
The American Journal of Pathology, Vol. 184, No. 12, December 2014
ajp.amjpathol.org
SHORT COMMUNICATION
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Capillary malformationearteriovenous malformation (CM-AVM) is an autosomal dominant blood
vascular (BV) disorder characterized by CM and fast flow BV lesions. Inactivating mutations of the
RASA1 gene are the cause of CM-AVM in most cases. RASA1 is a GTPase-activating protein that acts as
a negative regulator of the Ras small GTP-binding protein. In addition, RASA1 performs Ras-
independent functions in intracellular signal transduction. Whether CM-AVM results from loss of an
ability of RASA1 to regulate Ras or loss of a Ras-independent function of RASA1 is unknown. To
address this, we generated Rasa1 knockin mice with an R780Q point mutation that abrogates RASA1
catalytic activity specifically. Homozygous Rasa1R780Q/R780Q mice showed the same severe BV ab-
normalities as Rasa1-null mice and died midgestation. This finding indicates that BV abnormalities in
CM-AVM develop as a result of loss of an ability of RASA1 to control Ras activation and not loss of a
Ras-independent function of this molecule. More important, findings indicate that inhibition of Ras
signaling is likely to represent an effective means of therapy for this disease. (Am J Pathol 2014,
184: 3163e3169; http://dx.doi.org/10.1016/j.ajpath.2014.08.018)
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Capillary malformationearteriovenous malformation (CM-
AVM) is an autosomal dominant blood vascular (BV) dis-
order that affects at least 1:100,000 individuals in Northern
European populations.1e3 The pathognomonic feature of
CM-AVM is the presence of one or more randomly distrib-
uted cutaneous CMs. In one third of patients, there are
additional fast flow lesions that include AVM, arteriovenous
fistulas, and Parkes-Weber syndrome. Complications of CM-
AVM include hemorrhage, epilepsy, hydrocephalus, cardiac
failure, and death. Inactivating mutations of the RASA1 gene,
which encodes the p120 Ras GTPase-activating protein
(p120 Ras-GAP or RASA1), are the cause of CM-AVM in
most patients. Mutations are distributed throughout the
length of the gene, and most are nonsense mutations, in-
sertions, and deletions resulting in frameshifts or disruption
of splice sites.1e9 Although not proved, it is likely that all of
these mutations result in complete null alleles because tran-
scripts would be rapidly degraded by nonsense-mediated
stigative Pathology.

.

RNA decay.10 Only one germline RASA1 allele is affected
in CM-AVM, and it has been postulated that somatic second
hit inactivating mutations in the inherited normal RASA1
allele are required for lesion development.2

As a Ras-GAP, one recognized function of RASA1 is to
inactivate the Ras small GTP-binding protein.11 Ras is an
intracellular membrane-tethered signaling protein that is con-
verted from an inactive GDP-bound to an active GTP-bound
state in response to growth factor stimulation.12 In its active
state, Ras stimulates several different downstream enzymatic
cascades that include the mitogen-activated protein kinase
(MAPK) cascade and the phosphatidylinositol 3-kinase
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(PI3K) signaling pathway that drive cell growth, proliferation,
differentiation, and survival.13e15 Ras-GAPs inactivate Ras by
inserting an arginine finger, located in a GAP domain, into the
Ras catalytic site, thereby increasing the ability of Ras to hy-
drolyze bound GTP to GDP by several orders of magnitude.16

However, RASA1 is also able to participate in growth factor
receptor signal transduction independent of an ability to
inactivate Ras.11

Consistent with the BV lesions in patients with CM-
AVM, mice that are homozygous for a null allele of Rasa1
die by embryonic day 10.5 (E10.5) of gestation as a result of
abnormal BV development.17 At E9.5, endothelial cells
(ECs) in the yolk sac are seen to assemble into a honey-
combed pattern but then fail to reorganize into a vascular
network that supplies blood to the embryo. In the embryo
proper at E9.5, a narrow and irregular dorsal aorta is
observed with abnormal projecting arteries. Local rupture of
blood vessels and a distended pericardial sac are also
apparent. The same phenotype is observed in conditional
RASA1-deficient mice in which disruption of the Rasa1
gene is restricted to ECs.18

It is unknown if dysregulated activation of the Ras
pathway or loss of a Ras-independent function of RASA1 in
ECs is responsible for the development of BV abnormalities
in RASA1-deficient mice and humans. Therefore, to address
this question, in the current studies, we generated a
Rasa1R780Q knockin mouse that expresses a form of RASA1
that lacks an arginine finger. Previous studies have estab-
lished that the R780Q mutation abrogates an ability of
RASA1 to promote Ras hydrolysis of GTP.19 BV devel-
opment in homozygous Rasa1R780Q mice was assessed.

Materials and Methods

Gene Targeting

A Rasa1R780Q targeting construct was assembled in p-loxP-
2FRT-PGKneo.20 A 50 arm that spanned introns 13 through 17
of the Rasa1 gene was generated by PCR from a C57BL/6
genomic Rasa1 BAC clone and inserted into the EcoRI/KpnI
sites of the vector. The primers used were as follows: 50 arm
forward, 50-GCGCGAATTCGCGGCCGCTTAGTCTTTC-
AGGCATTTTATAGC-30; and 50 arm reverse, 50-GCG-
CGGTACCGAATGCTTATTTACCAGGAGTGAC-30. A
middle segment spanning intron 17 through 18 was
generated by PCR from the same Rasa1 BAC clone that
contained an R780Q mutation in exon 18 that was gener-
ated by homologous recombination in Escherichia coli
(CGA to CAA codon change). The middle fragment was
inserted into the KpnI and 30 BglII sites of the vector. The
primers used were as follows: M forward, 50-GCGC-
GGTACCAGATCTAAATATTTGAGCCTATGAGGACC-
ATTC-30; and M reverse, 50-GCGCGGATCCCATATCCA-
ACTTCACATGATGTGC-30. A 30 arm that spanned introns
18 through 20 was generated by PCR from the wild-type
Rasa1 BAC clone and was inserted into the XhoI site of the
3164
vector. The primers used were as follows: 30 arm forward,
50-GCGCCTCGAGGAATTTCCCACATGGA-30; and 30 arm
reverse, 50-GCGCCTCGAGATATGTTGTCATGTAA-30.
The targeting construct was sequenced to verify the absence
of any PCR-induced errors. The construct was electro-
porated into W4 embryonic stem (ES) cells that were sub-
sequently cultured in neomycin. Genomic DNA from
neomycin-resistant ES cell clones was analyzed by quanti-
tative real-time PCR using an integration primer/probe set in
which the 50 and 30 primers flanked the FRT-NeoR-FRT
insertion site and the probe was complimentary to regions
both 50 and 30 to the point of insertion.21 Fold differences in
the amount of exon 18 target relative to that in genomicDNA
prepared from wild-type W4 ES cells were calculated as
described.22,23 Clones that demonstrated a twofold reduc-
tion in the intron 18 target were analyzed further by quan-
titative real-time PCR using a copy number primer/probe
set based within exon 14 of the Rasa1 gene (Life Technol-
ogies, Carlsbad, CA). Of those clones that contained diploid
amounts of the exon 14 target, a long-range PCR was per-
formed using aRasa1 forward primer based on the 50 of the 50

end of the Rasa1 targeting vector insert and a reverse primer
based in intron 18. A similar long-range PCRwas performed
using a forward primer based in intron 18 and a reverse
primer located 30 of the 30 end of the Rasa1 targeting vector
insert. Both PCR products were sequenced to confirm the
presence of the R780Q mutation within the endogenous
Rasa1 locus.
Two of several correctly targeted Rasa1R780Q clones were

injected into C57BL/6J X (C57BL/6J X DBA/2) blastocysts
to generate chimeric mice that were then bred with C57BL/6
actin promoter-driven Flp transgenic mice to achieve
germline transmission of the targeted Rasa1R780Q allele and
deletion of the NeoR cassette in intron 18.24 Germline
transmission and NeoR deletion were determined by PCR of
tail genomic DNA prepared from agouti coat-colored
progeny using a forward primer based in exon 18 and a
reverse primer based 30 to the 30 FRT site in intron 18.
Germline transmitted mice were then crossed with C57BL/6
mice and the same PCR was performed on tail DNA of
progeny that had not inherited the actin-Flp transgene, also
determined by PCR. This step was undertaken to obtain
mice with confirmed germline deletion of the NeoR cassette
within the Rasa1R780Q locus.

Embryonic Lethality

Rasa1R780Q/þmice were crossed with Rasa1fl/flmice with an
inserted loxP sequence in intron 18.25 Rasa1R780Q/fl progeny
were identified by PCR of tail genomic DNA using the same
primers used above to detect deletion of the NeoR cassette.
The expected PCR product sizes from the Rasa1fl and
Rasa1R780Q alleles are 685 and 604 bp, respectively.
Rasa1R780Q/fl mice were intercrossed, and Rasa1 genotypes
of embryonic and 3-week-old pups were determined by
PCR of yolk sac and tail genomic DNA, respectively, as
ajp.amjpathol.org - The American Journal of Pathology
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described above. A c2 test was used to determine the
probability that the frequency of observed genotypes of
pups and embryos were consistent with a mendelian pattern
of inheritance. Embryo images were acquired on an
Olympus SZ61 dissecting microscope equipped with a
digital camera (Lumenera, Ottawa, ON). All experiments
performed on mice were in compliance with the University
of Michigan (Ann Arbor, MI) guidelines and were approved
by the University Committee on the Use and Care of
Animals.

Western Blot Analysis

Individual E9.5 embryos were minced and digested in
trypsin/EDTA (Life Technologies) at 37�C for 15 minutes.
Murine embryonic fibroblasts (MEFs) were generated by
culture of released cells in fibroblast media (Dulbecco’s
modified Eagle’s medium, 10% fetal bovine serum, 1%
penicillin/streptomycin, and 1% L-glutamine). At conflu-
ence, MEFs were harvested and 3 � 106 cells were lysed in
1% NP-40 lysis buffer. RASA1 protein abundance was
determined by using Western blot analysis of cell lysates
using an anti-RASA1 antibody (B4F8; Santa Cruz, Dallas,
TX). Blots were stripped and reprobed with an antie
glyceraldehyde-3-phosphate dehydrogenase antibody (Santa
Cruz) to ascertain equivalent protein loading.

Whole Mount Staining

E9.5 embryos were fixed in 1% paraformaldehyde in
phosphate-buffered saline. Fixed embryos were stained with a
rat anti-CD31 antibody (BD Biosciences, San Jose, CA),
The American Journal of Pathology - ajp.amjpathol.org
followed by a secondary goat anti-rat Ig Alexa Fluor 488
antibody (Invitrogen, Carlsbad, CA). Images of embryos were
acquired on an Olympus BX60 upright fluorescence micro-
scope equipped with a digital camera (Nikon, Tokyo, Japan).

Immunohistological Data

E9.5 embryos were fixed in formalin and embedded in
paraffin. Sections (5 mm thick) were stained with a rabbit
antiephospho-extracellular signal regulated kinase (ERK)
antibody (D13.14.4E; Cell Signaling, Danvers,MA), followed
by biotinylated anti-rabbit Ig (Jackson Immunoresearch, West
Grove, PA) and streptavidinehorseradish peroxidase with
tyramide signal amplification (Perkin Elmer, Waltham, MA).
Sections were then stained with a rat anti-CD31 antibody
(sz31; Dianova, Hamburg, Germany), followed by secondary
goat anti-rat Alexa Fluor 594 (Invitrogen). Some sections were
stained with CD31 and secondary antibody alone or with he-
matoxylin and eosin. Images of sections were acquired as
described in Whole Mount Staining.

Results

Embryonic Lethality of Homozygous Rasa1R780Q Mice

A murine Rasa1R780Q allele with an inserted NeoR cassette
in intron 18 was generated by homologous recombination in
ES cells (Figure 1). Of several correctly targeted euploid ES
clones, two were injected into blastocysts. Chimeric mice
derived from both clones were bred with transgenic mice
that express the Flp recombinase under control of the actin
promoter to achieve simultaneous germline transmission of
Figure 1 Generation of Rasa1R780Q knockin
allele in mice. A: Exon-intron organization of the
murine Rasa1 gene (top) and RASA1 protein
(bottom). The positions of the R780Q and R780Q
mutations in exon 18 and the GAP domain,
respectively, are indicated. B: An R780Q targeting
vector with an R780Q mutation in exon 18 and a
FRT-flanked NeoR cassette in intron 18 is shown
below the endogenous allele. At middle is shown
the R780Q targeted allele before and after excision
of the NeoR cassette achieved with an actin
promoter-driven Flp transgene (Act-Flp). At bottom
is depicted a Rasa1 floxed allele in which exon 18
is flanked by loxP sites. Positions of real-time PCR
primer/probe pairs used in the detection of ES cell
homologous recombinants and PCR primer pairs
used in mouse genotyping are indicated. C2, pro-
tein kinase C2 homology; GAP, GTPase-activating
protein domain; PH, pleckstrin homology; SH2,
Src homology 2; SH3, Src homology 3.
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Figure 2 Embryonic lethality of homozygous Rasa1R780Q mice. A: Rasa1R780Q/fl mice were intercrossed. Tail genomic DNA from progeny at 3
weeks of age was PCR amplified using genotyping primers indicated in Figure 1. Genotyping results from two Rasa1R780Q/fl (fl/rq) pups and one
Rasa1fl/fl (fl/fl) pup are depicted. B: Graphs show the total number of pups of the indicated genotypes derived from intercrosses of Rasa1R780Q/fl

mice determined at 3 weeks after birth and at E9.5, E11, and E13.5 of development. At E9.5, genotype frequencies are consistent with mendelian
inheritance (c2 test). At E11, E13.5, and 3 weeks of age, genotype frequencies are not consistent with mendelian inheritance (P < 0.025,
P < 0.05, and P < 0.005, respectively). C and D: Light microscopic appearance (C) and hematoxylin and eosin (H&E)estained sections (D) of
Rasa1R780Q/R780Q and Rasa1R780Q/fl embryos and yolk sacs at E9.5. Features to note include reduced size and distended pericardial sac (arrow) and
wrinkled appearance of the yolk sac of Rasa1R780Q/R780Q embryos. E: MEFs derived from E9.5 Rasa1R780Q/R780Q and Rasa1fl/fl embryos were
analyzed for RASA1 protein abundance by using Western blot analysis. Blots were reprobed for glyceraldehyde-3-phosphate dehydrogenase (GAPDH)
to show equivalent protein loading. Shown are RASA1 amounts in MEF derived from two different embryos of each genotype. E, embryo proper;
YS, yolk sac.
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the targeted Rasa1 allele and deletion of the NeoR cassette
(Figure 1B). Like heterozygous Rasa1-null mice,17 hetero-
zygous Rasa1R780Q mice are healthy and do not show any
BV abnormalities.

Heterozygous Rasa1R780Q mice were crossed to mice
with a conditional Rasa1 allele in which exon 18 is flanked
by loxP sites [floxed allele (fl)] (Figure 1B) to generate
heterozygous Rasa1R780Q/fl mice.25 The Rasa1R780Q/fl mice
were then intercrossed, and genotypes of 3-week-old
progeny were determined by PCR of tail genomic DNA
using forward and reverse primers based in exon 18 and
intron 18, respectively, that readily distinguish between the
R780Q and floxed alleles (Figures 1B and 2A). In these
experiments, no homozygous Rasa1R780Q/R780Q pups were
identified using parental mice derived from either R780Q
targeted ES cell line (Figure 2B). This is consistent with
embryonic lethality of the Rasa1R780Q mutation in homo-
zygous form.
3166
To determine the time of embryonic lethality, pregnan-
cies were terminated at defined points after fertilization,
embryos were harvested, and genotype was determined by
PCR of yolk sacs (Figure 2B). At E9.5, homozygous
Rasa1R780Q/R780Q embryos were identified in expected
mendelian ratios. In contrast, at E11, a much less than
expected number of Rasa1R780Q/R780Q embryos were
identified (2 of 35 compared with an expected 9), and at
E13.5, Rasa1R780Q/R780Q embryos were absent. These
findings are consistent with midgestation lethality of
Rasa1R780Q/R780Q mice, similar to that observed in Rasa1-
null mice.17,18

At E9.5, Rasa1R780Q/R780Q embryos exhibited the same
number of somites (20 to 25) as control Rasa1R780Q/fl and
Rasa1fl/fl embryos. However, R780Q/R780Q embryos
were considerably smaller than R780Q/fl and fl/fl embryos
and appeared less developed (Figure 2, C and D). Other
gross features of E9.5 R780Q/R780Q embryos included a
ajp.amjpathol.org - The American Journal of Pathology
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distended pericardial sac and wrinkled yolk sac compared
with Rasa1R780Q/fl and Rasa1fl/fl embryos (Figure 2C)
(data not shown). Both of these features were noted
previously in Rasa1-null embryos at E9.5.17 Furthermore,
the same features were noted in the two identified
Rasa1R780Q/R780Q E11 embryos (data not shown). To
verify that midgestation embryonic lethality of
Rasa1R780Q/R780Q embryos could be attributed specifically
to the effect of the mutation on RASA1 catalytic activity
and not any unforeseen influence on RASA1 protein
stability, we prepared MEFs from E9.5 embryos and
examined RASA1 protein abundance by using Western
blot analysis. Amounts of RASA1 protein in R780Q/
R780Q MEFs were unchanged compared with fl/fl MEFs
(Figure 2E).

BV Abnormalities in Homozygous Rasa1R780Q Mice

To study potential BV abnormalities in Rasa1R780Q/R780Q

mice, we performed whole mount staining of E9.5 em-
bryos using an anti-CD31 antibody to detect ECs
Figure 3 Cardiovascular abnormalities in homozygous Rasa1R780Q mice. A and
embryos were stained with an anti-CD31 antibody to reveal blood vasculature. A
combed appearance of blood vasculature in the Rasa1R780Q/R780Q yolk sac (aster
proper (E). B: Note the disorganized dorsal aorta in the Rasa1R780Q/R780Q embryo
segmental artery.

The American Journal of Pathology - ajp.amjpathol.org
(Figure 3A). In yolk sacs of Rasa1fl/fl and Rasa1R780Q/fl

mice, organized BV networks that were continuous with
the vasculature of the embryo proper were readily iden-
tified. In contrast, no such organized vascular networks
were observed in the yolk sacs of Rasa1R780Q/R780Q mice.
Instead, ECs were often identified in a honeycombed
pattern, as described previously in homozygous Rasa1-
null mice.17 In the embryo proper of Rasa1fl/fl and
Rasa1R780Q/fl mice, a normal dorsal aorta and interseg-
mental arteries that projected between somites were
apparent. In contrast, the BV network of R780Q/R780Q
embryos was abnormal (Figure 3A). In particular, the
dorsal aorta showed a highly irregular shape. Further-
more, intersegmental arteries were frequently irregular in
shape. To confirm these findings, serial sections of em-
bryos were stained with CD31 antibodies to identify the
dorsal aorta (Figure 3B). In control mice, the dorsal aorta
was identified as a continuous structure that extended
from the heart to the posterior of the embryo. In contrast,
in R780Q/R780Q embryos, the dorsal aorta was severely
disrupted. Similar abnormalities in BV architecture were
B: Whole mount (A) and sections (B) of E9.5 Rasa1R780Q/R780Q and Rasa1fl/fl

: Note the organized BV network in the Rasa1fl/fl yolk sac (YS) and honey-
isk). Note also irregular blood vasculature in the Rasa1R780Q/R780Q embryo
compared with the Rasa1fl/fl embryo (arrows). DA, dorsal aorta; IS, inter-
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noted previously in E9.5 homozygous Rasa1-null
embryos.17

Constitutive Activation of the Ras Signaling Pathway
in ECs of Homozygous Rasa1R780Q Mice

In its activated state, Ras triggers several different signaling
cascades, including the MAPK pathway.12,26 To confirm
that MAPK was abnormally activated in BV of homozygous
Rasa1R780Q mice, sections from E9.5 embryos were stained
with an antibody specific for phosphorylated activated
forms of the ERK MAPK together with an anti-CD31
antibody (Figure 4). In control Rasa1fl/fl and Rasa1fl/R780Q

embryos, most ECs were not stained with the anti-
phosphorylated ERK (pERK) antibody. In contrast, in
Rasa1R780Q/R780Q embryos, most ECs were pERK positive.
Thus, MAPKs are constitutively activated in ECs of
Rasa1R780Q/R780Q embryos.

Discussion

Most RASA1 mutations in CM-AVM result in premature
stop codons that are predicted to cause a loss of RASA1
mRNA transcripts and RASA1 protein.2,3 Potentially,
therefore, BV abnormalities in these patients could develop
as a consequence of loss of an ability of RASA1 to inhibit
Ras activation or loss of Ras-independent functions of
Figure 4 MAPK activation in homozygous Rasa1R780Q embryos. Tissue
sections of E9.5 Rasa1R780Q/R780Q and Rasa1fl/fl embryos were stained with
anti-CD31 (red) and antiephospho-ERK (green) antibodies. Shown are select
regions of embryos that include part of the dorsal aorta (arrows). Note the
absence of pERK staining in most ECs in Rasa1fl/fl embryos and the presence
of pERK staining in most ECs in Rasa1R780Q/R780Q embryos.
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RASA1. Several Ras-independent functions of RASA1
have been described.11 One Ras-independent function is
directed cellular migration that has been observed in fibro-
blasts and is mediated by RASA1 SH2 domain recognition
of the p190 RhoGAP protein that regulates actin cytoskel-
eton dynamics.27 It has been suggested previously that
impaired directed cellular migration of ECs may underlie
the pathological abnormalities in CM-AVM.28,29 Of the few
RASA1 missense mutations that have been identified in CM-
AVM, it is currently unknown how they would affect Ras-
dependent or RAS-independent functions of RASA1 or
RASA1 protein stability.
To shed light on how loss of RASA1 might lead to BV

abnormalities in CM-AVM, we generated Rasa1R780Q

knockin mice. Arginine 780 constitutes the arginine finger of
the RASA1 GAP domain that is 100% conserved and is
essential for RASA1 to promote Ras hydrolysis of bound
GTP.11,16 On RASA1 interaction with Ras-GTP, the RASA1
arginine finger is inserted into the Ras active site, which per-
mits glutamine 61 of Ras to participate in catalysis.16 As
shown previously, mutation of the arginine finger to a gluta-
mine abrogates an ability of RASA1 to promote Ras-GTP
hydrolysis but does not affect overall protein structure.19 Ho-
mozygous Rasa1R780Q/R780Q mice showed abnormal BV
development in both the yolk sac and embryo proper and died
inmidgestation at approximately E10 to E11. In these respects,
the phenotype of Rasa1R780Q/R780Q mice is identical to that of
Rasa1-null mice. These findings, therefore, support the
contention that BV abnormalities in CM-AVM result from
loss of an ability of RASA1 to regulate Ras in ECs and not
from loss of a Ras-independent function of this molecule.
Consistent with the effect of the Rasa1R780Q mutation on

RASA1 catalytic activity, MAPK activation was increased
in ECs of Rasa1R780Q/R780Q embryos at E9.5 (Figure 4).
Thus, most ECs in mutant embryos stained strongly with
phospho-MAPK antibodies. In contrast, few ECs in control
E9.5 embryos were phospho-MAPK positive, including in
the dorsal aorta, as reported previously.30 Notably, increased
pERK staining in Rasa1R780Q/R780Q embryos was largely
confined to ECs, despite the broad expression of RASA1.
This indicates that in non-EC types in these embryos, other
Ras-GAPs compensate for the loss of RASA1 catalytic ac-
tivity in the regulation of Ras-MAPK signaling. In turn, this
might explain why phenotypes in mice and humans with
Rasa1/RASA1 mutations are relatively restricted to the BV
compartment.
Which growth factor receptors use RASA1 to inhibit Ras

activation during BV development is uncertain. One recent
study in zebrafish has indicated that RASA1 functions
downstream of the Ephrin B4 receptor to control BV devel-
opment, although this has yet to be confirmed in mammals.31

In addition, which downstream effectors of Ras drive BV
abnormalities in RASA1-deficient mice and humans is
currently unknown. As well as MAPK, PI3K and other
downstream effectors of Ras could contribute to the devel-
opment of lesions. In this regard, PI3K lies upstream of the
ajp.amjpathol.org - The American Journal of Pathology

http://ajp.amjpathol.org


RASA1 Catalytic Activity and CM-AVM
mechanistic target of rapamycin that has been shown to be
hyperactivated in CM-AVM BV.31 Potentially, therefore,
inhibitors of any of MAPK, PI3K, or mechanistic target
of rapamycin alone or in combination may prove effective
in the treatment of BV abnormalities in this condition.
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