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Abstract

Modification of gene regulation has long been considered an important force in human evolution, 

particularly through changes to cis-regulatory elements (CREs) that function in transcriptional 

regulation. For decades, however, the study of cis-regulatory evolution was severely limited by the 

available data. New data sets describing the locations of CREs and genetic variation within and 

between species have now made it possible to study CRE evolution much more directly on a 

genome-wide scale. Here, we review recent research on the evolution of CREs in humans based 

on large-scale genomic data sets. We consider inferences based on primate divergence, human 

polymorphism, and combinations of divergence and polymorphism. We then consider “new 

frontiers” in this field stemming from recent research on transcriptional regulation.
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Introduction

The chimpanzee has long presented a conundrum for human geneticists. The orthologous 

proteins of humans and chimpanzees are more than 99.5% identical [1], yet the two species 

differ profoundly across a broad spectrum of apparently unrelated phenotypes. This evident 

paradox led King and Wilson to speculate, famously, that differences in gene regulation, 

rather than protein-coding sequences, might primarily explain differences in physiology and 

behavior between humans and chimpanzees [2] (see also [3, 4]). This proposal—while bold

—in a sense grew naturally out of Jacob and Monod's research over a decade earlier 

establishing that the “program” for gene regulation was, in large part, written in DNA [5]. 

For, as Jacob and Monod themselves recognized [6], if regulatory programs were encoded in 

the genome, then they were subject to modification by mutation and natural selection, just as 

protein structure was.
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These early conjectures about regulatory evolution were alluring, but for a long time they 

remained frustratingly abstract and unsubstantiated. In those days, few details could be 

provided about precisely which regulatory sequences changed, how much, and with what 

effect. During the ensuing decades, however, indirect evidence and anecdotal examples 

began to accumulate in support of the idea that cis-regulatory elements (CREs) associated 

with transcriptional regulation played a particularly central role in regulatory evolution [7–

9]. (For the purposes of this article, CREs are regulatory sequences relatively near their 

target gene, typically no more than about a megabase from the transcription unit; we will 

focus on CREs involved in transcription.) Nevertheless, direct, large-scale support for the 

prominence of CREs in the evolution of form and function was lacking, and these claims 

remained controversial [10].

During the past few years, it has finally become possible to examine the evolution of CREs 

directly on a genome-wide scale, owing to the availability of genomic data describing both 

genetic variation and regulatory elements. This review will cover major developments over 

the past decade in the study of human CREs and their role in human evolution, with a 

particular focus on studies that have leveraged the large public data sets released over the 

past 2–3 years. Along the way, we will discuss various challenges that arise in the 

interpretation of these data sets. We will end with a brief survey of new developments in the 

study of transcriptional regulation that have the potential to enrich studies of human 

evolution.

The Old Wave: Studies Based on Interspecies Divergence

A central principle of molecular evolution holds that inferences about natural selection can 

be made by comparing rates of nucleotide substitution in sites of functional importance with 

those at sites expected to have little or no influence on fitness. This principle is based on the 

expectation that mutations will occur at approximately equal rates in both functional and 

nonfunctional sites, but natural selection will alter the rates at which derived alleles reach 

fixation in functional sites (Figure 1). This idea has been applied for decades to protein-

coding sequences, where amino acid altering (nonsynonymous) and non-altering 

(synonymous) substitutions provide convenient classes to contrast [11–13].

The sequencing of the chimpanzee genome [1] enabled analogous methods to be applied 

genome-wide to putative CREs in hominids. For example, Keightley et al. examined 

sequences in upstream regions and first introns of genes and contrasted them with other 

intronic sequences assumed to be neutrally evolving [14]. They found that putative 

regulatory sequences showed almost no evidence of constraint in hominids, but were 

significantly constrained in mouse and rat. Finding no signs of positive selection, they 

argued that regulatory sequences in hominids had experienced “widespread degradation” 

due to their reduced effective population sizes (see also [1, 15, 16]). Soon afterward, 

Khaitovich et al. analyzed human-chimpanzee divergence patterns in promoter regions 

together with data on mRNA expression. Interestingly, they found that human-chimpanzee 

divergence in gene expression (normalized for intraspecies diversity) was much more 

pronounced in the testis than in the brain or several other tissues, possibly reflecting positive 
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selection due to differences in mating strategies. They did find an excess of lineage-specific 

changes in expression of brain genes in human relative to chimpanzee.

Haygood and colleagues improved on the statistical methodology of previous studies by 

developing a phylogenetic likelihood ratio test analogous to those used for protein-coding 

sequences [17, 18] for lineage-specific elevations in substitution rates in promoter regions 

[19] (see Figure 1C). Based on alignments of the human, chimpanzee, and rhesus macaque 

genome sequences, Haygood et al. found evidence of positive selection acting on the 

promoters of at least 250 genes. High-scoring genes were significantly enriched for roles in 

neural development and function, nutrition, and metabolism, suggesting an important role 

for CREs in human cognitive, behavioral, and dietary adaptations. Another series of studies, 

based on similar statistical methods, tested conserved noncoding sequences for “accelerated” 

evolution in humans [20–23] (see the article in this issue by Hubisz and Pollard for further 

details).

The first large-scale study of primate evolution to make use of newly emerging chromatin 

immunoprecipitation and microarray (ChIP-chip) data for TF binding was carried out by 

Gaffney and colleagues [24]. The authors collected ChIP-chip data from seven previously 

published studies, and then analyzed patterns of divergence at bound sites in the human, 

chimpanzee, and rhesus macaque genomes, comparing the regulatory sequences with 

“control” regions. They also considered transcription factor binding sites (TFBSs) recorded 

in the TRANSFAC database. Using a simple divergence-based estimator, they predicted that 

about 37% of mutations in TFBSs were deleterious, about half the fraction estimated for 0-

fold nonsynonymous sites in coding sequences.

The New Wave: Studies Based on Intraspecies Polymorphism

Divergence-based analyses, while informative, are fundamentally limited by the relatively 

long evolutionary time periods associated with the accumulation of fixed differences 

between species. Irregularities in the evolutionary process during these periods—for 

example, due to changes in the locations or boundaries of CREs, or changes in selective 

pressures—can weaken the signal of natural selection, causing its influence to be 

underestimated. This problem can be mitigated by working instead with data describing 

genetic variation within a single species [25]. Intraspecies polymorphism provides a window 

into much more recent evolutionary processes, on the time scale of genealogies of 

individuals rather than species phylogenies (for humans, roughly 1M years or less), during 

which the evolutionary process is likely to be more homogeneous. It has been demonstrated 

at numerous individual loci that patterns of human polymorphism can reveal the influence of 

natural selection on CREs [26–29].

Several groups have recently used this approach in genome-wide analyses of CREs, taking 

advantage of the abundant high-quality human polymorphism data now available. Because 

polymorphisms are sparse along the genome, these groups have generally pooled data across 

many similar loci. For example, Mu and colleagues examined human polymorphism data 

from the 1000 Genomes Project in various classes of coding and noncoding elements, 

including ChIP-seq-supported TFBSs [30]. The authors found that TFBSs were significantly 
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constrained, but less so than coding sequences. Negative selection dominated in their tests, 

with no sign of pervasive positive selection. They observed stronger constraint in bound 

than in unbound TFBSs, in TFBSs proximal to transcription start sites (TSSs) than in ones 

distal to TSSs, and in TFBSs with strong rather than weak ChIP-seq signals. The related 

work of Khurana et al. further showed that mutations that decrease the matching score of a 

motif were enriched for rare alleles compared to ones that did not [31]. However, Khurana 

and colleagues found evidence of contributions from positive selection as well as negative 

selection in several types of regulatory elements, including DNase-I hypersensitive sites 

(DHSs) and sequence-specific TFBSs.

In another analysis of 1000 Genomes data, Ward and Kellis examined mean SNP density, 

heterozygosity, and derived allele frequency in various noncoding regions identified as 

having “biochemical activity” by the Encyclopedia of DNA Elements (ENCODE) project 

[32]. They observed significant constraint in putative regulatory regions identified by a wide 

variety of experimental assays. Interestingly, they found such evidence both for regions that 

were conserved across mammalian species and ones that were nonconserved, suggesting that 

a substantial fraction of functional noncoding elements reside outside of mammalian-

conserved regions. In a similar study, Vernot et al. analyzed 53 high coverage individual 

genome sequences in more than 700 motifs within DHSs from 138 cell and tissue types, 

finding that many of these motifs were signficantly constrained [33].

A separate line of research has considered patterns of nucleotide diversity in flanking 

sequences of noncoding regions conserved across mammals, which are likely enriched for 

CREs [34–37]. These studies have come to conflicting conclusions, with some maintaining 

that the observed patterns are primarily due to background selection [35, 36], and others 

arguing for a prominent role for hitchhiking from positively selected sites in regulatory 

elements once the confounding effects of background selection are accounted for [34, 37]. 

While more work is needed to resolve this controversy, the results so far suggest possible 

wide-spread roles for both positive and negative selection in shaping human CREs.

A Fusion of the Old and the New: Joint Consideration of Divergence and 

Polymorphism

Population genomic data, too, has limitations when used as the sole source of information 

about natural selection. As noted above, it can be difficult to distinguish between positive 

and negative selection based on patterns of polymorphism alone (both forces reduce 

diversity; see Figure 1). Another major challenge is accounting for the effects of population 

bottlenecks, expansions, and other demographic processes, which can profoundly influence 

distributions of allele frequencies even in the absence of natural selection [38]. Both of these 

problems can be alleviated by jointly considering intraspecies polymorphism and divergence 

from a neighboring species, an idea that has been used for decades in the analysis of protein-

coding genes [39–41] (see also [42] for an early application to TFBSs). Classical approaches 

of this kind, such as the McDonald-Kreitman (MK) test [40], compare relative rates of 

polymorphism and divergence in putatively functional and nonfunctional (typically, 

nonsynonymous and synonymous) classes of sites. Under neutral drift, fixation should occur 

randomly for both classes of sites, causing the ratios of polymorphisms and fixed differences 
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to be approximately equal. Departures from this neutral expectation provide information 

about natural selection (Figure 1).

An early attempt at a large-scale joint analysis of polymorphism and divergence of CREs, by 

Torgerson and colleagues, examined conserved noncoding regions flanking more than 

15,000 protein-coding genes, using polymorphism data from 15 African Americans and 20 

European Americans as well as the chimpanzee genome [43]. The authors made use of an 

extension of the MK test that permits estimation of selection coefficients [44], adapting it for 

use with noncoding sequences. Consistent with previous analyses, they found clear evidence 

of purifying selection in these regions. In addition, they found a significant excess of fixed 

differences relative to polymorphic sites, indicating positive selection on at least some 

CREs. In the study discussed above [24], Gaffney and colleagues also made limited use of 

polymorphism data, attempting to compute the fraction of fixed differences driven by 

positive selection (α) in CREs using a simple estimator based on the MK framework (see 

[41]). In contrast to Torgerson et al., they found no significant evidence of positive selection 

on CREs, but their power appeared to be quite weak.

Arbiza and colleagues attempted to address previous limitations in both models and data in a 

large-scale analysis of TFBSs based on ChIP-seq data from the ENCODE project [45]. 

Using a new probabilistic model and inference method called INSIGHT, the authors 

analyzed 1.4 million binding sites from 78 TFs, together with genetic variation data from the 

human, chimpanzee, orangutan, and rhesus macaque genome sequences, and 54 high-

coverage human genome sequences. They found strong evidence of both positive and 

negative selection in TFBSs, with somewhat more positive selection, more weak negative 

selection, and less strong negative selection than in protein-coding genes. The authors 

estimated that, overall, there have been at least as many adaptive substitutions in CREs as in 

protein-coding genes since the human-chimpanzee divergence, consistent with King and 

Wilson's conjecture almost forty years earlier.

Another interesting observation from this study was that regulatory regions exhibited a large 

excess of weakly deleterious segregating mutations compared with protein-coding genes, 

suggesting considerable genetic load associated with gene regulation. This finding is 

concordant with a recent analysis of genetic association data, which found that regulation-

associated DHSs accounted for almost 80% of the heritability for 11 common diseases [46]. 

Together, these findings suggest that a shift toward weaker negative selection in CREs may 

somewhat paradoxically result in an enrichment for heritable disease-causing segregating 

variants, because these variants are less efficiently eliminated by natural selection than those 

in protein-coding genes.

The Next Frontier

Most studies of cis-regulatory evolution in humans, including all of those discussed so far, 

have assumed that binding sites maintain stable positions at orthologous genomic locations 

over evolutionary time, and that fitness effects can be measured by patterns of variation at 

individual nucleotide positions. In reality, however, natural selection acts on nucleotides in 

TFBSs only indirectly, through the effects of those nucleotides on spatial and temporal 
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patterns of transcriptional output. These effects, in turn, occur through a complex and 

incompletely understood set of physical interactions typically involving multiple TFs and 

cofactors, the core transcriptional machinery, the DNA sequence, the local chromatin, and 

the surrounding aqueous environment [47–49] (see Figure 2). Models that accommodate at 

least the most prominent features of these complex mechanisms will be essential for an 

improved understanding of the functional consequences of cis-regulatory variation in 

humans and other species.

Biophysical Models of Binding-Site Evolution

A pioneering series of papers by Lässig and colleagues began to explore this intersection of 

biophysics and evolution using models that treated the free energy of TF binding to DNA as 

a quantitative phenotype, which served as the basis of an explicit fitness landscape. 

Evolutionary trajectories over this landscape were then considered [50–53] (see also [54]). 

Despite assuming an additive model for nucleotide-specific binding energies, the authors 

obtained highly nonlinear fitness landscapes, reflecting epistasis between regulatory 

nucleotides. In both prokaryotes and yeast, they found evidence for widespread 

compensatory mutations and relatively frequent gain and loss of binding sites.

Following these observations, Moses developed statistical tests for natural selection in terms 

of changes in predicted binding affinity resulting from single nucleotide changes under 

standard position-weight-matrix (PWM) models of binding [55]. More recently, Bullaughey 

combined a thermodynamic sequence-to-expression model [56] with a Gaussian expression-

to-fitness model [57], identifying strong interdependencies between nucleotides and an 

important role for neutral substitutions in the evolution of enhancers. Related studies have 

provided evidence that positive selection contributes to gain and loss of binding sites, while 

purifying selection maintains existing TFBSs [58], that clusters of homotypic binding sites 

result from evolutionary sampling from the genotype-phenotype landscape [59], and that the 

characteristic length and information content of TFBSs results from a tradeoff between 

binding specificity and mutational robustness [60].

Another recent series of papers has focused on the development of improved biophysical 

models of TF binding to DNA, generally without consideration of evolution. A full review 

of this literature is outside the scope of the present article, but examples include models that 

consider combinatorial interactions among TFs [61–65], nucleosome positioning and/or 

chromatin accessibility [66–69], and the three-dimensional structure of DNA binding sites 

[70] (see [49] for a related review). A related study recently showed that dinucleotide repeat 

motifs were strongly associated with enhancer activity, possibly because they influence 

DNA structure or nucleosome occupancy [71]. More work is needed to consider the 

evolutionary implications of biophysical properties of this type, but it seems likely that 

inferences of the distribution of fitness effects of regulatory mutations in humans will 

change significantly when richer, more realistic models of binding site structure and 

function are considered.
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Improved Characterizations of Binding Affinity

Even the sophisticated biophysical models discussed in the previous section have tended to 

maintain the assumption of additive contributions of individual nucleotides to TF binding 

affinity, corresponding to an assumption of site independence in statistical motif models [72, 

73]. This assumption appears to be adequate for many TFs, but numerous violations have 

been observed [74–77]. Nevertheless, statistical methods that attempt to recover the full 

correlation structure of TF binding preferences from sequences [75, 78, 79] have not been 

widely adopted, perhaps due to their complexity and computational expense.

These challenges have led to intense interest in harnessing high-throughput genomic 

technologies to produce direct measurements of binding affinity for all possible binding sites 

and large numbers of TFs. Widely variable strategies have been employed, including 

microwell-based assays [80, 81], protein-binding microarrays [70, 82–84], mechanically 

induced trapping of molecular interactions (MITOMI) [85], high-throughput systematic 

evolution of ligands by exponential enrichment (SELEX), [86–88], and, most recently, 

adaptation of the Illumina sequencing platform to directly measure binding affinities of 

proteins to DNA [89] (see [90] for a review as of 2010). In addition to finding further 

evidence of positional interdependence [84, 88, 89, 91, 92], studies based on these 

techniques have revealed, among other features, unexpected dimeric modes of binding [87], 

numerous TFs that recognize multiple sequence motifs [84], and important influences of 

sequences flanking core binding sites owing to their effects on DNA shape [70, 88]. 

However, the rich models of binding affinity enabled by these powerful technologies have 

yet to be integrated into evolutionary models.

Evolutionary Turnover of Cis-Regulatory Elements

As alluded to in the previous section, there is strong evidence that individual CREs in many 

species, including humans, are gained and lost over time, a phenomenon known generally as 

“turnover” [93–95]. Turnover of CREs has been extensively studied over the past decade 

[57, 58, 96–103] but, overall, it remains poorly understood. For example, it is still unclear 

how frequently turnover occurs overall, how much it varies across species, TFs, and 

genomic contexts, how commonly gains and losses are compensatory, and how all of these 

processes impact inferences of selection. Recent studies that make use of high-throughput 

functional genomic techniques applied uniformly across species [104, 105] have helped to 

shed additional light on turnover of CREs, but these studies also have limitations. For 

example, it is not clear how many of the assayed binding events directly influence gene 

expression, what role false negatives and false positives play in apparent differences, and in 

some cases sample sizes have been insufficient to distinguish within-species variation from 

between-species divergence.

Outlook

In our view, it will be critical to develop improved methods for integrating evolutionary and 

biophysical models with large-scale functional genomic data. Methods of this kind will 

enable a more complete understanding of the complex processes by which CREs evolve, and 

they may also help to address critical mechanistic and functional questions, for example, 

Siepel and Arbiza Page 7

Curr Opin Genet Dev. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



concerning the importance of combinatorial interactions among TFs, homotypic clusters of 

binding sites, and dependencies among nucleotides in TFBSs. We have focused in this 

article on transcription, but it is worth noting that sequences important in post-transcriptional 

and post-translational gene regulation can also be studied using similar techniques. In 

general, an integrated approach to understanding the evolution and function of regulatory 

sequences will help to decipher the regulatory code and enable improved predictions of the 

phenotypic effects of cis-regulatory variation.
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Figure 1. 
(A) Frequency as a function of time for hypothetical mutations experiencing neutral drift 

(gray), weak negative (green), strong negative (blue), or positive (orange) selection. The plot 

assumes a new mutation occurs in a single individual in the population at time 0. Neutral 

drift typically causes mutations to be lost (lower gray fork) but occasionally drives them to 

fixation (upper gray fork). Negative selection essentially guarantees eventual loss, but if it is 

sufficiently weak (green plot), mutations may segregate at low frequencies for some time. 

Positive selection (orange plot) causes mutations to reach fixation at higher rates than 

neutral drift. Notice that the time until fixation or loss is substantially reduced for mutations 

under strong selection (positive or negative), implying that they are unlikely to be observed 

in a polymorphic state. (B) Steady-state numbers of invariant sites, low frequency (derived 

allele) polymorphisms, high frequency polymorphisms, and fixed differences under neutral 
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drift, expressed as hypothetical percentages of nucleotide sites. These represent equilibrium 

frequencies for the process depicted in panel (A) for a given divergence time, assuming a 

steady influx of new mutations. Positive selection (orange arrows) increases fixed 

differences, reduces invariant sites, and reduces polymorphisms. Strong negative selection 

(blue arrows) reduces fixed differences and polymorphisms and increases invariant sites. 

Weak negative selection (green arrows) is similar but allows some low frequency 

polymorphisms to remain. (C) Phylogenies with branch lengths proportional to rates at 

which fixed differences occur along lineages. Positive or negative selection can be identified 

by significant increases or decreases, respectively, in the fixation rates relative to the 

expectation under neutral drift. Different likelihood ratio tests can identify lineage-specific 

or recurrent/homogeneous selective pressures. (D) Scatter plot of polymorphism vs. 

divergence rates under neutral drift, generated by simulations based on parameters reflecting 

real human populations [45] (black points). Points represent different loci with variable 

mutation rates. Colored points show hypothetical positions of loci under positive (orange), 

strong negative (blue), and weak negative (green) selection. Notice that positive and 

negative selection are distinguishable by their joint effects on polymorphism and divergence 

rates, but not by polymorphism rates alone. (E) 2 × 2 contingency table used for McDonald-

Kreitman (MK) test for selection on a cis-regulatory element (CRE). The test evaluates the 

probability of the observed data under the null hypothesis that the relative polymorphism 

and divergence counts are independent of the labels “reference” (sites putatively under 

neutral drift) and “CRE”. The classes of sites are chosen to be similar to one another in other 

respects to avoid potential biases from mutation rate variation and demography. Rejection of 

the null hypothesis therefore implies a departure from the neutral expectation of equal 

fixation rates. Note the connections with the visual representations used in panels (B) and 

(D). The MK test can be thought of as comparing the relative heights in panel (B) of the first 

bar and the next two bars combined, for reference vs. CRE sites (see arrows). It can also be 

thought of as testing for extreme departures from a diagonal line in panel (D) running 

through the neutral points from bottom left to top right. In this example, the counts reflect an 

excess of fixed differences in the CRE, suggesting positive selection. Notice that strong 

negative selection is not a problem for the MK test, because it reduces the effective mutation 

rate, but weak negative selection can bias the test by partially canceling the effects of 

positive selection.

Siepel and Arbiza Page 16

Curr Opin Genet Dev. Author manuscript; available in PMC 2015 December 01.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
Some of the many factors that may influence the evolution of cis-regulatory elements.
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