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Abstract

Bone metastasis represents the leading cause of breast cancer related-deaths. However, the effect 

of skeleton-associated biomechanical signals on the initiation, progression, and therapy response 

of breast cancer bone metastasis is largely unknown. This review seeks to highlight possible 

functional connections between skeletal mechanical signals and breast cancer bone metastasis and 

their contribution to clinical outcome. It provides an introduction to the physical and biological 

signals underlying bone functional adaptation and discusses the modulatory roles of mechanical 

loading and breast cancer metastasis in this process. Following a definition of biophysical design 

criteria, in vitro and in vivo approaches from the fields of bone biomechanics and tissue 

engineering will be reviewed that may be suitable to investigate breast cancer bone metastasis as a 

function of varied mechano-signaling. Finally, an outlook of future opportunities and challenges 

associated with this newly emerging field will be provided.

1. Introduction

Breast cancer, the most costly type of cancer in the US [1], primarily metastasizes to the 

skeleton and causes not only increased morbidity (e.g. pain and bone fracture), but 

ultimately represents the leading cause of breast cancer-related deaths among women 

worldwide [2]. Following dissemination to bone, cancer cells support their own growth by 

appropriating the bone remodeling process. More specifically, they stimulate osteolytic bone 

degradation, which activates the ‘vicious cycle’ of bone metastasis [3]. During this process, 

cancer cells increase the release of pro-tumorigenic growth factors from the bone matrix that 

further stimulate tumor growth (e.g. transforming growth factor-β, TGF-β) [4, 5]. 

Interestingly, bone metastasis typically initiates in the marrow spaces of cancellous bone, 

such as the spine and hip, a feature that is commonly attributed to the unique cellular and 

molecular composition of the cancellous compartment (e.g. vasculature, stem cell niches, 

sites of active remodeling) [6]. However, the irregular architecture of cancellous bone tissue, 
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comprised of interconnecting plate- and rod-like struts interspersed with bone marrow, 

results in a complex, dynamic mechanical environment. Yet, how these physical cues affect 

the initiation, progression, and therapy response of bone metastasis is largely unexplored. In 

this review, we seek to establish that a relationship exists between skeletal mechanical 

signals and breast cancer bone metastasis, which likely plays an important role in secondary 

tumor growth, and also discuss appropriate experimental approaches to interrogate this 

relationship.

To provide structural support for the human body, the skeleton continually adjusts its mass 

and architecture in response to mechanical loads, and increasing evidence suggests that these 

physical forces may also play a role during the pathogenesis of bone metastasis. Daily 

habitual activities, such as walking and even muscle contractions when standing still, exert 

forces on the skeleton, giving rise to a variety of stresses and strains within the skeleton. 

Typically, these stresses and strains maintain bone homeostasis by balancing bone-forming 

and -degrading cellular activities, directly through deformations of the bone matrix and 

indirectly through fluid flow that imparts shear stresses and fluid pressure [7, 8] However, 

not only bone, but also tumor cells are capable of responding to these stimuli with 

immediate consequences on disease progression. For example, solid stress can inhibit tumor 

cell proliferation [9], increased interstitial fluid pressure stimulates tumor intravasation 

[10-12], and exposure of cells to shear stresses and pressures regulates their interactions 

with the vasculature at secondary sites [13]. In addition, results from our and other labs 

suggest that in vivo mechanical loading inhibits secondary tumor growth in bone [14, 15]. 

Consequently, biomechanical cues play an important modulatory role in bone metastasis, but 

more mechanistic studies are needed to better understand how mechanical loads alter bone-

tumor interactions and develop therapies based on these principles.

Conventional approaches to studying bone metastasis typically rely on two-dimensional (2-

D) cell culture and mouse models as well as simplified mechanical conditions. While these 

systems have generated critical knowledge regarding the biochemical underpinnings of bone 

metastasis, they lack dynamic mechanical stimuli, and frequently also other 

microenvironmental conditions inherent to human disease. Engineering-based approaches 

have the potential to overcome these shortcomings and provide humanized culture 

microenvironments and animal models mimicking functional loading conditions. When 

developing relevant loading models of bone metastasis, a number of critical biological and 

physical design parameters needs to be considered. Here, we will provide a short 

introduction to bone biology and mechanics as they pertain to bone metastasis, review 

current in vitro and in vivo approaches from the field of bone tissue engineering that may be 

suitable to examine breast cancer bone metastasis as a function of biomechanics, and finally, 

highlight outstanding challenges and opportunities associated with this newly emerging 

field.

2. Bone Functional Adaptation

The skeleton is a dynamic, load-bearing tissue that continually undergoes remodeling, 

whereby ‘old’ bone is degraded (osteolysis) and replaced by new bone (osteogenesis), to 

meet the mechanical demands of daily activities. Functional adaptation, or more colloquially 
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‘Wolff’s Law’, is tightly regulated by the local strain environment that arises in bone tissue 

due to functional loading. The feedback loop governing adaptation, coined the 

‘mechanostat’ [16], allows the skeleton to meet mechanical demands by optimizing bone 

mass and structure, with steady-state remodeling occurring within a target physiological 

(non-zero) strain range (Figure 1). Reductions in mechanical stimuli (e.g. due to bed rest, 

increased bone mass, and/or stress-resistant architecture) lead to osteolysis, while increases 

in mechanical stimuli (e.g. due to sports, reduced bone mass, and/or stress-increasing 

architecture) promote osteogenesis. Because both physiological and pathological remodeling 

is a surface-based process, rates are disproportionately high in cancellous regions (i.e. the 

porous bone found in vertebrae and the ends of long bones) relative to cortical sites. 

Therefore, it is not surprising that cancellous bone is particularly sensitive to shifts in the 

remodeling balance due to mechanical stimulation, but also in the presence of tumors as 

described in more detail below.

When investigating changes in cell behavior due to bone mechanical loading, two types of 

mechanical stimulus need to be considered: (1) substrate deformations and (2) interstitial 

fluid flow. Bone is fundamentally a fluid-filled porous matrix; a cortical shell surrounds 

cancellous bone and bone marrow in the medullary cavity, and the bone matrix itself is 

porous as well (Figure 2A). When external forces are applied to a whole bone, the fluid 

within each level of porosity is instantly pressurized and the resulting pressure gradients 

cause net fluid flow from high to low pressure (Figure 2B). Fluid flowing over cells, in turn, 

imposes hydrodynamic shear stresses and drag forces on the cells as well as electric signals 

resulting from ion gradients at the cell surface-interstitial fluid interface (stress-generated 

potential, SGP) [17] (Figure 2C). In addition, fluid flow mediates convective transport 

necessary for enhanced nutrient supply and metabolic waste removal [18]. Collectively, 

loading-induced movement of fluid through bone transmits chemical, mechanical, and 

electric signals [19], which, in addition to matrix deformation, functionally couple loading-

induced mechanical forces and cell signaling.

Based on results from 2-D in vitro studies, bone cells are generally considered to be more 

responsive to fluid flow than substrate strains [20-23]. In fact, a computational model 

suggested that hydrodynamic loading conditions significantly increase cellular deformation 

relative to those due to substrate strain [23] (Figure 3A). However, experimental approaches 

to study cancer and bone regeneration have increasingly turned to 3-D in vitro models that 

better recapitulate the in vivo environment. Yet in 3-D fluid-filled porous structures (either 

scaffolds or tissues), matrix strains and fluid shear forces cannot be readily de-coupled. 

Additionally, pore size strongly affects the morphology of adhered cells, which has 

downstream consequences on stress-induced cellular deformation [24]. Therefore, the 

importance of matrix strain versus interstitial flow to mechanotransduction may be 

underestimated. Indeed, digital imaging correlation revealed that local bone matrix strains 

around osteocyte lacunae were significantly greater (up to 30,000 με) than the corresponding 

average macroscopic strains (~2000 με), suggesting that local matrix strains may affect cell 

behavior more than previously thought [25] (Figure 3B). Nevertheless, compression-induced 

fluid flow can stimulate expression of mechanosensitive, osteogenic genes relative to 

substrate strain alone [26]. Model systems in which the relevant mechanical signals are 
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applied in 3-D may help to better understand these disparities and elucidate how loading 

modulates tumor cell behavior in the skeleton. In order to engineer relevant loading models, 

an understanding of the resulting stresses and strains at multiple length scales is required.

2.1 Bone Strain

Physiological bone matrix strains can vary significantly depending on bone location (e.g. 

weight-bearing vs. non-weight bearing bones) as well as the magnitude, frequency, and 

history of loading. For example, physiological bone matrix strains due to normal daily 

activity are typically on the order of 0.05% strain (500 με) and occur at a frequency of 1-3 

Hz [27, 28], whereas strain events due to muscle contractions occur continually and are 

characterized by high-frequency (10-50 Hz) and low strain-magnitude (<5 με) [29]. 

Interestingly, strenuous physical activities such as running and jumping can lead to bone 

strains as high as 0.2 – 0.35% strain (2000 – 3500 με) in a range of locations [27]. Although 

such high magnitude strain events occur relatively rarely, they are commonly believed to 

have the greatest impact on loading-induced bone remodeling and, therefore, may also play 

a role in bone metastasis [27, 30, 31]. Finally, the strain limit of bone before plastic 

deformation occurs is 0.7% [32] and the failure strain is 1-3% [33]. Paradoxically, results 

from in vitro experiments imply that cellular strains much higher than bone failure strain 

(i.e. up to 10%) are required to elicit intracellular responses. Hence, this suggests that tissue-

level strain must be amplified at the cellular level, and the above-described significant 

differences in locally detected vs. macroscopically applied strains may play a role in this 

process [25] as well as local fluid flow over cell adhesion sites [34].

2.2 Interstitial Fluid Flow

Theoretical modeling approaches predict that bone loading induces fluid flow-related shear 

stresses on the order of 8 – 30 dyn/cm2 (0.8 – 3 Pa) [7]. In fact, these stresses, rather than 

other flow-induced signals (e.g. electrokinetic forces or drag forces) [35, 36], seem to be 

primarily responsible for the ability of mesenchymal cells in the skeleton to respond to fluid 

flow (e.g. osteocytes [37-40], osteoblasts and their progenitors [41-43], bone marrow 

stromal cells [44-46]). Interstitial fluid flow and pressures also affect breast cancer cells. In 

breast tumors, the interstitial fluid pressure is elevated as high as 1.3 – 5.3 kPa (as compared 

to normal mammary tissue pressures ~0.1 kPa [47]) [48, 49], thereby generating pressure 

gradients at the tumor margin [50, 51] and resulting in greater fluid flow in the peritumoral 

tissue [52]. Increasing the rate of interstitial flow, in turn, correlates with the percentage of 

migratory breast cancer cells [53, 54]. Moreover, the bone marrow may also be considered a 

fluid-filled porous tissue that experiences fluid flow due to pressure differentials, and these 

stimuli may be important for bone metastasis since cancer cells typically localize in the 

marrow space. This notion is supported by the observation that reduction in interstitial 

pressure in primary breast tumors can decrease tumor cell proliferation [55-57]. 

Nevertheless, current lack of information about bone marrow physicochemical 

characteristics including rheology means this is purely speculative [58]. Intramedullary 

pressurization of bone marrow can induce fluid flow [59, 60], and pressurization resulting 

from externally applied loads can peak as high as 130 Pa [61] and can generate shear 

stresses up to 5 Pa at the interface between marrow and bone tissue [62]. Importantly, such 

changes in intramedullary pressure can modulate cellular functions in the bone marrow 
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independent of matrix strains [59, 63, 64], suggesting that breast cancer cells may similarly 

change their behavior.

3. Biology of Bone Remodeling

3.1 Cells and Signals Involved in Bone Remodeling

At the cellular level, remodeling depends on the coordinated actions of bone-forming 

osteoblasts, bone-degrading osteoclasts, and matrix-embedded osteocytes, collectively 

comprising the ‘basic multicellular unit’ (BMU) (Figure 4A). Under physiological 

conditions, mesenchymal stem cell-derived osteoblast precursors recruit hematopoietic cells 

of the macrophage/monocyte lineage from circulation and then induce their differentiation 

into large, multinucleated osteoclasts. These mature osteoclasts adhere to the bone surface, 

remove matrix via acidification and proteolytic digestion, and finally apoptose. Active 

osteoblasts proceed to the excavated area and secrete osteoid, a collagen type I-rich matrix 

necessary for subsequent mineralization. Following osteoid secretion, osteoblasts become 

quiescent bone lining cells, undergo apoptosis, or terminally differentiate into osteocytes 

[65]. The paracrine signals regulating the above-described bone cell interactions during 

remodeling are manifold.

Of particular importance to osteoclastogenesis are macrophage colony-stimulating factor 

(M-CSF) and receptor activator of nuclear factor κB ligand (RANKL), proteins that are 

expressed by osteoblasts and their precursors [66] as well as osteocytes [67, 68]. M-CSF 

stimulates replication while RANKL controls differentiation of monocytes/macrophages 

into osteoclasts [69]. Importantly, RANKL signaling can be inhibited by osteoblasts and 

their precursors through expression of the RANKL decoy receptor osteoprotegerin (OPG) 

[70]. Hence, the local RANKL/OPG ratio plays a critical role in bone remodeling due to its 

direct effect on osteoclastogenesis. Interestingly, the detected effects of many growth factors 

and cytokines on osteoclastogenesis similarly occur through altering the OPG/RANKL ratio 

thus providing another microenvironmental mechanism that affects osteoblast activity 

during health and disease [71, 72].

Osteoblast differentiation also depends on the coordinated spatiotemporal interplay between 

growth factors and cytokines, with bone morphogenetic proteins (BMPs), members of the 

TGF-β superfamily, being the most widely investigated ones. In fact, due to their strong 

osteogenic effects, BMP-2 and BMP-7 specifically are approved for clinical use in bone 

fracture healing. BMPs mediate osteoblast differentiation by inducing runt-related 

transcription factor-2 (Runx2, also known as core-binding factor subunit alpha-1, Cbfa 1) 

and osterix (Osx) gene expression. Runx2 plays a role throughout the differentiation process 

and represents the earliest known osteoblast-specific marker during MSC differentiation 

[73]. Runx2 works in combination with Osx to push precursor cells down the osteoblast 

lineage [74]. Differentiation into bone-forming osteoblasts is governed by several 

intracellular pathways, such as mitogen-activated protein kinase (MAPK), nitric oxide (NO), 

and Wnt signaling (for excellent reviews, see [8, 75]). Sclerostin and dickkopf-1 (DKK1), 

which are constitutively expressed by osteocytes, decrease osteoblast differentiation and 

function by inhibiting canonical Wnt signaling as well as BMP signaling [76, 77].
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As mature osteoblasts deposit osteoid and advance forward, a portion will remain behind to 

become embedded within the matrix as osteocytes. Early osteocytes start forming long 

dendrites, or processes, that reside in very small tunnels called canaliculae (~250-300 nm) 

while the cell body resides in lacunae (~15-20 μm). Together, these characteristic 

morphological features form the inter-connected lacunar-canalicular system (LCS), a 

syncytium-like network (Figure 2A) through which osteocytes communicate with each other 

and their surrounding cells via gap junctions [78]. Osteocytes regulate bone homeostasis via 

several mechanisms. In particular, their ability to regulate osteoblast differentiation and 

function due to constitutive secretion of inhibitory proteins sclerostin and DKK1, which is 

modulated by systemic (e.g. parathyroid hormone [79]) as well as autocrine and paracrine 

factors (e.g. prostaglandin E2 [80]). Moreover, osteocytes may exert greater control over 

osteoclastogenesis than osteoblasts by secreting RANKL in greater abundance [68]. Finally, 

osteocyte apoptosis is a critical signal that initiates local bone remodeling, presumably to 

repair local matrix damage [81].

3.2 Loading-induced Changes of Bone Cell Signaling

Loading affects both osteoblast and osteoclast functions, whereby the latter remains 

controversial as mechanical strain can both suppress and stimulate osteoclastogenesis 

[82-84]. Furthermore, osteoclasts and their progenitors do not reside in the bone marrow 

space, but are (i) recruited from circulation and (ii) primarily regulated by osteoblast-derived 

signals. Hence, their functional adaptation to loading may be limited and primarily mediated 

through secondary mechanisms [8, 85]. In fact, loading primarily interferes with 

osteoclastogenesis by increasing osteoblastic secretion of OPG, which ultimately reduces 

osteoclast differentiation due to a local decrease in the RANKL/OPG ratio [86-88], though 

the effects of loading on M-CSF secretion are less clear [86, 89]. Furthermore, loading 

stimulates new bone formation as mechanical stimulation can push mesenchymal precursors 

down the osteoblastic lineage [90], enhance osteoblast differentiation [91, 92], and inhibit 

osteoblast apoptosis [93] (Figure 4B). Wnt signaling is likely heavily involved in this 

process because (i) mice with nonfunctional Wnt receptors respond poorly to mechanical 

loading of the skeleton [94] and (ii) mechanical strain and fluid shear stress can enhance 

Wnt signaling [95, 96].

Despite the above-described connections between loading and osteoblast/osteoclast 

phenotypic changes, osteocytes are widely regarded the main mechanosensors of the 

skeleton [34, 97, 98]. The LCS is filled with interstitial fluid, which continually moves 

throughout the ‘syncitium’ with habitual loading and not only changes mass transport of key 

signaling proteins, but also imposes mechanical forces to the osteocytes. In this way, 

osteocytes integrate mechanical and chemical cues, and then appropriately direct osteoblast 

and osteoclast functions. Moreover, mechanical loading inhibits osteocyte apoptosis [99, 

100] and promotes new bone formation by decreasing osteocyte secretion of sclerostin and 

DKK1 [101-103].

The mechanisms of mechanotransduction, which convert mechanical signals into 

biochemical ones, are relatively poorly understood although altered cell membrane 

topography as well as cytoskeletal tension likely play a key role [104, 105]. In both cases, 
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transmembrane proteins such as integrins, ion channels, and gap junctions can serve as 

mechanotransducers (Figure 2C). Integrins are extracellular matrix (ECM) receptors 

mediating cellular attachment to bone surfaces via the formation of adhesion complexes 

[106]. In the particular case of osteocytes, these adhesion complexes are termed tethering 

elements and not only connect osteocyte dendrites with the canalicular wall, but also 

mediate osteocyte mechanosensing when altered interstitial fluid flow through the LCS puts 

tensional drag forces on tethering elements [107, 108]. Similarly, loading-induced changes 

in cell morphology can induce deformations to stretch- or voltage-activated channels and 

connexons altering intracellular signaling due to varied transport of ions or molecules [109, 

110]. For example, voltage-gated channels in bone can depolarize in response to ionic and 

electric gradients arising from interstitial fluid flow (independent of membrane distortion) as 

well as in response to the opening of stretch-activated channels [111, 112].

3.3 Breast Cancer Cells and Their Role in Remodeling

Once metastatic breast cancer cells arrive in the skeletal microenvironment, they shift the 

bone remodeling process towards resorption by interfering with many of the same signaling 

mechanism that are affected by mechanical loading, just in an opposite manner (Figure 4C). 

In particular, a tumor-associated increase in parathyroid hormone-related protein (PTHrP) 

[113] stimulates secretion of RANKL from pre-osteoblasts and inhibits osteoblastic 

production of OPG [114]. Collectively, this increases the RANKL/OPG ratio, 

osteoclastogenesis, and ultimately osteolysis. The effect of tumor cells on osteoblasts is not 

as clearly defined although it has become evident that tumor cells exploit osteoblast-derived 

niche signals in a hematopoietic stem cell-like manner to home to and survive in bone [115]. 

Nevertheless, whether breast cancer cells inhibit or stimulate osteoblast differentiation 

remains unclear as both phenomena have been reported independently [116, 117]. 

Moreover, tumor cells decrease osteoblast survival [118], which may be responsible for the 

recent observation that tumor-associated osteolysis is due to reduced osteoblast activity 

rather than increased osteoclastic resorption [119]. Finally, breast cancer cells secrete factors 

that stimulate osteoblasts to release pro-inflammatory morphogens. These morphogens, in 

turn, exert spatial control over tumor cell homing to bone due to their chemoattractive 

function and sequestration within the cancellous bone matrix [120, 121].

Even less is known about the effect of cancer cells on osteocytes. Yet recent evidence from 

patients with multiple myeloma (MM), a blood cancer similarly associated with osteolytic 

lesions, indicates that osteocytes likely play a key role in cancer-related bone degradation. 

For example, osteocyte apoptosis, and subsequent osteoclastogenesis and osteolytic lesions, 

were all increased in MM patients [122]. Furthermore, circulating levels of sclerostin were 

elevated in MM patients and inversely correlated with bone mass, suggesting a direct 

connection between cancer-mediated differences in osteocyte signaling and osteolysis [123]. 

However, whether osteocytes were indeed the source of sclerostin and responsible for bone 

degradation in this specific setup was not verified. On the other hand, it is likely that 

osteocytes change their phenotype in the presence of a tumor because they can respond to 

changes in their soluble factor environment [78], form gap junctions with bone metastatic 

cancer cells [124], and function as progenitor cells for osteosarcoma [125]. Collectively, 

these results suggest that bone-metastatic cancers inversely regulate many of the same 
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signaling pathways that are controlled by mechanical loading, and that these differences 

activate the vicious cycle of bone metastasis. As a consequence, leveraging the 

mechanosensitivity of the bone remodeling process may be a viable method of inhibiting 

cancer-associated bone disease by preserving normal bone cell fate decisions, viability and 

function.

4. Models of Applied Mechanical Loading

4.1 In Vivo Models

In vivo models of loading have revealed important principles governing osteogenesis in 

response to mechanical stimulation [126]. Most importantly, these models have shown that 

the applied forces must be dynamic to promote osteogenic bone remodeling [127, 128]. 

More specifically, cyclically-applied loading readily increases bone mass while static 

loading (e.g. applying a force and holding it constant) has no effect on bone formation. 

Increasing the magnitude [129, 130], the rate of application [131], and the frequency [132] 

of mechanical loading are additional parameters that also enhance the osteogenic response. 

Furthermore, bone cells desensitize to continual mechanical loading; therefore, inserting 

periods of rest can restore or enhance mechanosensitivity. For example, inserting ~10 

seconds of either zero or low magnitude load in between single loading bouts amplified 

bone formation in two different in vivo loading models [133, 134]. Importantly, this 

technique lowered the strain magnitude required for activating bone formation as well as 

returned loading sensitivity to senescent mice [135, 136]. Whether or not these principles 

have any direct bearing on bone metastatic tumor progression or tumor cell function has not 

been explored. Nevertheless, due to their ability to modulate resident bone cell behavior and 

thus, the interplay of these cells with a tumor, it is likely that mechanical signals exert 

modulatory effects on bone metastasis that may be explored with in vivo models of loading.

In fact, two examples of physiological loading models specifically targeting cancellous 

bone, whole body high-frequency vibration (WBV) and tibial compression, suggest 

beneficial effects of this regiment on bone metastasis. In WBV, the loading frequency is 

greatly increased relative to physiological conditions, thereby permitting reductions in strain 

magnitude (e.g. in human studies, application rate is ~30Hz in comparison to the typical 

stride frequency of 1 Hz), which is beneficial to a patient population with skeletal fragility 

[75]. Only modest gains in bone density, if any, have been achieved using this approach in 

adults and post-menopausal women [137, 138]. Yet WBV may confer other important 

benefits, such as pushing bone marrow progenitor cells down the osteoblast rather than 

adipocyte lineage [139] or preserving osteogenic potential in precursor cells [140]. When 

applied to a mouse model of spontaneous ovarian cancer, WBV increased bone volume in 

the spine and proximal tibia, but did not affect the incidence or progression of the disease 

[15]. Since this particular cancer model does not typically involve metastasis to the skeleton, 

it remains to be elucidated whether the detected benefits were mediated by modulating bone 

marrow-derived MSC fate rather than directly affecting bone-tumor cell interactions.

Tibial compression applies compressive forces to cancellous, but also cortical bone. This 

model was adapted from the ulnar compression model, which was developed to apply forces 

in a physiological direction (i.e. along the primary axis of the bone) in a limb with a 
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relatively large volume of cancellous bone. Tibial compression increased cortical and 

cancellous bone mass and improved structural indices in a variety of mouse models, such as 

hormone-deficient male mice [141] and mice with age-related bone loss [14]. When 

combined with intratibial injection of breast cancer cells, a common model of metastasis-

related secondary tumor growth [142], tibial compression prevented osteolysis and 

secondary tumor formation in tumor-bearing tibiae [143], suggesting that anabolic loading 

can be used to inhibit osteolytic remodeling during breast cancer bone metastasis (Figure 5). 

Nevertheless, it remains to be defined whether these differences were due to interference 

with tumor cell homing and/or growth. Hence, future studies need to evaluate whether tibial 

loading may be capable of preventing the bone tropism of breast cancer and/or exhibit a 

therapeutic effect when applied to already-established, osteolytic bone metastases.

Although these animal models (i) have revealed that the mechanical microenvironment of 

breast cancer bone metastasis plays an important role in tumor progression and (ii) are well 

suited to study diseases in the context of the complexities of the whole organism (e.g. intact 

circulatory system), several limitations exist in their use to investigate cancer processes. For 

example, creating a human model of bone metastasis necessitates the use of immuno-

compromised mice, though the immune system plays a key role in tumorigenesis and 

metastasis [144]. Additionally, transgenic rodent models are frequently used to study the 

effect of specific signaling mechanisms on cancer progression, invasion, and finally 

metastasis to the skeleton, but species-dependent differences in cell-signaling cast doubt on 

the relevance of such models for human disease. Finally, identifying isolated responses of 

individual cell types to controlled mechanical stimuli is precluded, and thus elucidating 

cellular and molecular mechanisms contributing to loading-induced changes of bone 

metastasis remains challenging. To overcome some of these limitations, engineering 

strategies have been utilized to create in vitro models of the human tumor and bone 

microenvironment. Adding mechanical stimulation to these platforms offers promise to 

reveal loading-induced cellular and molecular mechanisms that may interfere with bone 

metastasis and that may be explored therapeutically.

4.2 2-D In Vitro Models

2-D models represent the simplest case for investigating mechanical loading, whereby cells 

are cultured in monolayer on a 2-D surface to which stretching, bending, fluid flow or 

pressure may be applied. Typical 2-D substrates include tissue culture polystyrene [21], 

glass [145], silicone membrane [146], bone slices [147], and these substrates can also be 

surface-coated (e.g. with collagen, fibronectin) to study the integrated effects of cell 

adhesion and loading on mechanotransduction [148]. A significant advantage of 2-D models 

is that the strain environment can be readily determined using microscopy, such as digital 

image correlation [149], or computational approaches, such as finite element analysis (see 

[150]), and correlated with cell function. For example, when stretching a deformable 

membrane, the central region undergoes a uniform strain distribution while strains at the 

periphery are ~50% lower and heterogenous, conditions that may result in non-uniform cell 

responses [149, 151]. Nevertheless, adjusting geometry (e.g. rectangular versus circular) or 

loading profile (e.g. cyclic versus steady flow) can be utilized to prescribe a desired stress or 

strain profile and test the resulting cellular behavior.
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Substrate stretch—2-D mechanical strain is typically achieved by seeding cells on a 

deformable membrane (e.g. silicone), which is then stretched uni-axially or bi-axially on the 

order of 1-10% strain. Several devices using this approach are commercially available (e.g. 

the Flexcell® line), and their application has revealed that stretching significantly changes 

cell behavior. For example, mechanical stretching induces osteogenic differentiation, as 

detected via increased expression of ALP [146, 152], Runx2 [146, 148, 152, 153], and 

collagen [146, 148, 153], as well as elevated calcium deposition [154, 155], even in the 

absence of osteogenic growth factors [156, 157]. As with physiological mechanical loading, 

this response is enhanced with increasing strain magnitude [153, 157]. Interestingly, the 

osteogenic response is also dependent on mode of stretching (uniaxial versus biaxial) [158] 

and cell differentiation stage. More specifically, stretching applied at early stages of 

osteoblast differentiation increases Runx2 and collagen expression and suppressed 

proliferation relative to committed osteoprogenitors [159, 160]. To date, only a few studies 

have investigated the response of cancer cells to dynamic cyclic stretching. For example, 

cyclic strain increased the proliferative ability of and decreased apoptosis in Lewis lung 

cancer cells [161]. Furthermore, cyclic strain increased expression of alpha-smooth muscle 

actin in myofibroblasts and their ability to accelerate cancer cell migration [162], which is of 

significant interest as these cells compose a large part of the tumor stroma also in secondary 

tumors in bone [163]. Furthermore, responses to cyclic strain are cell type-dependent and 

could depend on malignant capacity as leiomyoma cells (uterine cancer) exhibit attenuated 

mechanosensitivity to cyclic strain relative to their healthy counterparts [164].

Fluid flow—The effects of fluid flow across a monolayer of cells can be investigated using 

a variety of devices, such as rotating disc or radial flow devices [165, 166], cone and plate 

viscometers [167], as well as microfluidic strategies to deliver laminar fluid flow to cells 

attached to channel walls [168]. Nevertheless, the most commonly utilized set-up so far has 

been a parallel-plate flow chamber, with which both steady and dynamic (e.g. oscillatory 

and pulsatile) flow regimes can be applied. Using this approach, it could be demonstrated 

that fluid flow stimulates osteogenic differentiation due to its ability to increase ALP [41, 

44], Runx2 [169-171], osteopontin [43, 172-174], osteocalcin [172, 174], and collagen [89, 

104, 171, 174, 175]. Generally, 2-D osteogenic flow rates range from 0.01 dyn/cm2 to 20 

dyn/cm2 [176], resulting in shear stresses from 0.1 – 2 Pa [177], and inserting rests may 

enhance osteogenesis similar to in vivo studies. For example, inserting rest periods of 10-15 

seconds into an oscillatory fluid flow regime enhances the osteogenic response of MC3T3 

cells, as indicated by Ca2+ signaling as well as upregulated osteopontin expression [178]. 

Finally, it is interesting to note that cyclic flows in 2-D are not definitively more osteogenic 

than steady flows despite the cyclic nature of stresses and strains intrinsic to habitual 

physiological activities [170, 179, 180].

Despite their obvious benefits and contribution to a better understanding of mechanically-

mediated changes in cell behavior, 2-D culture models are limited due to their inability to 

recapitulate the dynamic interactions of cells with their 3-D surrounding. These differences 

in and of themselves can alter cell behavior due to varied cell polarity, cell-cell and cell-

matrix interactions [181, 182], but, in addition, may affect responses to mechanical loading 

[150]. For example, osteoblast expression of osteopontin increases when cultured in 3-D 
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relative to 2-D while the opposite is true in the presence of fluid flow [145]. Similarly, 

culture dimensionality significantly changes tumor cell behavior [183]; however, the 

additional effect of loading in these settings remains largely unclear. Engineered 3-D culture 

models that appropriately mimic the complexity of the tumor microenvironment under 

appropriate mechanical loading conditions will be critical and have been increasingly 

pursued in the recent past.

4.3 3-D In Vitro Models

Historically, tissue engineering strategies have been developed to generate 3-D constructs 

for regenerative medicine applications [184]. More recently, this approach is also 

increasingly utilized to develop model systems for studying the structure-function 

relationships in diseases and for testing therapeutic interventions [185]. In particular, various 

experimental strategies have been developed to mimic cancer and bone tissue as extensively 

reviewed elsewhere (e.g. [186, 187]). Most commonly, these approaches combine cells and 

scaffolds, whereby the latter provides 3-D structural support as well as biochemical motifs 

mimicking cell-ECM interactions. These scaffolds are typically porous and prepared from 

naturally-derived (e.g. Matrigel and collagen type I) or synthetic (e.g. polyethylene glycol 

[PEG], polylactide-co-glycolide [PLG]) biomaterials, or a combination thereof. In addition, 

cell-derived matrices may be used, but this approach usually requires extensive culture 

periods [188] or involves the use of detergents to decellularize these matrices prior to 

application of cells [189]. Furthermore, decellularized matrices are typically deposited on 

conventional cell culture plates and therefore considered 2.5-D, which may not fully 

eliminate the limitations of unnatural cell polarity. Nevertheless, dissolving decellularized 

ECMs and reconstituting them in a 3-D manner can overcome these challenges [189]. 

Clearly, these approaches have yielded important new insights into tumor-bone interactions. 

However, the additional application of mechanical forces to 3-D materials using various 

bioreactor technologies can be extremely challenging. In particular, the highly irregular 

geometries (e.g. pore size) intrinsic to conventional scaffolds and cell-derived ECMs make it 

difficult to determine the stress and strain fields, in turn, limiting the ability to correlate 

mechanical and cellular signals. Hence, advances in modeling (e.g. computational fluid 

dynamics) as well as sophisticated material fabrication methods may be needed [186].

Bioreactors—Bioreactors have initially been developed to overcome transport challenges 

associated with culturing cells in large 3-D constructs, but may also be used to impart 

hydrodynamic shear stresses. In particular, diffusion-limited transport of oxygen and 

nutrients has imposed restrictions to the size of constructs that could be generated: absent of 

convection, cells remain viable only within 200-800 μm of the scaffold surface, and 

therefore large (≥~ 1mm) cell-scaffold constructs develop a hypoxic and necrotic core 

[190-192]. To exert mechanical cues, bioreactors either apply fluid flow to cells or deform a 

cell-seeded, porous, fluid-filled scaffold.

The spinner flask or stirred flask, the simplest bioreactor for agitating culture media, was 

designed to improve cell seeding [193] and mass transport [194] over static cultures. In the 

spinner flask, cells within a 3-D scaffold are suspended via needle, thread, or wire in a large 

volume of media, and the media is mixed via magnetic stir bar at the bottom (Figure 6A). 
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However, cells still remain localized to the scaffold surface [195], possibly due to the 

generation of turbulent eddies at the periphery of the scaffold and/or insufficient mass 

transport to the center of the scaffold [194, 196]. Despite these limitations, osteoblast 

differentiation is enhanced over static culture [92, 197-199]. Furthermore, this system was 

used to investigate the effect of fluid shear stress on interactions between prostate cancer 

and bone-derived cells. Interestingly, the viability of prostate cancer cells was decreased in 

the presence of media collected from spinner flask-cultured MSCs relative to media from 

statically cultured MSCs [200]. This suggests that appropriate mechanical stimuli enable 

MSCs to decrease tumor cell homing to bone during metastasis.

The rotating-wall vessel (RWV) bioreactor was developed to eliminate turbulence intrinsic 

to the use of spinner flasks (Figure 6B). RWV bioreactors are typically comprised of 

concentric walls filled with culture media; the outer wall rotates relative to the stationary 

inner wall such that the scaffolds are essentially maintained in a state of free fall (i.e. 

centrifugal forces balanced by gravitational forces) [176, 196]. This design improves mass 

transport over the spinner flask, but yields inferior osteoblast culture outcomes possibly due 

to low shear stresses [198, 199, 201]. Nevertheless, when scaffolds are fixed to the 

bioreactor wall, osteoblast differentiation can be enhanced and is even better than in spinner 

flask cultures [202]. Alternatively, similar benefits can be achieved by employing semi-

permeable vessel walls over which media is perfused [203]. This approach has also been 

used to generate 3-D prostate, melanoma, and breast cancer cell spheroids or organoids that 

mimicked in vivo cancerous tissue growth [204-209], further demonstrating that fluid shear 

is an important microenvironmental parameter for a variety of cancers.

Perfusion bioreactors directly address persistent limitations in mass transport to the interior 

of 3-D cultures in spinner flask and RWV designs [210] (Figure 6C). Direct perfusion 

bioreactors typically utilize pumps to drive media directly through a porous scaffold, which 

is housed in a cartridge that is fitted to the scaffold shape such that media cannot flow 

around it (in contrast to indirect perfusion in which fluid can flow around). Direct perfusion 

exerts shear stresses throughout the entire cell-scaffold construct in addition to providing 

superior mass transport, which results in even distribution of cells throughout the scaffold. 

However, a trade-off exists between enhancing mass transport with higher flow rates and 

allowing for cell attachment and more uniform ECM formation with lower flow rates [197, 

211, 212] (Figure 7A). For cancer and bone tissue engineering applications, perfusion 

bioreactors most commonly employ steady or continuous flow [177, 213]. For example, 

steady flow applied via microfluidic device to MDA-MB231 breast cancer cells in 3-D 

hydrogels increased the percentage of breast cancer cells that migrate and their speed in 

response to flow [53] (Figure 7B), although this effect may be modulated by seeding density 

[54]. In the context of bone tissue engineering, steady perfusion enhances growth, 

differentiation, and mineralization of scaffolds seeded with bone cells relative to static 

controls [92, 201, 212, 214-216], even in the absence of osteogenic differentiation factors 

[91].

Direct compression of cell-seeded scaffolds is another common approach for stimulating 

osteogenesis and typically applies cyclic loads in the range of 1-5 Hz (Figure 6D). For 

example, compression of mesenchymal stem cells seeded in cancellous bone-fibrin 
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‘sandwiches’ [217] increases expression of osteogenic signaling molecules [218], and a 

similar effect was noted for mature osteoblasts [219]. Interestingly, these responses may be 

further modified by imposing high frequency vibrations (~25 Hz) onto cyclic compression 

(3 Hz) [220]. Because compression using this approach simultaneously alters fluid flow and 

substrate deformation, it is difficult to attribute the detected changes to one vs. the other, 

though compression-induced fluid flow upregulates mechanosensitive, osteogenic genes 

relative to substrate strain alone [26]. To date, the effects of dynamic scaffold compression 

on breast cancer cells are not widely investigated. Yet human breast cancer cells subjected to 

50% static compression, corresponding to ~0.1 kPa in agarose gels, increase expression of 

genes related to ECM proteolysis, adhesion, and migration [221]. In contrast, human breast 

cancer cells subjected to 10% cyclic compression of a 3-D model of the bone 

microenvironment decreased expression of genes interfering with bone homeostasis [143] 

(Figure 7C). Applying compression and perfusion simultaneously may best mimic the in 

vivo bone mechanical microenvironment, and indeed this approach increases osteoblast 

differentiation relative to perfusion alone [196]. Finally, adding cyclic compression to steady 

perfusion may foster osteogenic commitment and differentiation of mesenchymal stem cells 

[42, 222] (Figure 7D). Whether or not these changes alter downstream breast cancer cell 

behavior remains to be elucidated.

The modulatory effect of key loading characteristics (e.g. varied strain magnitude) on 

cellular functions relevant to bone metastasis is currently being investigated. These studies 

have, for example, revealed that increasing the medium flow rate can enhance osteogenesis 

due to the elevated hydrodynamic shear stresses [215, 223]. Similarly, breast cancer cells 

become more migratory in response to increased flow rate [53] (Figure 7B). Though cyclic 

flow best reflects conditions in the bone microenvironment in vivo, its superiority in tissue 

engineered bone constructs is not clear because few studies incorporate these conditions and 

due to the inability to compare results across disparate scaffold systems [224, 225] (see 

Computational Modeling). Yet, inserting periods of rest in steady flow regulates cell 

function in 3-D scaffolds cultured in perfusion bioreactors. More specifically, interposing 

high rate steady flow with periods of low flow increases osteoblast production of PGE2, a 

biomolecule involved in bone formation [224, 226]. Similarly, osteopontin is upregulated 

with 10 second rest periods between loading cycles as well as with 7-8 hours of rest in 

between loading sessions [224, 227] (Figure 7E), while other markers of bone differentiation 

were not affected by intermittently reduced loading [211]. The effects of cyclic fluid flow on 

cancer cell behavior has been largely unexplored, though such studies are important for 

understanding the interplay between bone metastasis and mechanical signals in the skeleton.

Delineating the relative effects of fluid flow on mass transport versus shear stresses is 

difficult in perfusion experiments because the two are intimately coupled in 3-D porous 

scaffolds. Yet, these two effects can be isolated by altering fluid viscosity without changing 

flow rate. More specifically, the addition of dextran to culture media increases its viscosity 

(and thus related shear stresses) while flow rate (and thus mass transport) remains constant 

[228]. Interestingly, this approach elucidated that shear stresses dominate cell behavior: 

Increasing shear stress enhances osteoblast differentiation and matrix mineralization [228, 

229]. In contrast, increasing mass transport enhances osteogenic differentiation only up to a 
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certain point (6-9 ml/min), after which tissue formation is inhibited, again demonstrating 

that there is an optimum range for proper nutrient supply and cell retention [228]. The 

relevance of these findings to bone metastasis remains to be determined. As stated 

previously, fluid flow increases breast cancer cell migration, but whether these effects are 

dominated by shear stress or mass transport effects is unclear. Furthermore, these findings 

were based on the relatively small fluid shear stresses in tumor-associated mammary tissue 

(in which mass transport effects may be more important than shear stresses [213]), but a 

different scenario may occur in bone. Finally, other microenvironmental variations may 

significantly affect how cells interpret shear stress vs. mass transport. For example, small 

changes in the ECM architecture, such as fiber alignment, can vastly alter local shear 

stresses [230, 231] and thus cancer cell function.

Computational Modeling—Characterizing the stress and strain fields in porous 3-D 

constructs with highly irregular geometries is incredibly difficult, even when ignoring the 

fact that tissue formation and remodeling over time will continually alter the stress and 

strain environment. The majority of scaffolds have highly irregular as well as non-uniform 

pore geometries; therefore, the stresses and strains within will also be irregular, further 

leading to heterogeneous cellular responses, even if similar mechanical signals are applied 

(e.g. the same averaged flow rate or bulk strains). Furthermore, comparing results between 

different labs is intractable. Computational modeling, such as computational fluid dynamics 

(CFD) and finite element modeling (FE), can help to address these challenges, and, in 

addition, define design parameters for bioreactor or scaffold design to achieve a specific 

mechanical environment.

Computational models revealed that pore size strongly affects the morphology of adhered 

cells, hydrodynamic shear strains, and mass transport. In large pores, cells tend to spread 

whereas in smaller pores, they exhibit rounder morphologies due to forming several 

attachment points [232], and this greatly affects cell deformation. More specifically, shear 

strains in flat cells are on the order of 1×10−7% strain (based on 1% scaffold deformation), 

while shear strains in bridged cell are on the order of 0.1% [233]. This may mean cells 

adhering in a 3-D manner are more likely to detach under medium flow, which may 

significantly impact tumor cell homing to bone during metastasis. Accordingly, cell 

detachment was found to be proportional to flow rate and inversely proportional to pore size 

[234] (Figure 8A). Furthermore, this implies that reduced shear stresses (~20 mPa) are 

necessary to induce osteogenesis in scaffolds with decreased pore size (< 100um) [224]. 

However, larger pore sizes improved mass transport and distribution of cells throughout the 

scaffold [235, 236]. Pore size strongly predicts shear stress magnitude, where shear stresses 

increase with decreasing pore sizes, though overall scaffold porosity strongly affects the 

statistical distribution of the shear stresses [237]. Finally, regular distribution of pores (e.g. 

PCL scaffold) results in asymmetric distribution of wall shear stresses (with a peak and 

plateau), whereas an irregular distribution of pores (e.g. scaffolds fabricated from particulate 

leaching) yields symmetric distribution of wall shear stresses and thus, ‘conditions’ the flow 

better [238] (Figure 8B). Collectively, these findings suggest that the integrated effects of 

local ECM architecture and mechanical conditions impact whether or not disseminated 

tumor cells form secondary tumors in bone, and that computational strategies will help to 
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accurately predict these possibilities. For example, mathematical calculation of these 

features may shed light on why certain skeletal sites (e.g. spine and pelvis) are preferred for 

metastasis relative to others (e.g. wrist).

Computational models also predict that fiber orientation in ECM-like scaffolds may 

modulate the mechanical environment of cells. Perpendicular alignment of ECM fibers 

generates higher stresses on the ECM, and lower shear stress and pressure forces on cells, 

relative to cubic lattice arrangement, and this may be due to stress shielding. Conversely, 

parallel fiber alignment leads to higher stresses on cells [231]. Importantly, these results will 

not be predicted if simply using calculations based on the bulk average flow characteristics 

(Figure 8C). Additionally, small modifications to the local ECM can lead to large changes in 

the mechanical environment. For example, minor remodeling of fibers near the cell surface 

exhibits major effects on the cellular shear stress profile [230]. Again, how cells attach to the 

fibers, whether flat or bridged, will likely influence resulting hydrodynamic shear stresses. 

But in addition, this may mean that pathological ECM remodeling may generate a 

mechanical environment that regulates homing, dormancy, and growth of bone metastases.

When CFD is combined with FE analysis of the scaffold material, even richer results can be 

achieved [233, 239, 240]. For example, specific combinations of matrix strains and inlet 

fluid flows led to predictive differentiation patterns of MSCs in collagen-glycosaminoglycan 

scaffolds based on matrix and hydrodynamic strains [233] (Figure 8D). More specifically, 

osteogenic differentiation was greatest at low inlet velocity (1 μm/second) and low scaffold 

strains (1-2%), while chondrogenic differentiation dominated with increasing scaffold strain 

(5%) and fibroblastic differentiation dominated with increasing inlet velocity (100 μm/

second). Using PLA + glass scaffolds, similar predictive power was achieved when 

modeling dynamic compression [239]. Homogeneous mature bone tissue formation occurred 

under strain levels of 0.5-1% and at rates of 0.0025-0.005 strain per second. Conversely, 

under higher levels of strain and strain rates, heterogeneous stresses and strains led to the 

formation of a heterogeneous tissue with a mixture of mature bone and fibrous tissue. These 

studies reveal that local tissue mechanics intimately regulate stem cell commitment and 

differentiation, which may significantly impact the establishment of metastatic tumors. For 

example, in bone marrow, MSCs and their progeny participate in creating and maintaining 

the hematopoietic stem cell niche, and disseminated cancer cells compete for occupancy of 

these niches [241, 242], though the role of mechanical loading in this regard is unknown.

5. Conclusions and Future Perspectives

In conclusion, mechanical forces modulate the reciprocal interplay between bone and tumor 

cells critical to bone metastasis, and engineering approaches offer potential to evaluate the 

underlying biophysical mechanisms. However, to develop effective therapeutic strategies 

based on these principles, much more sophisticated experimental and computational 

strategies will be needed. For example, ‘humanized mice’ can overcome challenges 

associated with studying human cells in a murine organism, and additionally may 

recapitulate the full range of (human) primary tumor development and metastatic cascade to 

the skeleton [243]. In addition, human bone fragments or tissue-engineered bone substitutes 

provide attractive alternatives for studies of human bone metastasis [244, 245]. However, 
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these xenograft models are typically implanted at ectopic sites (e.g. subcutaneously), which 

currently makes the application of external mechanical forces difficult. Development of an 

in vivo loading model that is compatible with murine ‘humanized’ microenvironments, or 

vice versa, will greatly contribute to understanding the role of mechanical signals in bone 

metastasis. Additionally, in vitro model systems that incorporate multiple cell types, rather 

than monoculture or at best tri-culture, are likely to generate more advanced insights. In 

particular, characterization of the mechanical environment within the LCS, and how it 

facilitates or inhibits osteocyte-tumor cell signaling, is a relatively unexplored area. 

Sophisticated multi-physics modeling at several length scales will expand our knowledge in 

this regard, which can be leveraged to determine osteocyte-tumor cell interactions in the 

presence of mechanical loading.

Another future goal should be to more thoroughly characterize the ECM architecture and 

mechanical conditions in the bone marrow given its physical interactions with metastasized 

tumor cells. The bone marrow comprises numerous cell types (hematopoietic stem cells and 

their progeny [e.g. macrophages, platelets, and osteoclasts], MSCs and their progeny [e.g. 

adipocytes, fibroblasts, and osteoblasts], endothelial cells) that are both mechano-sensitive 

and known to regulate tumor cell signaling. For example, mechanically loading MSCs 

enhances their secretion of pro-angiogenic factors [246], especially when co-cultured with 

endothelial cells [247], and this may have both direct (via modulating tumor cell functions) 

and indirect consequences (via enhancing angiogenesis) on secondary tumor growth. 

Similarly, osteoblastic cells serve a supportive function in maintaining normal 

hematopoiesis [248], which is likely modulated by mechanical signals and disseminated 

tumor cells [249]. Better model systems of the bone marrow and its constituent cells will 

provide more insight in this regard [250, 251].

Another objective should be to evaluate the effect of mechanical loading on bone material 

properties and which modulatory roles tumor cells assume in this process. In fact, 

mechanical loading can alter bone material quality [252], and it remains to be investigated 

(i) which cellular mechanisms underlie these changes and (ii) what their functional 

consequences are on bone metastasis. For example, osteocyte network properties critically 

influence bone mineral quality, but neither the effects of loading nor tumor cells on these 

network properties are clear [253]. Nevertheless, tumor cell adhesion, growth and osteolytic 

capability are all modulated by varied bone mineral properties [254]. Therefore, adapting 

advanced materials characterization and synthesis techniques to study the integrated effects 

of loading and metastasis on bone materials properties will be critical.

Finally, metastasis is directed by premetastatic remodeling of target sites even prior to initial 

homing to these locations [255]. Hence, designing mechanically relevant culture models that 

not only recapitulate the complex interactions between bone and tumor cells, but also 

integrate other organ compartments of the body should be a priority. Organ-on-a-chip 

microfluidic systems may help to address these integrative effects and have the potential to 

provide mechanistical insights that may ultimately contribute to improved therapeutic 

strategies that may help to prevent and treat bone metastasis.
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Figure 1. Schematic representation of the ‘mechanostat’ [16]
Steady-state remodeling occurs continuously within a target, non-zero strain range. 

Increased mechanical stimulus (e.g. exercise, reduced bone mass) increases the local strain 

environment and promotes osteogenesis, which then brings the local strain stimulus down to 

steady-state. Conversely, reduced mechanical stimulus (e.g. bed rest, microgravity) 

decreases the local strain environment and results in osteolysis, which then brings the local 

strain stimulus up to steady-state. Systemic effects, such as disease state, will alter the 

efficacy of the feedback loop to optimize mechanical integrity of the skeleton. Adapted from 

Lanyon BoneKey 2009.
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Figure 2. Porosity within the skeleton and the cellular mechanical environment under 
mechanical loading
A) The skeleton contains porosity at each length scale. A whole bone is comprised of two 

tissue types: porous cancellous bone and compact cortical bone. The matrix of each of these 

two bone tissues types is comprised of a vascular porosity called the osteon (~20-40 μm). 

The osteon is surrounded by concentric layers of matrix containing embedded osteocytes. 

The cell body of the osteocyte resides in a lacuna (~15-20 μm) while its dendrites reside in 

canaliculae (~250-300 nm). B) Due to these levels of porosity, bone is fundamentally a 

fluid-filled porous matrix containing embedded cells. When the porous matrix is deformed, 
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the fluid within is instantly pressurized, causing pressure gradients and subsequent fluid 

flow from high to low pressure. C) At the cellular level, cells experience substrate strain, 

hydrodynamic shear stress, pressure gradients, and mass transport-associated ionic 

gradients. These forces cause deformation of transmembrane proteins as well as changes to 

cytoskeletal tension, both of which alter cell signaling.

Lynch and Fischbach Page 33

Adv Drug Deliv Rev. Author manuscript; available in PMC 2015 December 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 3. Hydrodynamic loading may increase cellular deformation relative to substrate strain
A) A computational model of individual cells undergoing substrate strain and hydrodynamic 

loading suggested that the effects of hydrodynamic loading dominate cellular deformation 

[23]. B) Macroscopic tensile strains of 1500 με applied to cortical bone specimens revealed 

that the local strain field is highly hetereogenous and can be several orders of magnitude 

greater than the applied strain, as shown by a microstructural strain field overlaid on digital 

micrographs. Shown here, the local perilacunar strain can reach peaks of over 15,000 με 

[25]. Reproduced with permission from The Journal of the Federation of American Societies 

for Experimental Biology and Elsevier.
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Figure 4. Steady-state remodeling and the effects of mechanical loading and bone metastasis
A) During steady-state remodeling, mesenchymal stem cell-derived pre-osteoblasts recruit 

hematopoietic stem cells and induce their differentiation via RANK-RANKL signaling into 

large, multinucleated osteoclasts. RANK-RANKL signaling is modulated by osteoblastic 

secretion of OPG, which is a decoy receptor for RANKL. Mature osteoclasts remove matrix, 

and then apoptose. Next, active osteoblasts secrete new bone matrix, which subsequently 

mineralizes. After this, osteoblasts become quiescent bone lining cells, undergo apoptosis, or 

terminally differentiate into osteocytes. B) During mechanical loading, more mesenchymal 
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precursors commit to the osteoblastic lineage, their differentiation and matrix deposition is 

enhanced, and apoptosis is inhibited. C) During breast cancer bone metastasis, tumor cells 

secrete a variety of osteolytic factors including PTHrP, which increases osteoblastic 

secretion of RANKL thus leading to greater osteoclastogenesis. Elevated resorption of the 

bone matrix, in turn, releases more pro-tumorigenic growth factors, most notably TGF-β, 

that further stimulates tumor growth.

Lynch and Fischbach Page 36

Adv Drug Deliv Rev. Author manuscript; available in PMC 2015 December 15.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 5. In vivo tibial compression prevents osteolysis and secondary tumor formation
A) Schematic of compression of tumor-bearing tibiae. The box indicates region of interest 

for analysis in the proximal compartment. B) Representative microCT images of sham-

injected (Control) and tumor-injected (Tumor) tibiae revealed that nonloaded tumor-bearing 

tibiae exhibited osteolytic degradation, whereas loading inhibited these adverse changes 

[143]. Reproduced with permission from John Wiley and Sons.
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Figure 6. Schematics of commonly used bioreactors
A) Spinner flask: scaffolds are suspended in media that is circulated via magnetic stir bar. B) 

Rotating-wall vessel: the outer wall rotates relative to the stationary inner wall to circulate 

media. C) Direct perfusion: media is driven directly through the porous scaffold, which is 

housed in a cartridge that is fitted to the scaffold shape such that media cannot flow around 

it. D) Direct compression: scaffolds are directly compressed via a loading platen.
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Figure 7. Exemplary 3-D studies demonstrating that interstitial flow affects cell behavior
A) Perfusion of marrow stromal cells cultured in polycaprolactone (PCL) scaffolds resulted 

in more uniform ECM and mineralization, as indicated by microCT analysis [212]. B) (Left) 

Interstitial fluid flow through a collagen gel, applied via a microfluidic device, increased 

overall percentage of human breast cancer cells that migrate. (Right) Additionally, this 

percentage increased with increasing flow rate [53]. C) Cyclic compression applied to 

human breast cancer cells cultured in mineral-containing poly(lactide-co-glycolide) (PLG) 

scaffolds reduced their expression of Runx2, a gene associated with initiating osteolysis 

[143]. D) Production of osteocalcin was greatest when both compression and perfusion was 

applied to bone marrow-derived mesenchymal stem cells cultured in spongiosa disks [222]. 

E) Inserting periods of rest during flow enhanced expression of osteopontin in MC3T3 pre-

osteoblasts cultured in collagen-glycosaminoglycan constructs [227]. Reproduced with 

permission from Elsevier, John Wiley and Sons, Royal Society of Chemistry, and Mary Ann 

Liebert, Inc.
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Figure 8. Computational simulations of loading-induced changes of cell behavior in 3-D porous 
scaffolds
A) Computational models of MC3T3 pre-osteoblasts within collagen-glycosaminoglycan 

(CG) scaffolds (Bottom) rendered from high-resolution scanning electron microscopy (Top) 

revealed that cell detachment is proportional to flow rate and inversely proportional to pore 

size [234]. B) Flow patterns through porous scaffolds depend on pore orientation. In 

polycaprolactone (PCL) scaffolds, pores are more regularly-oriented, resulting in more 

asymmetric flow and shear stresses. In contrast, in silk fibroin scaffolds, the pores are more 

irregularly-oriented, ‘conditioning’ the flow, and shear stresses are more uniform [238]. C) 

Perpendicular alignment of ECM fibers results in lower cellular strains (stress-shielding), 

while parallel alignment of the fibers increases shear stresses on cells, as demonstrated using 

computational fluid dynamics simulations [231]. D) When FE and CDF approaches were 

combined to model the effect of specific combinations of compression and perfusion on 

MSCs cultured within CG scaffolds, differing patterns of MSC differentiation into 
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fibroblasts, chrondrocytes, or osteoblasts were predicted [233]. Reproduced with permission 

from John Wiley and Sons, Springer, and Elsevier.
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