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Factor inhibiting hypoxia-inducible factor 1 (FIH-1; official symbol HIF1AN) is a hydroxylase that
negatively regulates hypoxia-inducible factor 1a but also targets other ankyrin repeat domaine
containing proteins such as Notch receptor to limit epithelial differentiation. We show that FIH-1 null
mutant mice exhibit delayed wound healing. Importantly, in vitro scratch wound assays demonstrate
that the positive role of FIH-1 in migration is independent of Notch signaling, suggesting that this
hydroxylase targets another ankyrin repeat domainecontaining protein to positively regulate moto-
genic signaling pathways. Accordingly, FIH-1 increases epidermal growth factor receptor (EGFR)
signaling, which in turn enhances keratinocyte migration via mitogen-activated protein kinase
pathway, leading to extracellular signaleregulated kinase 1/2 activation. Our studies identify leucine-
rich repeat kinase 1 (LRRK1), a key regulator of the EGFR endosomal trafficking and signaling, as an FIH-
1 binding partner. Such an interaction prevents the formation of an EGFR/LRRK1 complex, necessary for
proper EGFR turnover. The identification of LRRK1 as a novel target for FIH-1 provides new insight into
how FIH-1 functions as a positive regulator of epithelial migration. (Am J Pathol 2014, 184: 3262e3271;
http://dx.doi.org/10.1016/j.ajpath.2014.08.014)
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The asparaginyl hydroxylase factor-inhibiting hypoxia-
inducible factor 1a (FIH-1; official symbol HIF1AN) was
originally identified as a protein that interacts with and in-
hibits the activity of hypoxia-inducible factor 1a (HIF-1a) in
the C-terminal transactivation domain1,2 by coupling the
oxidative decarboxylation of 2-oxoglutarate to the hydrox-
ylation of HIF-1a.3 Significantly, proteins containing the
ankyrin repeat domain, such as Notch, are other substrates for
FIH-1.3 Only recently has FIH-1 been recognized to have
pleiotropic roles in maintaining epithelial homeostasis.4,5 For
example, FIH-1 negatively regulates glycogen metabolism in
corneal epithelium in a HIF-1aeindependent manner via the
direct involvement of the Akt/glycogen synthase kinase 3b
signaling pathway.4 Furthermore, in epidermal and corneal
epithelial keratinocytes, FIH-1 was shown to act as a negative
stigative Pathology.

.

regulator of differentiation via a coordinate decrease in Notch
signaling.5 What is not clear in these studies is whether FIH-1
affects other signaling pathways known to influence kerati-
nocyte growth, differentiation, and migration. For example,
the regulation of Notch 1 activity by FIH-15 raises the pos-
sibility of cross-talk with the epidermal growth factor receptor
(EGFR)-signaling pathway, since EGFR signaling has been
shown to be a negative regulator of Notch 1 gene expression
and activity in keratinocytes.6
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FIH-1/LRRK1 and Keratinocyte Migration
Once EGF binds to the EGFR, numerous signaling
pathways are activated that impact on cell proliferation,
migration, differentiation, and survival.7e9 With respect to
the skin, EGFR impacts on epidermal and hair follicle
development, keratinocyte proliferation, survival, cancer,
and immune homeostasis.10 EGFR signaling also plays a
prominent role in epidermal and corneal epithelial migra-
tion and wound repair. For example, in the epidermis,
EGFR signaling has been shown to promote keratinocyte
migration and wound repair.11 Likewise, corneal pertur-
bations activate the EGFR and downstream Ras-Raf-Mek-
Erk1/2 (Ras, Raf, mitogen-activated protein kinase kinase,
extracellular signaleregulated kinase 1/2) and phosphoi-
nositide 3 kinaseeAkt signaling cascades, which are
required for efficient wound healing and are attenuated in
patients with diabetic keratopathies.12e14

The activation of EGFR also commences endocytic
trafficking, whereby the receptor is either packaged in ly-
sosomes for degradation or recycled to the cell surface.15,16

Endosomal trafficking is essential for establishing the
extensiveness of the EGF-mediated signal, and thus much
attention has been directed toward understanding the steps
involved in the movement of the EGFR from the cell
surface to cytoplasmic vesicles, such as the endosome,
multivesicular body, and lysosome.16e18 Recently,
leucine-rich repeat kinase 1 (LRRK1) was recognized as a
key regulator of EGFR endosomal trafficking.19,20 Spe-
cifically, it is believed that LRRK1 forms a complex with
activated EGFR through an interaction with growth factor
receptorebound protein 2 and that this complex is inter-
nalized in early endosomes.19 The mechanism by which
LRRK1 regulates EGFR transport is from early to late
endosomes.19

LRRK1 protein kinase is one of the ROCO proteins, which
contain a GTPase-like domain [Ras of complex proteins
(Roc)] and a C-terminal of Roc (COR) domain.21 ROCO
proteins have a series of leucine-rich repeats and/or ankyrin
repeats, with LRRK1 containing six N-terminal ankyrin re-
peats.22 This latter aspect of LRRK1 is noteworthy since, as
mentioned above, proteins with ankyrin repeat domains are
potential substrates for FIH-1.3 Thus, FIH-1 has the potential
to directly interact with LRRK1, which could impact on
EGFR signaling.

Here we show that ectopic expression of FIH-1 in kerati-
nocytes increases phosphorylation of the EGFR, which posi-
tively affects keratinocyte migration via stimulation of the
mitogen-activated protein kinase pathway, resulting in an in-
crease in phosphorylated ERK1/2. Such enhancedmigration is
independent of Notch signaling. Moreover, our studies reveal
that FIH-1 interacts with LRRK1 and prevents the formation
of an EGFR/LRRK1 complex necessary for proper EGFR
turnover.19 The identification of LRRK1 as a substrate for
FIH-1 provides new insight into how FIH-1 functions as a
positive regulator of epithelial migration. Thus, the breadth of
FIH-1 epithelial biology is considerably larger than previously
realized.
The American Journal of Pathology - ajp.amjpathol.org
Material and Methods

Mice

The FIH-1 null mice were generated by breeding the FIHflox
mouse with the Ella-Cre transgenic mouse.23 Wild-type (WT)
mice (C57BL/6) were purchased from Charles River Labora-
tories. For skin wound healing assays, mice were first anes-
thetized, and the area assigned for wounding was shaved. Two
3-mm full-thickness punch wounds were generated on the
dorsal skin. Wounds were imaged by a Nikon camera (Nikon
Corp., Tokyo, Japan) at 3 and 5 days postwounding, and the
sizes of wounds were analyzed using ImageJ software version
1.49d (NIH, Bethesda, MD). To monitor the histological
process of wound healing, another cohort of mice was used
and sacrificed at 2 days postwounding, and the wound was
excised and fixed. A series of sections (N Z 4; 50 microns
away from each other) were stained with hematoxylin and
eosin, and the distances were measured by ImageJ:

Epithelial gap closureZ
ðWidth of wound � epithelial gapÞ

Width of wound
: ð1Þ

For corneal wounds, mice were first anesthetized, and the
application of a rotating diamond burr to the surface of the
central cornea resulted in the removal of the corneal epithe-
lium, whereas the limbal epithelium remained intact and then
tissues were embedded in paraffin blocks. Animal experiments
were approved by the Northwestern University Animal Care
and Use Committee.

Cell Culture, Transduction, and Transfection

Primary cultures of human epidermal keratinocytes (HEKs)
were isolated from neonatal foreskin by Northwestern Uni-
versity Skin Disease Research Center keratinocyte core as
described24 and maintained in medium 154 (Cascade Bio-
logicsInc., Portland, OR) containing human keratinocyte
growth supplements and 0.07 mmol/L CaCl2. Primary human
corneal epithelial keratinocytes (HCEKs) were isolated from
cadaver donor corneas provided by Midwest Eye Bank (Ann
Arbor, MI) and cultured in CnT-20 media with supplements
(CELLnTEC Advanced Cell Systems AG, Bern, Switzerland)
on collagen IVecoated plates (BD Biosciences, San Jose,
CA). The limbal derived corneal epithelial cell line, hTCEpi,25

was grown in keratinocyte serum-free medium with supple-
ments (Invitrogen, Carlsbad, CA) and 0.15 mmol/L CaCl2.

For retroviral infections, keratinocytes were transduced
with retroviral supernatants produced in Phoenix ampho-
tropic packaging cells, as previously described.24 For lenti-
viral infections, keratinocytes were transduced with lentiviral
supernatants (produced by the Northwestern University
Skin Disease Research Center RNA/DNA Delivery Core
Facility) for 6 hours and switched to fresh culture medium
overnight.

To silence gene expression, 20 nmol/L siRNA smart
pools targeting at least two different sequences in the FIH-1
3263
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Figure 1 FIH-1 promotes wound healing in mouse skin and eyes. A: Full-
thickness skin wounding by 3-mm punch or removal of the corneal epithelium
by application of a rotating diamond burr to the surface of the central cornea
was performed. Immunohistochemical analysis of FIH-1 in unperturbed
and wounded epithelia was conducted. Note perturbation increases FIH-1
expression in epidermal, limbal, and corneal epithelia. B: Representative
skin wound images from control and FIH-1edeficient [FIH-1 (�/�)] mice at
different time points after full-thickness skin wounding (left panel). Quan-
titative analysis of wound closure obtained from four different mice (right
panel). C: Hematoxylin and eosinestained sections of control and FIH-
1edeficient mice show the gaps between the leading edges of wounds 2 days
postwounding (arrows; left panel). Degrees of re-epithelialization of the
wound at days 2 and 3 were calculated based on the percentages of original
wound diameter (right panel). Data are expressed as means � SD (B). nZ 4
(B). *P < 0.05. Original magnification: �400 (A).

Peng et al
and LRRK1 genes or a scrambled negative control (Dhar-
macon, Inc., Lafayette, CO) were transiently transfected into
cells using siRNA transfection reagent (RNAiMAX; Invi-
trogen), as described.26

Immunoprecipitation and Western Blot Analysis

For immunoprecipitation, protein lysates were prepared in
radioimmunoprecipitation assay buffer [50 mmol/L Tris-
HCl (pH 7.4), 150 mmol/L NaCl, 0.25% deoxycholic acid,
1% NP-40, 1 mmol/L EDTA, 1 mmol/L phenyl-
methylsulfonyl fluoride, phosphatase inhibitor cocktail
(Thermo Fisher Scientific Inc., Rockford, IL), and protease
inhibitor cocktail (Thermo Fisher Scientific Inc.)] and sub-
jected to immunoprecipitation, as previously described.27

The supernatant was added with 20 mL of protein A/G
PLUS-Agarose beads (Santa Cruz Biotechnology, Inc., Santa
Cruz, CA) and the indicated antibodies and rotated for 2
hours at 4�C. The beads were washed three times with ice-
cold phosphate-buffered saline and subjected to immuno-
blot analysis.

Western blot analyses were performed as described previ-
ously.5 The following antibodieswere used: FIH-1 (sc-271780),
a-tubulin (sc-23948), EGFR (sc-373746), glyceraldehyde-3-
phosphate dehydrogenase (sc-25778; Santa Cruz Biotech-
nology), LRRK1 (PA5-13868; Thermo Fisher Scientific Inc.),
p-tyrosine (05-321; EMD Millipore, Billerica, MA), p-EGFR
(2234 and 2237), and p-ERK (4370; Cell Signaling Technol-
ogy, Inc., Beverly, MA).

IHC Analysis and Immunofluorescence

Paraffin sections were processed for immunohistochemical
(IHC) analysis or hematoxylin and eosin staining, as
described previously.5 For FIH-1 staining, sections were
incubated for 1 hour with FIH-1 rabbit polyclonal antibody
(1:300; sc-48813; Santa Cruz Biotechnology). Sections were
counterstained with hematoxylin to visualize morphology
and mounted in Permount (Thermo Fisher Scientific Inc.).
Images were obtained using a Zeiss AxioCam HR digital
camera mounted on a Zeiss Axioplan 2 bright field micro-
scope system with a Plan-Neofluar 40�/0.75 objective (Carl
Zeiss AG, Oberkochen, Germany). AxioVision software
version 4.8 (Carl Zeiss AG) was used to acquire the images.

Early endosome abundance (EEA) 1 staining was per-
formed as previously described.19 Briefly, cells grown on
culture slides were incubated in the medium without supple-
ments overnight and then treated with Alexa Fluor 647 EGF
complex (Life Technologies Corp., Carlsbad, CA) (100 ng/
mL) at 4�C for 30 minutes. After washing with phosphate-
buffered saline, cells were incubated in the medium without
supplements and EGF for the indicated time at 37�C and fixed
with 4% paraformaldehyde for 10 minutes. Slides were
incubated overnight with an antibody recognizing EEA1
(1:100; 610457; BD Transduction Laboratories, San Jose,
CA). After washing, slides were incubated with Alexa 488-
3264
linked secondary IgG (Vector Laboratories, Inc, Burlingame,
CA). Images were acquired using a laser-scanning confocal
microscope imaging system (UV LSM 510 META; Carl
Zeiss) with a Plan Apochromat63 chroma/1.4 oil immersion
objective. The Pearson coefficient was analyzed by ImageJ.

Inhibitors

For pharmacological inhibition of FIH-1 activity, Mek-ERK1/
2, EGFR, Notch signaling, and endocytosis, the cells were
pretreated with 1 mmol/L dimethyloxalylglycine (Santa Cruz
Biotechnology) for 2 hours, 10mmol/LU0126 (Sigma-Aldrich
Corp., St. Louis, MO) for 2 hours, 0.1 mmol/L AG1478
ajp.amjpathol.org - The American Journal of Pathology
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Figure 2 FIH-1 positively regulates keratinocyte cell migration. A and B: The limbal-derived corneal epithelial hTCEpi cells were treated with the cell-
permeable FIH inhibitor dimethyloxalylglycine (DMOG) or dimethyl sulfoxide (DMSO) for 2 hours. At this time, confluent hTCEpi cells were scratch-wounded
and then allowed to migrate until wounds were closed (8 hours; vehicle). C and D: hTCEpi cells were lentivirally transduced with an shRNA against either FIH-
1 (shFIH-1) or sh control (shCTRL). These transduced cells were used for immunoblot analysis of FIH-1 and GAPDH (C) and scratch-woundehealing assays (D).
E and F: HEKs were transfected with an siRNA pool against either FIH-1 (siFIH-1) or scrambled control (siCTRL) and then used for immunoblot analysis of FIH-1 and
GAPDH (E) and scratch-woundehealing assays (F). GeJ: HEKs and HCEKs were retrovirally transduced with FIH-1 or empty vector (LZRS) and then immunoblot
analyses of FIH-1 and GAPDH were performed in HEKs (G) and HCEKs (I) and scratch-woundehealing assays were conducted in HEKs (H) and HCEKs (J). The
percentage of wound closure from a representative experiment was measured temporally using AxioVision software. K: Single-cell migration assays were performed
in HCEKs transduced with either FIH-1 or empty vector (LZRS) using a Nikon Biostation system. The persistency of migration path was calculated based on the ratios
of the distance between the starting and ending points and the total path length. L: Scratch-wound assays were performed on hTCEpi cells transfected with either
siFIH-1 or siCTRL after 16-hour pretreatment with 10-mmol/L DAPT. DAPT is a g-secretase inhibitor that blocks Notch signaling. M: Immunoblot analyses of FIH-1
and GAPDH were performed after scratch-wounding. Data are means � SD (B, D, F, H, J, K, and L). n Z 3 (B, D, F, H, J, and L); n Z 8 (K). *P < 0.05.

FIH-1/LRRK1 and Keratinocyte Migration
(Sigma-Aldrich Corp.) for 2 hours, 10 mmol/L N-[N-(3,
5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester
(DAPT) (Sigma-Aldrich Corp.) for 16 hours, and 20 mM
chloroquine overnight, respectively.

Scratch Wound Assay

Cells were grown to confluence on 12-well plastic dishes,
and linear scratch wounds (in triplicate) were generated on
the confluent monolayers using a 200-mL pipette tip. Images
The American Journal of Pathology - ajp.amjpathol.org
were obtained at room temperature using a Zeiss AxioCam
MR digital camera mounted on a Zeiss Axiovert 40CFL
inverted light microscope with an A-plan 10�/0.25 Ph1Var
objective (Carl Zeiss AG). AxioVision software was used to
acquire the images. The percentage decrease in the wound
gaps were calculated using AxioVision computer-assisted
image analysis and normalized to the time-0 wounds. To
rule out the contribution of proliferation in the sealing of
linear scratch wounds, cells were pretreated with 5 mg/mL
mitomycin C (EMD BioSciences, Inc., San Diego, CA).
3265
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Figure 3 FIH-1 enhances EGFR signaling to promote keratinocyte
cell migration. HEKs (A) and HCEKs (B) were retrovirally transduced with
either FIH-1 or empty vector (LZRS). Protein lysates from HEKs or HCEKs
were harvested for immunoprecipitation (IP) or Western blot analysis
(IB). Immunoprecipitated EGFR was probed for phosphotyrosine (p-Y).
Radioimmunoprecipitation assayesoluble lysates were also immunoblot-
analyzed for total EGFR, p-ERK, ERK, FIH-1, and GAPDH. C and D: Results
from scratch-wound assays on HEKs retrovirally transduced with either
FIH-1 or empty vector (LZRS) after 2-hour pretreatment with 10-mmol/L
U0126 (a Mek1/2 inhibitor) and 0.1-mmol/L AG1478 (EGFR inhibitor) to
inhibit the Mek1/2-ERK1/2 and EGFR pathways, respectively. Data are
expressed as means � SD (C and D). n Z 3. *P < 0.05 versus empty vector
(LZRS); yP < 0.05 versus FIH-1 with U0126 or AG1478.

Peng et al
Statistical Analysis

All values are expressed as means � SD. The significance of
the differences between two groups was evaluated by an un-
paired Student’s t-test and two-way analysis of variance test.

Results

FIH-1 Is a Positive Regulator of Keratinocyte Migration
and Wound Healing

Increased FIH-1 levels are associated with defects in keratino-
cyte differentiation and glycogen metabolism.4,5,28 Not sur-
prisingly, FIH-1 is normally undetectable in mouse epidermis
and corneal epithelium (Figure 1A). In contrast, there is a
marked up-regulation of FIH on wounding, particularly in cells
at the leading edge of the wound (Figure 1A). This led us to
hypothesize that FIH-1 plays a role in epithelial cell migration.

To determine whether FIH-1 is required for normal wound
healing, we examined the ability of mice with a null mutation in
the FIH gene (FIH-1�/�) to heal full-thickness skin wounds.
Woundclosurewasvisiblydelayed inFIH-1�/�micebeginning
3 days after wound initiation (P< 0.001) (Figure 1B). Wounds
were clinically visible in the FIH-1�/� mice 5 days post-
wounding, whereas wounds were virtually closed in the control
mice at this time (Figure 1B). Re-epithelialization, a histological
measureof epidermal closure,was less in controlmiceversus the
FIH-1�/� mice on day 2 (P< 0.05) and on day 3 (PZ 0.057)
after wound initiation (Figure 1C). Taken together, these find-
ings support the idea that FIH-1 enhances re-epithelialization,
which contributes, in part, to efficient wound healing.

To examine whether FIH-1 has a direct effect on epithelial
cell migration, we used a scratch wound assay in a telomerase
immortalized human corneal epithelial cell line,25 which has
high endogenous levels of FIH-1.5 Treatment of hTCEpi
cells with the cell-permeable FIH inhibitor dimethylox-
alylglycine2 to inhibit hydroxylase activity resulted in a 50%
delay in sealing the linear scratch wounds (Figure 2, A and
B). This finding suggests that the hydroxylase activity of
FIH-1 is important in normal wound healing.

As dimethyloxalylglycine is a general hydroxylase inhibitor
and could have off-target effects, we also used shFIH-1 to
knock down FIH-1 in hTCEpi cells (Figure 2C), and with
such treatment, the healed distance was 20% less at 6 hours
(Figure 2D). To exclude the possible nonspecific effect of
RNA interference, we also used a siRNA smart pool, targeting
two different sequences in FIH-1 mRNA. In hTECpi cells,
knocking down FIH-1 using this siRNA smart pool also led to
a significantly slower wound closure (Figure 2L). To confirm
the siRNA results in primary keratinocytes, we used HEKs
and noted an even greater delay in sealing scratch wounds
when FIH-1 was decreased in these cells (Figure 2, E and F).
Notably, HEKs and HCEKs express relatively low levels of
FIH-1 and seal wounds slower compared with hTCEpi cell
lines. We reasoned that elevating the levels of FIH-1 in HEKs
and HCEKs would enhance wound sealing if this hydroxylase
3266
were a positive regulator of epithelial cell migration. To
overexpress FIH-1, we retrovirally transduced submerged
primary cultures of HEKs and HCEKs. With FIH-1 trans-
duction in HEKs and HCEKs, sealing of linear scratch
wounds was increased (Figure 2, GeJ). In all studies, prolif-
eration was blocked using mitomycin C. To complement these
studies, we also looked at the effects of FIH-1 on the migra-
tory ability of single cells using live-cell imaging and observed
a 50% enhancement in the directional migration (path length/
distance) of FIH-1etransduced HCEKs compared with empty
vector (LZRS)-transduced HCEKs (Figure 2K).
Since Notch signaling has been suggested to play a role in

keratinocyte migration,29 we examined whether a FIH-1/Notch
interaction affects the ability of keratinocytes to seal scratch
wounds. We performed scratch wound assays after pharma-
cological blockade of Notch signaling with DAPT. With the
inhibition of Notch signaling, the delayed wound healing
observed in keratinocytes treated with siFIH-1 was not rescued
(Figure 2, L and M). Collectively, these results suggest that
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


FIH-1/LRRK1 and Keratinocyte Migration
FIH-1 is a positive regulator of keratinocyte migration, inde-
pendent of Notch signaling.
FIH-1 Activates EGFR Signaling in Human
Keratinocytes

Given that EGFR signaling plays a crucial role in keratino-
cyte migration,11e13,27,30,31 we asked whether FIH-1 directly
The American Journal of Pathology - ajp.amjpathol.org
affects EGFR signaling. We retrovirally transduced sub-
merged primary cultures of HEKs and HCEKs maintained in
low calcium (Figure 3, A and B). Cell extracts were subjected
to immunoprecipitation with anti-EGFR antibody, followed
by immunoblot analysis with anti-phosphotyrosine antibody.
Immunoblot analysis confirmed that EGFR phosphorylation
was increased in the FIH-1etransduced HEKs and HCEKs
compared with the LZRS controls (Figure 3, A and B). With
FIH-1, the amount of pERK1/2 in the HEKs and HCEKs was
also increased (Figure 3, A and B). To determine whether FIH-
1 accelerates wound healing in the absence of EGFR or ERK1/
2 signaling, we performed scratch wound assays after phar-
macological blockade of the upstream activator of EGFR
(AG1478) orMEK1/2 (U0126). As expected, after interference
with EGFR (Figure 3C) or ERK1/2 (Figure 3D) signaling,
scratch wound sealing was inhibited in both control and FIH-
1etransduced keratinocytes comparedwith untreated and FIH-
1 transduced keratinocytes. This finding indicates that the
positive effect that FIH-1 exerts on keratinocyte migration is
primarily working through the EGFR/ERK1/2 signaling axis.

FIH-1 Interacts with LRRK1 to Alter EGFR Signaling

A major determinant of the intensity and duration of EGFR
signaling is the trafficking event that relocalizes the receptors
from the cell surface to intracellular endocytic compart-
ments.19,32,33 To address FIH-1 and EGFR signaling in this
context, we looked at the proteins involved in endosomal
trafficking that were potential substrates for FIH-1. LRRK1
regulates endosomal trafficking of the EGFR,19,20 and this
kinase contains six N-terminal ankryin repeats,22 which
could serve as a substrate for FIH-1.3 LRRK1 appears to be
expressed in many tissues; however, its expression in skin
and/or epithelia has not been reported.22 Immunoblot anal-
ysis showed that LRRK1 was expressed in primary cultures
of HEKs cultured in low-calcium conditions (Figure 4E). To
Figure 4 FIH-1 forms a complex with LRRK1 that affects EGFR activation
and keratinocyte migration. A and B: Interaction of LRRK1 with FIH-1.
Complex formation of ectopically overexpressed (A) or endogenous (B) FIH-
1 with endogenous LRRK1 in HEKs was detected by immunoprecipitation
with anti-LRRK1 antibodies, followed by immunoblot analysis with antie
FIH-1 antibodies. C: Interaction of endogenous LRRK1 with endogenous
EGFR. Complex formation in HEKs retrovirally transduced with either FIH-1 or
empty vector (LZRS) was detected by IP with anti-LRRK1 antibodies, followed
by immunoblot analysis with anti-EGFR antibodies. Radioimmunoprecipitation
assayesoluble lysates were also immunoblot-analyzed for total EGFR, FIH-1,
and GAPDH. DeG: Limbal-derived corneal epithelial hTCEpi cells (D and F)
and HEKs (E and G) were transfected with an siRNA pool against either LRRK1
(siLRRK1) or a scrambled control (siCTRL). Seventy-two hours after trans-
fection, immunoblot analysis was performed using antibodies against LRRK1,
p-EGFR, GAPDH, and p-ERK (D and E) and scratch-woundehealing assays were
conducted (F and G). H and I: hTCEpi cells were transfected with siRNA pools
against siFIH-1, siLRRK1, siFIH-1þsiLRRK1, or scrambled control (siControl).
Seventy-two hours after transfection, immunoblot analyses were performed
using antibodies against LRRK1, p-EGFR, GAPDH, and FIH-1 (H) and scratch-
woundehealing assays were performed (I). Data are means � SD (F, G, and
I). n Z 3 (F, G, and I). *P < 0.05 (F and G); *P < 0.05 versus siControl (I);
yP < 0.05 versus siFIH-1þsiLRRK1.

3267
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Figure 5 FIH-1/LRRK1 regulates EGFR signaling in part by interfering with
endosomal trafficking. HEKs (A and B) and limbal-derived corneal epithelial
hTCEpi cells (C and D) were transfected with siLRRK1 (A and C), siFIH-1 (B and
D), or siCTRL. After transfection (72 hours), cells were treated with 20-mmol/L
chloroquine (Chlo) for 2 hours or vehicle control (water), and lysates were
harvested and immunoblot-analyzed with antibodies against FIH-1, LRRK1, p-
EGFR (Y1045 or Y1068), and GAPDH. E and F: hTECpi cells transduced with an
empty vector (LZRS) or FIH-1 were treated with fluorescence-labeled EGF
(Alexa Fluor 647 EGF complex; red). Cells were harvested at 30 minutes after
treatment and stained for EEA1 (an early endosome marker; green). Colocal-
ization of EGF and EEA1 were highlighted as white pixels (E) and Pearson’s
coefficient was analyzed by ImageJ (F). The box-and-whiskers plots represent
the median line; whiskers, minimum to maximum. n Z 5 (F). *P < 0.05.

Peng et al
determine whether FIH-1 forms a complex with LRRK1 in
these cells, FIH-1 was ectopically expressed in HEKs, and
cell lysates were immunoprecipitated with an anti-LRRK1
antibody, followed by immunoblot analysis with antieFIH-
1 antibody. Such experiments demonstrate that LRRK1 as-
sociates with FIH-1 when overexpressed in keratinocytes
(Figure 4A). Consistent with this association, endogenous
FIH-1 immunoprecipitated with LRRK1 (Figure 4B).

Recently, it was reported that LRRK1 can form a complex
with phosphorylated EGFR to promote the delivery of
p-EGFR from early to late endosomes.19 These in-
vestigations were performed in cell lines (eg, HeLa, COS-7,
and HEK 293), and it was not clear whether an EGFR/
LRRK1 interaction existed in primary cultures of human
keratinocytes. We were able to detect such an interaction in
HEKs (Figure 4C).

To investigate the relationship between FIH-1 and this
EGFR/LRRK1 interaction, we ectopically expressed FIH-1
in HEKs, and cell lysates were immunoprecipitated with anti-
LRRK1 antibody, followed by immunoblot analysis with
anti-EGFR antibody. We observed a marked decrease in the
EGFR/LRRK1 interaction in the FIH-1etransduced HEKs
compared with the LZRS controls (Figure 4C), suggesting
that FIH-1 inhibits the LRRK1/EGFR interaction.

Next, we asked whether FIH-1 deficiency delays kerati-
nocyte migration via LRRK1-mediated inhibition of EGFR.
Knockdown of LRRK1 in a corneal epithelial cell line
(Figure 4D) and in HEKs (Figure 4E) resulted in an increase
in p-EGFR compared with that in controls, suggesting that
interfering with LRRK1 sustains EGFR signaling. As a result
of the increase in p-EGFR signaling due to the knockdown of
LRRK1 (Figure 4, D and E), the corneal epithelial cell line
(Figure 4F) and HEKs (Figure 4G) that were deficient in
LRRK1 sealed scratch wounds faster than did control cells
(Figure 4, F and G). With the loss of LRRK1 in the corneal
epithelial cell line, p-EGFR was markedly up-regulated
(Figure 4H), and such cells sealed wounds extremely fast
(Figure 4I). Conversely, loss of FIH-1 in these cells led to a
down-regulation in p-EGFR (Figure 4H) and a slowed rate of
cell migration (Figure 4I). Importantly, preventing the up-
regulation of LRRK1 by siRNA-mediated knockdown in
FIH-1edeficient cells normalized p-EGFR and migration
(Figure 4, H and I). In keratinocytes in which FIH-1 and
LRRK1 were silenced, there was residual LRRK1, which
could mediate EGFR endosomal trafficking. Collectively,
these findings indicate that FIH-1 interacts with LRRK1,
which increases EGFR signaling and accelerates keratinocyte
migration.

FIH-1 Regulates EGFR Endosomal Trafficking

In other cell types, LRRK1 has been shown to play a role in
EGFR endosomal trafficking.19,20 Therefore, we wondered
whether endosomal trafficking is involved in the regulation
of EGFR signaling by FIH-1/LRRK1. We treated HEKs and
a corneal epithelial cell line with chloroquine, which is a
3268
well-accepted means of blocking lysosomal/endosomal
fusion and thus of interrupting trafficking.34e36 Consistent
with a negative role of LRRK1 on EGFR activation
(Figure 4), EGFR activation was increased with the genetic
loss of LRRK1 (Figure 5, A and C), which could be enhanced
by chloroquine treatment (Figure 5, A and C). This finding
ajp.amjpathol.org - The American Journal of Pathology
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supports the idea that LRRK1 regulates EGFR signaling via
altering endosomal trafficking.

To examine whether the effect of FIH-1 on EGFR acti-
vation also involves the endosome, we conducted a similar
experiment and observed that with the knockdown of FIH-1,
phosphorylation of the EGFR was diminished, which could
be restored by chloroquine treatment (Figure 5, B and D).
These results suggest that FIH-1 maintains EGFR signaling
via an endosomal trafficking pathway required for normal
cell migration.

To test further the role of FIH-1 in EGFR endosomal
trafficking, hTECpi cells transduced with an empty vector or
FIH-1 were treated with fluorescence-labeled EGF. In this
manner we were able to detect an activated EGF/EGFR
complex. Cells were harvested at 30 minutes after treatment
and stained for EEA1 (an early endosome marker). In control
cells (Figure 5E), EGF colocalization with EEA1 was noted
after 30 minutes treatment; however, in the FIH-
1eoverexpressing cells (Figure 5E), co-localization occurred
to a significantly greater extent. Thisfinding suggests that FIH-
1may induce an accumulation of EGF/EGFR complex in early
endosomes. Taken together, these findings implicate a regu-
latory role for FIH-1/LRRK1 in the endosomal trafficking of
EGFR, ultimately promoting the migration of keratinocytes.
Discussion

This article describes a novel mechanism by which the
hydroxylase FIH-1 maintains EGFR signaling by inter-
fering with LRRK1 and thus acts as a positive regulator of
epithelial cell migration. The addition of migration to the
portfolio of cellular processes that FIH-1 influences un-
derscores the importance of this hydroxylase in epithelial
biology. FIH-1 is not prominently expressed in unper-
turbed epithelia; however, it is up-regulated in conditions
of abnormal differentiation, such as psoriasis and diabetic
corneal keratopathies5 and wound healing (Figure 1).
Interestingly, the limbal epithelium is one tissue in which
FIH-1 is constitutively expressed.5 The limbal epithelium
is unique in that it is the site of the corneal epithelial stem
cells.37e45 Consequently, limbal epithelial basal cells are
less differentiated than are corneal epithelial basal cells.
Thus, the finding that FIH-1 is normally present in the
limbal epithelium has been proposed as a mechanism that
helps to maintain the relatively undifferentiated phenotype
characteristic of this tissue, since FIH-1 attenuates Notch
signaling, thereby inhibiting differentiation.5 Limbal
epithelial basal cells are also considered more migratory
than are corneal epithelial basal cells since there is a
continuous centripetal migration of limbal basal cells into
the corneal epithelium to maintain homeostasis,46,47 and
after a central corneal epithelial wound is sustained, limbal
epithelial basal cells rapidly migrate into the cornea to re-
epithelialize the defect.37,48 Therefore, having a constant
source of FIH-1 as a positive regulator of cell migration
The American Journal of Pathology - ajp.amjpathol.org
makes excellent biological sense from a limbal/corneal
epithelial perspective.

miR-31 targets FIH-1 in epidermal and corneal/limbal
keratinocytes.4 In the context of the present study, miR-31 can
be thought of as a negative regulator of migration. This idea is
entirely consistent with a large body of work that has resulted
in the concept that miR-31 is the anti-metastatic miRNA.49e51

The anti-metastatic nature of miR-31 is attributed to the ability
of this miRNA to simultaneously suppress integrin-a5, radi-
xin, and RhoA.49e51 The consequence of such suppression
was a 20-fold reduction in invasion and a 10-fold reduction in
migration in breast cancer cell lines. Our finding that miR-31
targets FIH-1, which is a positive regulator of migration, raises
the possibility that FIH1 may be yet another gene that con-
tributes to the invasion/metastasis process. Interestingly, we
and others have shown that FIH-1 is up-regulated in basal and
squamous cell carcinomas5,52; however, the functional sig-
nificance of such up-regulation is presently unknown. Even
though we and others have shown that miR-31 is a crucial
negative regulator of migration, it was shown recently that this
miRNA may promote migration in an oral squamous carci-
noma cell line.53 This finding suggests that the effects of miR-
31/FIH-1 in cell migration could be tissue dependent.

We show here that FIH-1 complexes with LRRK1 to main-
tain EGFR signaling activity. An FIH-1/LRRK1 interaction is
novel and can be explained by the presence of multiple N-ter-
minal ankyrin repeats that comprise a portion of the LRRK1
protein. These ankyrin repeat domains can serve as substrate for
FIH-1.3 LRRK1 and its homologue LRRK2 belong to the
ROCO protein family, with LRRK1 containing six ankyrin re-
peats, seven leucine-rich repeats, a GRPase-like domain of Roc,
a CORdomain, and a serine/threonine kinase domain.21 LRRK2
contains most of the domains of the ROCO family.22 In terms of
function, most attention has been directed toward LRRK2, as
linkage studies have demonstrated that mutations in the LRRK2
gene in humans are linked to Parkinson’s disease.54,55 Loss of
LRRK2 protein in mice resulted in pathophysiological changes
in kidneys.56 Furthermore, LRRK2 has been implicated in
autophagy as well as in defective Wnt signaling, leading to
impaired neurogenesis.57 Recently, a comparison of the
disruption in the LRRK1 versus the LRRK2 gene in mice indi-
cated that disruption of the LRRK2 gene failed to result in
skeletal phenotypes; however, loss of LRRK1 resulted in
defective osteoclast function and severe osteopetrosis.58 This
finding suggests that LRRK1 and LRRK2 have distinct func-
tions in certain tissues (eg, LRRK1 in bone and LRRK2 in the
nervous system) and that LRRK2 cannot compensate for
LRRK1 or vice versa.58 Other than a role for LRRK1 in skeletal
muscle physiology, LRRK1 is best recognized for its regulation
of EGFR transport from early to late endosomes, which is
necessary for proper recycling of the EGFR.19,20 However, until
now, the functional significance of the LRRK1/EGFR interac-
tion was unclear. Our finding that the loss of LRRK1 in HEKs
and HCEKs apparently enhanced the ability of these cells to seal
linear scratch wounds due to increased EGFR signaling activity
suggests that the LRRK1/EGFR complex is fundamental in the
3269
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maintenance of proper epithelial cell migration. This function is
novel for this kinase in epithelial biology.
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