)

Given pilot λ, the local case-control subsampling scheme effectively samples from the 

probability measure ℙλ, where

(24)

and ā(λ) = ∫ aλ(x, y) dℙ(x, y) is the marginal probability of acceptance. Under this measure,

(25)

Because aλ(x, y) ≤ 1, if g(X, Y) is integrable under ℙ it is also integrable under any ℙλ.

Conditioning on X, we can write the population risk of the logistic regression parameters θ 

with respect to sampling measure ℙλ as

(26)

By Cauchy–Schwarz, the integrand in (26) is bounded by 2(1 + ‖θ‖‖x‖). If X‖ < ∞, then, 

we may appeal to dominated convergence and take limits with respect to θ and λ inside the 

integral.

Rλ(θ) is strictly convex because the integrand is, and always has a unique population 

minimizer if there is no separating hyperplane in the population.

Lemma 1. Assume there is no υ for which

(27)

Henceforth, we refer to this assumption as nonseparability. Then Rλ(θ) attains a unique 

minimum for every λ ∈ ℝp.

Denote by  the empirical risk on a local case-control subsample taken using the pilot 

estimate λ. Then
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(28)

It will be somewhat simpler to replace the random subsample size  with its 

expectation nā(λ). Define

(29)

Since minimizing (28) with respect to θ is equivalent to minimizing (29), the two are 

equivalent for our purposes.

If the unadjusted parameters θŜ minimize R̂
λ, the local case-control estimate θ̂ = θŜ + λ is an 

M-estimator minimizing Q̂
λ(θ) = R̂

λ(θ − λ). We use analogous notation for the population 

version:

(30)

For any given pilot estimate λ and large n, we expect

(31)

Define the right-hand side of (31) to be θ̄(λ), the large-sample limit of local case-control 

sampling with pilot estimate fixed at λ. The best linear predictor for the original population 

corresponds to the case λ = 0 (uniform subsampling), that is, θ* = θ̄(0). Consistency means 

that for large n, .

Recall that if the model is correctly specified with true parameters θ0, then θ̄(λ) = θ0 for any 

fixed pilot estimate λ. Minimizing Q̂
λ therefore yields a consistent estimate. Unfortunately, 

in the misspecified case θ̄(λ) ≠ θ̄(0) = θ*. In this sense, local case-control sampling with the 

pilot λ held fixed is in general not consistent for θ*. However, we see below that it is 

consistent if λ = θ*.

Proposition 2. Assume X‖ < ∞, that the classes are nonseparable, and that θ* = θ̄(0) is the 

best linear predictor for the original measure ℙ. Then

(32)

In other words, if we could only choose our pilot perfectly, then the local case-control 

estimate would converge to θ* as n → ∞.

Proof of Proposition 2. Write . The population optimality criterion for LCC 

with pilot λ is
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(33)

(34)

Noting that , if we evaluate the above at λ = θ = θ*, we obtain

(35)

(36)

which is exactly half the population score (11) for the original population. Since θ* 

optimizes the risk for the original population, this value is 0.

There is an intuitive explanation of this result: in ℙθ*, the acceptance probabilities are p*(X) 

if Y = 0 and 1 − p*(X) if Y = 1; hence they play the same role as the pseudoresiduals Y − 

p*(X) did in the original measure ℙ. For example, the point (x, 0) would contribute p*(x)x to 

the gradient if we evaluated the full-sample score at θ*. Evaluating the subsample score at 0, 

the same point now contributes  to the score—but only if it is accepted, which occurs 

with probability exactly p* (x). So, in essence, the subsampling stands in for the reweighting 

that we otherwise would have done when fitting our logistic regression to the full sample.

Of course, in practice we never have a perfect pilot—if we did we would not need to 

estimate θ*—but Proposition 2 suggests that if λ is near θ*, minimizing Q̂
λ yields a good 

estimate. In fact, we will see that if  then  as well.

4.2. Consistency

For our asymptotic results, assume we have an infinite reservoir (x1, y1), (x2, y2), … of i.i.d. 

pairs, a sequence of i.i.d. U(0, 1) variables u1, u2, … for making accept–reject decisions, and 

a sequence of pilot estimates λ1, λ2, …. The λn are possibly dependent upon the data, but the 

ui are assumed to be independent of everything else.

θ̂n is the local case-control estimate, computed using pilot λn, data , and accept–

reject decisions zi = 1ui≤aλn(xi, yi).

The main result of this section is that if the pilot estimate λn is consistent for θ*, then so is 

θ̂n. The details are somewhat technical, especially the proof of Proposition 3, but the main 

idea is that if , then for large n

(37)

in the appropriate sense. Q̂
λn is what the local case-control estimate actually minimizes, 

whereas the last function is minimized by θ*, our ultimate target.
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First, we establish pointwise convergence.

Proposition 3. If X‖ < ∞ and , then for each θ ∈ ℝp,

(38)

Because we avoid assuming independence between the pilot λn and the data (xi, yi), the 

proof is technical and is deferred to the Appendix. The proof relies on the coupling of the 

acceptance decisions zi for different pilot estimates through ui. With this coupling, two 

nearby pilot estimates will differ on very few accept–reject decisions.

Because neither Q̂
λn(θ) nor Qλ∞(θ) changes very fast, pointwise convergence also implies 

uniform convergence on compacts.

Proposition 4. If X‖ < ∞ and , then for compact Θ ⊆ ℝp,

(39)

Proof. Define

(40)

By Proposition 3,  pointwise. Next, we show it is Lipschitz. The integrand in (35) 

is x times two factors each bounded by ±1, hence

(41)

Similarly for Q̂
λn, we have

(42)

so that

(43)

It follows that, with probability tending to 1, Fn(θ) has Lipschitz constant less than c = 

3ā(λ∞)−1 X‖.

Now, for any ε > 0, we can cover Θ with finitely many Euclidean balls of radius δ = ε/c, 

centered at θ1, …, θM(ε). Let An(ε) be the event that Fn has Lipschitz constant less than c and

(44)
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On An(ε), we have supθ∈Θ |Fn(θ)| < 2ε, and ℙ(An(ε)) → 1 as n → ∞.

Finally, we come to the main result of the section, in which we prove that the local case-

control estimate is consistent when the pilot is. Because the functions are strictly convex, we 

can ignore everything but a neighborhood of θ*.

Theorem 5. Assume X‖ < 0 and the classes are nonseparable. If  then the local 

case-control estimate  as well.

Proof. Let Θ ⊆ ℝp be any compact set with θ* in its interior, and let

(45)

where the strict inequality follows from strict convexity. Uniform convergence implies that 

with probability tending to 1,

(46)

which implies in turn that

(47)

Whenever this is the case, the strictly convex function Q̂
λn has a unique minimizer in the 

interior of Θ. Since Θ was arbitrary, we can take its diameter to be less than any δ > 0. 

Hence, .

4.3. Asymptotic distribution

In this section, we derive the asymptotic distribution of the local case-control logistic 

regression estimate, in the same asymptotic regime as the previous section. To prove our 

results here, we assume the pilot estimate λn is independent of our data set. This would not 

be the case if our pilot were based on a subsample of the data (the procedure we use for all 

our simulations), but it could hold if the pilot came from a model fitted to data from an 

earlier time period.

The main result of this section is that if the logistic regression model is correctly specified 

and the pilot is consistent, the asymptotic covariance matrix of the local case-control 

estimate for θ is exactly twice the asymptotic covariance matrix of a logistic regression 

performed on the entire data set. For the results in this section, we will need X‖2 < ∞.

It will be convenient to give names to some recurring quantities. First, we have seen that if 

X‖ < ∞ we can differentiate Qλ(θ) inside the integral to obtain the gradient of the population 

risk:

(48)
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(49)

Whereas G is the expectation of the logistic regression score with respect to ℙλ, we can also 

define its covariance matrix:

(50)

When X‖2 < ∞, J(θ, λ) < ∞, and is continuous in θ and λ by dominated convergence.

Since the derivatives of the integrand in (48) are uniformly bounded by 2‖x‖2, dominated 

convergence implies we can again differentiate inside the integral. Differentiating with 

respect to θ we obtain

(51)

(52)

Here, the integrand is dominated by xx′, so dominated convergence again applies and thus 

we see that H is continuous in θ and λ. H(θ, λ) ≻ 0 for any θ, λ since we have assumed there 

is no nonzero υ for which υ′ X| = 0. Finally, define the matrix of crossed partials:

(53)

To be concrete, . Continuity of C again follows from noting the 

derivative of the integrand in (48) with respect to λ is dominated by 8‖x‖2.

To begin, we consider the behavior of θ̄(λ) for λ near θ*. By Proposition 2, we have G(θ*, 

θ*) = 0. Since H (θ, λ) ≻ 0, we can apply the implicit function theorem to the relation G(θ̄

(λ), λ) = 0 to obtain

(54)

By standard M-estimator theory, if we fix λ and send n → ∞ the coefficients of a logistic 

regression performed on a sample of size |S| from ℙλ would be asymptotically normal with 

covariance matrix

(55)

In light of this and the fact that |S| ≈ ā(λ)n, we might predict the following.
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Theorem 6. Assume X‖2 < ∞. If  independently of the data, then

(56)

with Σ = H(θ*, θ*)−1 J(θ*, θ*)H(θ*, θ*)−1.

Again, we defer the proof to the Appendix. We can combine (56) with (54) to immediately 

obtain the following reassuring facts.

Corollary 7. Assume X‖2 < ∞ and λn is a sequence of pilot estimators given independently 

of the data. Then:

a. If λn is , so is θ̂n.

b. If λn is asymptotically unbiased, so is θ̂
n.

c. If  then  with

(57)

In (57), we have suppressed the arguments of θ* in H, C, ā and J.

The first term in (57) characterizes the contribution of conditional bias (given λn) to the 

overall variance, and the second is the contribution of conditional variance.

In the special case where logistic regression model is correctly specified, we have the 

following.

Theorem 8. Assume the logistic regression model is correct and let  be the 

asymptotic variance of the MLE for the full sample. Then if X‖2 < ∞ and 

independently of the data, we have

(58)

Hence, although the size of a local case-control subsample is roughly nā(λ), the variance of 

θ̂ is the same as if we took a simple random sample of size n/2 from the full data set. In other 

words, each point sampled is worth about  points sampled uniformly.

Proof of Theorem 8. If logistic regression is correctly specified for ℙ, it is also for ℙλ, 

regardless of λ, so θ̄(λ) ≡ θ0. Furthermore, by standard maximum likelihood theory J(θ0, λ) 

= H(θ0, λ)−1 for each λ. Therefore, (56) specializes to

(59)

But
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(60)

If  and λ = θ0, then (60) simplifies to

(61)

(62)

(63)

This result is surprisingly simple. No characterization like Theorem 8 is available for the 

case-control and weighted case-control estimates, whose variances are not simple scalar 

multiples of Σfull.

We can offer a simple heuristic argument for Theorem 8, similar to that of Proposition 2. In 

ℙθ0, the acceptance probability âλ(x) for an observation at x is 2p(x) (1 −p(x)), and given that 

it is accepted it contributes  to the observed information. In the full sample, a point at x 

is always accepted but contributes less, p(x) (1 − p(x))xx′, to the observed information. 

Again, the sampling probability stands in for the reweighting we would have done in the full 

sample. If p(x) (1 − p(x)) is very small, we are discarding most of the data instead of keeping 

all of it and assigning it a tiny weight in the fit.

The practical meaning of Theorem 8 is that local case-control sampling is most 

advantageous when ā(θ0) = |Y − p̃(X)|) is small, that is, when Y is easy to predict 

throughout much of the covariate space. This can happen as a result of marginal or 

conditional imbalance, or both. Standard case-control sampling can also improve our 

efficiency in the presence of marginal imbalance, but unlike local case-control sampling, it 

does not exploit conditional imbalance. Hence, we would expect local case-control to 

outperform standard case-control most dramatically when the marginal imbalance is very 

high, as in the simulation of Section 5.2.

For data-dependent pilots, the efficiency picture is somewhat more complicated. For 

example, θ̄(λ) is approximately a linear function of λ − θ*. Thus, if λ is unbiased but 

correlated with the noise in the data, we might get more or less variance relative to (58), 

depending on how this correlation interacts with C. If the model is correctly specified, it less 

clear whether an adversarially chosen pilot can affect the efficiency.

Either way, we do not anticipate serious problems from nonindependence. To stress-test our 

results against violations of independence, we expressly use a data-dependent pilot for all of 
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our experiments: namely, a weighted case-control sample with sample points allowed to be 

recycled for the second-stage fit.

4.4. Variance for a larger sample

In Section 3.3, we proposed increasing the size of the local case-control subsample by 

multiplying all the acceptance probabilities a(x, y) by a constant c > 1 and assigning weight 

w = ca(x, y) when ca(x, y) > 1. We analyze the asymptotic variance here as a function of c. 

To simplify matters, suppose the model is correctly specified and λ is fixed at θ0.

The weighted log-likelihood for the subsample and its derivatives are then

(64)

(65)

(66)

Conditionally on x, there is a p(x)·(c(1 − p(x)) ∧ 1) chance y = z = 1 and w = c(1 − p(x))∨1, 

where p(x) = pθ0(x). Similarly, there is a (1 − p(x))·(cp(x) ∧ 1) chance y = 0, z = 1, and w = 

cp(x) ∨ 1. We immediately obtain

(67)

The expectation and variance of the score evaluated at 0 are

(68)

(69)

(70)

and the expected Hessian is

(71)

We have derived
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(72)

For c = 1, we recover the factor of two from (58), but, for example, c = 5 we only pay 20% 

increased variance relative to the full sample.

5. Simulations

Here, we compare our method to standard weighted and unweighted case-control sampling 

for two-class Gaussian models like the one considered in Section 2.2. The standard case-

control estimates use a 50–50 split between the two classes.

5.1. Simulation 1: Two-class Gaussian, different variances

We begin with a five-dimensional two-class Gaussian simulation where the classes have 

different covariance matrices. If X|Y = y ~ N(μy, Σy), then

(73)

Equation (73) is linear if Σ1 = Σ0, and quadratic otherwise, so if the two covariance matrices 

were the same the linear logistic model would be correctly specified. In this case the model 

is incorrectly specified, letting us compare the behavior of the different methods under 

model misspecification.

Take ℙ(Y = 1) = 1%, μ0 = 0, and μ1 = (1, 1, 1, 1, 4)′. The covariance matrices are Σ0 = 

diag(1, 1, 1, 1, 9) and Σ1 = I5. Hence f(x) is additive, but with a nonzero quadratic term in x5.

For our simulation, we first generate a large (n = 106) sample from the population described 

above. Second, we obtain a pilot model using the weighted case-control method on ns = 

1000 data points. Next, we take a local case-control sample of size 1000 using that pilot 

model.

For comparison, we obtain standard case-control (CC) and weighted case-control (WCC) 

estimates. For the comparison estimators we do not use a sample of size 1000 again but 

rather use the total number of observations seen by the LCC model or the pilot model, 

roughly 2000, so the LCC estimate must pay for its pilot sample. We repeat this entire 

procedure 1000 times.

Table 2 shows the squared bias and variance of β̂ over the 1000 realizations for each of the 

three methods. As expected, we face a bias-variance tradeoff in choosing between the WCC 

and CC methods, whereas the LCC method improves substantially on the bias of CC and the 

variance of WCC. Standard errors for both bias and variance are computed via bootstrapping 

the 1000 realizations.

More surprising is the fact that LCC enjoys smaller bias than WCC and smaller variance 

than CC, dominating the other two methods on both measures. The improvement in variance 
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over the CC estimate is likely due to the conditional imbalance present in the sample, while 

the improvement in bias over the WCC estimate may come from the fact that the methods 

are only unbiased asymptotically and the LCC estimate is closer to its asymptotic limiting 

behavior.

5.2. Simulation 2: Two-class Gaussian, same variance

Next, we simulate a two-class Gaussian model with each class having the same variance, so 

that the true log-odds function f is linear. We also increase the dimension to 50 for this 

simulation.

Since the model is now correctly specified, all three methods are asymptotically unbiased. 

However, in this case we introduce more substantial conditional imbalance, to demonstrate 

the variance-reduction advantages of local case-control sampling in that setting.

For this example, ℙ(Y = 1) = 10%, , μ0 = 050, and Σ0 = Σ1 = I50. We repeat the 

procedure from Section 5.1, now with ns = 104. Instead of generating a full sample, the full 

data set is implicit and we sample directly from ℙS.

In this example, the difference between the methods is more dramatic. Table 2 shows the 

squared bias and variance of the three methods. Here, local case-control enjoys substantially 

better bias than the other two methods, improving on CC more than twenty-fold. For the 

correct pilot model, ā(θ0) is roughly 0.005, so the local case-control subsample size is 

around n/200. Since the model is correctly specified, the variance is roughly twice that of 

logistic regression on the full sample of size n. In other words, local case-control 

subsampling is roughly 100 times more efficient than uniform subsampling.

Asymptotically, all three methods are unbiased but it appears that LCC again enjoys a 

smaller bias in finite samples.

6. Web spam data set

Relative to standard case-control sampling, local case-control sampling is especially well-

suited for data sets with significant conditional imbalance, that is, data sets in which yi is 

easy to predict for most xi.

One such application is spam filtering. To demonstrate the advantages of local case-control 

sampling and compare asymptotic predictions to actual performance, we test our method on 

the Web Spam data available on the LIBSVM website3 and originally from Webb, Caverlee 

and Pu (2006). The data set contains 350,000 web pages, of which about 60% are labeled as 

“web spam,” that is, web pages designed to manipulate search engines rather than display 

legitimate content. This data set is marginally balanced, though as we will see the 

conditional imbalance is considerable.

3http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/.
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As features, we use frequency of the 99 unigrams that appeared in at least 200 documents, 

log-transformed with an offset so as to reduce skew in the features. In this data set, the 

downsampling ratio ā is around 10%, that is, when using a good pilot we will retain about 

10% of the observations.

Since we only have a single data set, we use subsampling as a method to assess the sampling 

distribution of our estimators. In each of 100 replications, we begin by taking a uniform 

subsample of size n = 100,000 from the population of 350,000 documents. After obtaining 

100 data sets of size n = 100,000, we use the same procedure as we used in our two 

simulations with nS = 10,000.

Our asymptotic theory predicts that the variance of the local case-control sampling estimate 

of θ should be a little more than twice the variance using the full sample (more because the 

model is misspecified and our pilot has some variance). Because the full sample is close to 

marginally balanced, the standard case-control sampling methods should do about as well as 

a uniform subsample of size 20,000—that is, they should have variance roughly 5 times that 

of the full sample.

Note that 20,000 is roughly twice the size of the local case-control sample, since we are 

counting the pilot sample against the local case-control method. If we had a readily available 

pilot model, as we would in many applications, it would be more relevant to give the CC and 

WCC methods access to only 10,000 data points, doubling their variance relative to the 

observed variance in this experiment.

The theoretical predictions come reasonably close in this experiment, as shown in Figure 3. 

The horizontal axis indexes each of the 100 coefficients to be fit (there are 99 covariates and 

an intercept), and the vertical axis gives the variance of each estimated coefficient, relative 

to the variance of the same coefficient in a model fitted to the full sample.

The magnitude of our improvement over standard case-control sampling is substantial here, 

but could be much larger in a data set with an even stronger signal. The key point is that 

standard case-control methods have no way to exploit conditional imbalance, so the more 

there is, the more local case-control dominates the other methods.

7. Discussion

We have shown that in imbalanced logistic regression, we can speed up computation by 

subsampling the data in a biased fashion and making a post-hoc correction to the 

coefficients estimated in the subsample. Standard case-control sampling is one such scheme, 

but it has two main flaws: it has no way to exploit conditional imbalance, and when the 

model is misspecified it is inconsistent for the population risk minimizer.

Local case-control sampling generalizes standard case-control sampling to address both 

flaws, subsampling with a bias that is allowed to depend on both x and y. When the pilot is 

consistent, our estimate is consistent even under misspecification, and if the model is correct 

then local case-control sampling has exactly twice the asymptotic variance of logistic 
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regression on the full data set. Our simulations suggest that local case-control performs 

favorably in practice.

7.1. Translating computational gains to statistical gains

In the Introduction, we motivated our inquiry by identifying four ways that computational 

gains can translate to statistical ones. Specifically, we suggested that computational savings 

can:

1. enable us to experiment with and prototype a variety of models, instead of trying 

only one or two,

2. allow us to refit our models more often to adapt to changing conditions,

3. allow for cross-validation, bagging, boosting, bootstrapping, or other 

computationally intensive statistical procedures or

4. open the door to using more sophisticated statistical techniques on a compressed 

data set.

It is relatively clear how our proposed method can help with points (1) and (2). As for point 

(3), faster fitting procedures can directly speed up straightforward resampling techniques 

like bootstrapping or cross-validation, possibly making them feasible at scales where they 

previously were not. We discuss in Section 7.2 how it can also help with boosting.

The basic method as we have described it above does not deliver on point (4), because the 

pilot model and second-stage model are the same. However, an extension of our method can 

help, which we discuss below.

There is no reason in principle why the pilot model must be linear, or belong to the same 

model class as the model we fit to the local case-control sample. We can use any pilot 

predictions  in the sampling algorithm, and then model the log-odds in the 

subsample quite flexibly—by a GAM, kernel logistic regression, random forests or any 

other method—so long as we can use offsets − f̃(xi) in the second-stage procedure. For 

example, we could use as our pilot fit a simple model with a few important variables 

explaining most of the response, and in the second stage estimate more complex models 

refining the first.

Formally, our theoretical results may not cover this use. Suppose the second-stage model 

can be written as a logistic regression after some basis expansion. Then consistency of the 

second-stage estimate requires either that the pilot be consistent (the new variables 

contribute nothing to the population fit) or that the second-stage model be correctly 

specified. If neither of these assumptions holds approximately, then our estimate could be 

biased—though perhaps not as biased as case-control sampling, which is a special case of 

local case-control with an intercept-only pilot.

If we are prototyping, guarantees of consistency may not be a high priority. If they are, then 

as with case-control sampling, we can repair the inconsistency of the local case-control 

estimate by using a Horvitz–Thompson estimator with weights aθ̃(xi, yi)−1. This may come 
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at a cost of some added variance. It would be interesting to examine the bias of local case-

control and the variance of weighted local case-control in this more general problem setting.

7.2. Extensions

This work suggests extensions in several directions, described below.

Indifference point other than 50%—In some applications (e.g., diagnostic medical 

screening), a false negative may be more costly than a false positive, or vice-versa. One of 

the implications of the discussion in Section 2.2 is that the Bernoulli log-likelihood 

implicitly places most emphasis on approximating the log-odds well near the 0 (50% 

probability) level curve, which may not be appropriate if the decision boundary relevant to 

our application is at 10%. In general, we would expect to obtain a better model in the large-n 

limit if we target the decision boundary we care most about.

In a sense, the reason that standard case-control sampling performed so badly in Example 2 

of Section 2.2 is that it targeted a level curve of ℙ(Y = 1|X = x) other than 50%. Specifically, 

it targeted the level curve corresponding to 50% in the subsampling population for equal-

sampled case-control sampling, which corresponds to the marginal ℙ(Y = 1) level curve in 

the original population.

What happened by accident in Example 2 need not always be one, and it would be 

interesting to generalize our procedure so as to target any chosen decision threshold. More 

generally still, our indifference point could depend on our features x—in online advertising, 

for instance, some advertisers may be willing to pay more per click than others.

Boosting—In Section 7.1 we suggested using offsets to obtain a complex second-stage fit. 

Alternatively, we can obtain any fitted log-odds function fs(x) for the sample and simply add 

it to the pilot f̃(x) to obtain an estimate for f(x).

This observation suggests the possibility of iteratively fitting a “base model” to the 

subsample, then adding it to f̃(x) to obtain a new pilot for the next iteration. Indeed, that 

iterative algorithm is closely related to the AdaBoost algorithm of Freund and Schapire 

(1997). Even more similarly to AdaBoost, we could weight each point by |yi − p̃(xi)| instead 

of sampling it with that probability.

Friedman, Hastie and Tibshirani (2000) show that the AdaBoost algorithm can be thought of 

as fitting a logistic regression model additive in base learners. In AdaBoost, the function 

 simply records the number of classifiers fm classifying x as belonging 

to class +1 minus the number classifying it as class −1, and Friedman et al. show that 

 can be thought of as approximating the log-odds of Y = +1 given X = x.

The difference is that while AdaBoost weights the point (xi, yi) by e(2yi−1)Fm(xi), the local 

case-control version would use weights
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(74)

Operationally, this alternative weighting scheme limits the influence of “outliers,” that is, 

hard-to-classify points that can unduly drive the AdaBoost fit.

Logistic regression with regularization—In high-dimensional settings, lasso- or 

ridge-penalized logistic regressions are often preferable to standard logistic regression, the 

model considered here. One could use local case-control sampling with a regularized version 

of logistic regression, but our asymptotic results might need revisiting in such a case—

especially in a high-dimensional asymptotic regime [p ≫ n or p/n → γ ∈ (0, ∞)]. Since the 

high-dimensional setting is important in modern statistics and machine learning, this bears 

further investigation.

Other generalized linear models—One way of viewing the method is as a way of 

“tilting” the conditional distribution of Y by a linear function of X in the natural parameter 

space so as to enrich our subsample for more informative observations. We could use similar 

tricks on other GLMs.

For instance, suppose we are given a Poisson variable with natural parameter η = log Y. By 

sampling with acceptance probability proportional to eξY, we obtain (conditional on 

acceptance) a Poisson with natural parameter η + ξ. Since Poisson variables with larger 

means carry more information, this could yield a substantial improvement over uniform 

subsampling.

If our data arise from a Poisson GLM with η(x) ≈ α + β′x, we could generalize the local 

case-control scheme by sampling (xi, yi) with probability proportional to exp{(ξ0 − α − β

′xi)yi}, where the extra parameter ξ0 guarantees that we always tilt the conditional mean of yi 

upward. Similar generalizations may apply for multinomial logit and survival models.
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APPENDIX A

PROOF OF LEMMA 1 (UNIQUENESS OF θ*)

Because Rλ(θ) is strictly convex, it is sufficient to show that Rλ(θ) → ∞ as θ → ∞ in any 

direction.

Assume w.l.o.g. there is some neighborhood N ⊆ ℝp for which

(75)
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h(η; πN) is linear in its second argument, and is increasing for sufficiently large η. Thus, for 

large enough ‖θ‖ε, the population risk for ℙ is

(76)

(77)

(78)

ℙλ ≫ ℙ for any λ, so (75) holds for ℙλ with the same N (but a different πN < 1). Thus, we 

can repeat the same argument with ℙ replaced by ℙλ.

APPENDIX B

PROOF OF PROPOSITION 3 (POINTWISE CONVERGENCE)

Fix θ and begin by writing

(79)

Let  be the Bernoulli selection decisions, generated by comparing mutually independent ui 

~ U(0, 1) to the threshold aλ(xi, yi). The  are independent conditional on λ and the data. 

Also, write , so that .

By the Cauchy–Schwarz inequality, we have

(80)

Now, for δ > 0 define Λδ = {λ: ‖λ − λ∞‖ < δ}. For λ ∈ Λ1, we have

(81)

which is integrable by assumption. Finally let n denote an average taken over indices i = 1, 

…, n, that is, . Then

(82)
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By continuity, . Therefore, it suffices to show . Because 

 by the law of large numbers, it suffices equally well to show that 

.

Now fix ε > 0 and take K large enough that m1m>K) < ε. For λn ∈ Λ1 we have

(83)

With probability one the second term is eventually less than 2ε. Further, for λn ∈ Λδ, we 

have

(84)

(85)

Now, write

(86)

 iff ui lies between aλn (xi, yi) and aλ∞(xi, yi). Hence, conditionally on λn and the 

data, the di are mutually independent nonnegative random variables bounded by K with 

means

(87)

since ∇λaλ(xi, yi) ≤ ‖xi‖ < mi.

Continuing, we have

(88)

(89)

Conditioning on λ and {(xi, yi)}, the first term is a sum of independent zero-mean random 

variables that are bounded in absolute value by K. By Hoeffding’s inequality,

(90)
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Since this bound is deterministic, the same applies to the unconditional probability that n(d 

− μ) is large. Take δ = ε/(K + K2). With probability tending to 1, λn ∈ Λδ and the event in 

(90) holds, in which case

(91)

Since ε was arbitrary, the proof is complete.

APPENDIX C

PROOF OF THEOREM 6 [DISTRIBUTION OF θ̂ − θ̄(λ)]

By the mean value theorem, we have for each n

(92)

where ϕn is some convex combination of θ̂n and θ̄(λn). Noting that the LHS is by definition 

0 and rearranging, we obtain

(93)

If we can show the first factor tends in probability to  and the second tends in 

distribution to N(0, ā(θ*)−1 J(θ*, θ*)), then by Slutsky’s theorem we have the desired result.

Using the Skorokhod construction define a joint probability space for λn such that 

. We will condition on the sequence λn and use a triangular array central limit 

theorem for the random variables

(94)

(95)

Because λn is independent of the data, f(gni)|λn, zni = 1) = λn(f(gni)) for any f. The 

triangular array CLT applies since

(96)

(97)

(98)
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(99)

(100)

Therefore, defining  and Z = N(0, a(θ*)−1 J(θ*, θ*)), the CLT tells us 

ℙ(Sn ∈ A|λn) → ℙ(Z ∈ A) whenever λn → θ*, which we assumed occurs with probability 1. 

By dominated convergence, we also have ℙ(Sn ∈ A) → ℙ (Z ∈ A).

Next we turn to the Hessian. We have  by Theorem 5, so  as well. Writing

(101)

we need to show that

(102)

Note that , which is integrable; hence . 

Since ā is continuous and strictly positive, and , it suffices to show that

(103)

Note that , and define .

Following the structure of the proof of Proposition 3, take K large enough that x‖21‖x‖>K < 

ε and truncate the hi:

(104)

(105)

The second term is eventually less than 2ε. Now,  is small, because

(106)

Hence, by Cauchy–Schwarz

(107)
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So on the event {max ‖λn − θ*‖, ‖ϕn − θ*‖ < δ}, we have

(108)

(109)

(110)

Finally, we can bound the first term exactly as we did in the proof of Proposition 3, defining 

 and μi = di|xi, yi, λn) ≤ δK3. The same argument implies ℙ( n(d − 

μ) ≥ ε) ≤ 2 exp[−nε2/(2K4)], so as n → ∞ we have with probability approaching 1,

(111)

(112)

so taking δ < ε/K3, the right-hand side is less than 5ε.
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Fig. 1. 
The best linear fit fθ* (x) approximates the true log-odds f(x) in the sense of matching its 

implied conditional probabilities, not logits.
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Fig. 2. 
At left, biased (case-control) and unbiased decision boundaries for the bivariate Gaussian 

mixture model. At right, precision–recall curves for β* and .
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Fig. 3. 
Relative variance of coefficients for different subsampling methods. The theoretical 

predictions (2× variance for local case-control, 5× variance for standard) are reasonably 

close to the mark, though a bit optimistic.
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Table 2

Estimated bias and variance of β̂ for each sampling method. For β̂ ∈ ℝp, we define Bias2 = ‖ ̂ − β‖2 and 

Simulation 1 (Σ0 ≠ Σ1 ⇒ model misspecified)

(s.e.) (s.e.)

LCC 0.0049 (0.00031) 0.025 (0.00059)

WCC 0.023 (0.0022) 0.16 (0.0038)

CC 0.15 (0.0016) 0.043 (0.00096)

Simulation 2 (Σ0 = Σ1 ⇒ model correct)

(s.e.) (s.e.)

LCC 0.0037 (0.0083) 0.039 (0.00045)

WCC 0.59 (0.064) 1.7 (0.017)

CC 0.06 (0.042) 0.87 (0.0086)
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