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Public health epidemiology aims to understand the spatio-temporal spread of diseases and to 

develop methods to control such spread. The threat of pandemic outbreaks across multiple 

continents and the associated economic and social costs is a key societal concern, and 

continues to demand significant resources for modeling, detection, and control efforts (case 

in point: the recent influenza outbreak caused by H7N9 in China).

Computational epidemiology has become increasingly multidisciplinary (borrowing 

techniques from epidemiology, molecular biology, applied mathematics, theoretical 

computer science, machine learning, and high performance computing) and has led to novel 

computational methods for understanding and controlling spatio-temporal disease spread. 

Here, we highlight some recent advances, focusing specifically on modeling, data mining, 

and inferential and planning questions. We focus on infectious diseases, primarily involving 

humans.

1 Modeling Epidemics: An Interaction Based Approach

Traditionally mathematical epidemiology has focused on rate-based differential equation 

models. In this approach, one partitions the population into subgroups based on various 

criteria (e.g., demographic characteristics and disease states), and uses differential equation 

models to describe the disease dynamics across these groups. Models such as [17] 

characterize disease dynamics by a parameter, R0, the basic reproduction number. R0 is 

defined as the number of secondary infections caused by a single infective individual into a 

wholly susceptible population. It determines whether an epidemic can occur at all; if R0 < 1, 

the epidemic will die out, while if R0 > 1, then we will have an epidemic. This approach has 

been tremendously successful in informing public health policy. Nevertheless, a potential 

weakness is its inability to capture the complexity of human interactions and behaviors.

Effective planning and response in the event of epidemics is not about just prediction, but 

anticipation and adaptation. The typical workflow of a public health analyst involves the 

measure-project-analyze-intervene cycle. Diverse data is collected via surveys, social 

media, sensors and policy documents, which are then analyzed to yield contextual 
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situational representations. Dynamic models in the form of computer simulations are then 

used to interpolate as well as extrapolate from the data. Simulations are also used to evaluate 

various what-if scenarios (counterfactual experiments). This information is used by a policy 

analyst to make specific policy decisions, potentially leading to changes in epidemic 

dynamics. The measure-project-analyze-intervene cycle motivates an ‘interaction based 

approach’ for developing informatics platforms. Here we aim to accurately model the social 

interactions that form the basis of disease transmission. The approach uses endogenous 

representations of individuals together with explicit interactions between these agents to 

generate and capture the disease spread across the social interaction network.

However, this approach is fraught with new technical difficulties. It is impossible to obtain 

an accurate, detailed, time-varying urban-scale human social contact network by simple 

measurements. Nevertheless, recent advances in machine learning, data mining and network 

science make it possible to develop new approaches for producing reasonable estimates of 

such networks. We have developed one such computational approach, the synthetic 

information environments approach.

2 Synthetic Information Environments

A Synthetic Information Environment (SIE) consists of four components: 1) a statistical 

model of the population of interest, which we refer to as a synthetic population, 2) an 

activity based model of the social contact network, 3) models of disease progression, and 4) 

models for representing and evaluating interventions, public policies and individual 

behavioral adaptations [5].

First, a synthetic population is generated by integrating census data with other demographic 

and geographic data to create a population of individual agents. Synthetic populations are 

statistically identical to the data sources that are used to construct them but preserve 

individual privacy and maintain anonymity. Second, we generate a detailed minute-by-

minute schedule for each individual in the synthetic population, using time-use surveys 

combined with machine learning techniques (e.g. CART). Activities are then geo-located 

using business survey information and, using a gravity model, each individual is associated 

with particular activity locations over the course of the day. The availability of modern 

datasets collected via phone call logs and social media sites such as Foursquare provide new 

opportunities to refine the methodology and improve the quality of the assignment.

A time-varying, spatially explicit person-location network can now be constructed using the 

synthetic data. The synthesis of such networks is an ongoing research theme in 

computational social science and is sometimes referred to as generative social science [12]. 

Recently, researchers have explored other methods to synthesize smaller social contact 

networks using smart phones, RFID tags and other digital devices combined with social 

media; examples include synthesis of social contact networks for among high school 

students when attending schools and college students. These methods provide valuable data 

sources to create smaller subnetworks that can be used for validation purposes [16, 25, 28, 

21].
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In the third step, each individual is endowed with a within-host disease model represented 

using probabilistic timed transition systems (PTTS). Individual level demographic variations 

(immunity, age, etc.) can be incorporated within the framework. Individual PTTS are 

coupled via the social contact network described earlier. High performance computer 

simulations are used to understand the spread of the contagion over the network of PTTS.

The final step involves representing and analyzing public policies, individual behavioral 

adaptations, and the efficacy of various intervention strategies. A key concept here is that of 

implementable policies and interventions, i.e., policies that are realizable in the real world. 

For example, an optimal vaccination policy based on computational models might specify a 

set of k-individuals who are super-spreaders and hence should be vaccinated. But in the real 

world, it is not easy to identify these individuals explicitly. Data mining and machine 

learning techniques are used to identify surrogates (i.e., combinations of demographic and 

social attributes) that can redescribe the super-spreader property.

The biggest strengths of the SIE approach are its scalability and its extensibility. An 

epidemiologist using the system can easily design a new intervention and carry out an 

appropriate computer experiment for a large urban area like Los Angeles in minutes to 

uncover critical individuals and pathways and evaluate the indirect effects (e.g. economic 

impact) of certain policies.

Simdemics is an integrated modeling environment that embodies the SIE approach to aid 

state, local and federal public health officials in pandemic planning, response and control 

[3]. As an example, in [4] we used Simdemics to estimate the social and economic impact of 

the various public and private intervention strategies aimed at controlling influenza-like 

illness. We developed a synthetic social contact network for the New River Valley (NRV) 

area of Virginia1. We evaluated a range of realistic individual behavioral strategies as well 

as public policies to control a “flu-like” epidemic. The study showed that a combination of 

school closure, individual context-based behavioral adaptation and targeted anti-viral 

distribution can reduce the number of infections by 87% and income loss by 82% as 

compared to the base case with no intervention.

3 Big Data driving Real-time Epidemiology

Real-time epidemiology, a rapidly developing area within public health epidemiology seeks 

to support policy makers in near real-time as the epidemic is unfolding [13]. A natural use of 

real-time epidemiology is in disease surveillance, i.e., the problem of monitoring the space-

time progression of disease. Traditional tools for surveillance include sentinel clinics and 

serological sampling [8]. Recently, social media data [11, 24] has been used to obtain 

disease outbreaks and progression, an excellent example of how computational advances are 

changing public health epidemiology.

Perhaps the most celebrated example of social media surveillance is Google FluTrends 

(http://www.google.org/flutrends/) that uses search engine queries as an indicator of health-

seeking behavior, and thus an indicator of disease (flu) activity among a population [15]. 

1Virginia Tech is a part of NRV)
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Not long after Google FluTrends was introduced, techniques for nowcasting flu rates using 

Twitter became prominent [19]. Researchers have paid careful attention to content modeling 

of tweets. For instance, Lamb et al. [18] have developed methods to separate tweets that 

report actual flu infections from others that exhibit mere awareness/concern about the flu. 

Broader uses of Twitter for syndromic surveillance, in particular for capturing spatio-

temporal distributions of symptoms and medications, have also been explored [22]. In 

general, social media is a fertile resource for exploring many epidemiological questions, 

e.g., sentiment propagation about vaccination [26].

The above methods are focused on gross estimation of disease activity over a region. In line 

with our earlier discussion about synthetic populations, researchers have also explored 

unraveling patterns of online communication from Twitter with a view to uncovering social 

interactions. Sadilek et al. [23] use geolocation and machine learning methods to estimate 

physical interactions between healthy and sick individuals and, in turn, estimate the 

likelihood of the healthy individual getting infected at some point in the future.

More recent research has focused on identifying social network sensors, i.e., identifying a 

subset of individuals whose infection states can be monitored to serve as an early indicator 

of an emerging epidemic. Christakis and Fowler [10] propose a design of social network 

sensors for monitoring flu based on the friendship paradox: your friends have more friends 

than you do. Alternatively it can be said that a friend of a random person has higher 

expected degree than that of the random person. Christakis and Fowler use the set of friends 

nominated by randomly chosen people as a sensor set. After a field study on randomly 

selected students at Harvard during the flu season in 2009, they found that the peak of the 

daily incidence curve in the sensor set occurs 3.2 days earlier than that of a random set of 

students.

In [27], we have formalized the idea of social network sensors using the notion of graph 

dominators [20]. In a given graph, a node x is said to dominate a node y if all paths from a 

designated start node to y must go through x. In our case, the start node indicates the source 

of the infection or disease. In Fig. 1 (left), which describes a social contact network with 

nodes as people, all paths from node A (the designated start node) to H must pass through B; 

therefore B dominates H. Note that a person can be dominated by many other people. For 

instance both C and F dominate J (further C dominates F). To simplify such transitive 

situations, we say that node x is the unique immediate dominator of y iff x dominates y and 

there does not exist a node z such that x dominates z and z dominates y. This enables us to 

uncover an underlying tree of dominator relationships, as shown in Fig. 1 (right), with a 

much smaller number of edges than the original graph.

If we were to reconstruct the social contact network, therefore, we can readily compute the 

dominator tree and capture critical junctures in the transmission of epidemics. Using city-

scale datasets generated by extensive microscopic epidemiological simulations involving 

millions of individuals, we have shown how the notion of dominators can provide up to 10 

days more lead time compared to the friend-of-friends approach (see Fig. 2). Most 

importantly, as we show in [27], we can develop surrogates/proxies for policy makers for 

designing social network sensors that do not require intrusive knowledge of people and their 
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relationships. For instance, we can identify demographic properties that best redescribe the 

dominator relationship, and use these properties to help form the sensor set in practice.

4 Resource Allocation, Behavior Modeling, and Inference

Computational models and machine learning are important for broader policy questions in 

epidemiology as well. When applying these techniques in practice, one faces the usual 

challenges: the data is noisy and insufficient, resources are scarce, there are multiple 

objective functions, and most importantly time to decision making is short.

Resource optimization problems arise in epidemiology when scarce public health resources 

need to be expended to respond to epidemic outbreaks. Examples of such problems include: 

(i) allocation of vaccines and anti-virals, (ii) medical equipment such as facemasks, hospital 

beds, ventilators, etc., (iii) staffing problems at hospitals, and (iv) allocation of 

pharmaceuticals. The objective functions are complex, including economic costs, health 

costs, and social disruptions. Moreover the objectives are usually conflicting, thus making 

the decision-making process harder.

Inference problems in epidemics arise from the need to understand the spatio-temporal 

characteristics of an epidemic especially at the start of the epidemic. Examples include: (i) 

inferring the index case, (ii) inferring the disease properties, (iii) inferring the social contact 

network and (iv) inferring the transmission tree.

A prototypical and important problem is vaccine allocation for controlling influenza 

outbreaks. Even the basic problem is computationally challenging. It is complicated by the 

fact that due to various logistical complications, vaccines become available in batches. 

Moreover, just like in the social network sensors problem, it is important to develop an 

implementable strategy for assigning vaccines. Classical work has focused either on optimal 

strategies that are not implementable or on allocating vaccines to predefined groups. In [1], 

we combine data mining techniques and dynamical properties of networks to design a near-

optimal vaccination strategy that compares very well with known strategies.

It is important to note that the application of interventions, guided by public policy, will in 

turn induce behavioral changes in individuals. A computational representation theory of 

behaviors as it pertains to epidemiology thus needs to be developed. Health scientists have 

developed verbal or conceptual behavioral models [6, 2] to understand the role of behaviors 

in public health. But these models are typically informal and it is quite demanding to 

identify the data necessary to instantiate in-silico behavioral models. Recent advances in 

social media, crowd sourcing (e.g., Computational Turk), online games, online surveys, and 

digital traces all form the basis of potentially very exciting methods to make progress in this 

direction [14]. In [7], we have developed a computational modeling environment wherein 

complex behaviors and interventions can be represented and analyzed. Fig. 3 presents the 

interface to our system that enables the analyst to set up complex statistical experiments 

(interventions) and analyze their effects on the underlying population. The experiments are 

then executed using a high performance computing oriented simulation, and the results are 

summarized and presented to the user.
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As a case study, we have explored an important policy problem in epidemiology: is there an 

optimal strategy to distribute a limited supply of anti-viral (AV) doses between the public 

stockpile administered through hospitals and private stockpiles distributed through a market 

mechanism? In modeling this problem, we considered a number of measures of 

effectiveness, including number of people infected, peak number of infections, cost of 

recovery, and equitable allocation. We were broadly interested in understanding how disease 

dynamics, individual behavior, network structure, and AV demand co-evolve. We developed 

and instantiated several behavioral models based on published literature and data. These 

models spanned individual behaviors (e.g., reporting of symptoms by infected persons), 

family behaviors (e.g., purchasing behaviors and isolation precautions), and organizational 

behaviors (including behavior of markets as well as entities such as hospitals). See [9, 7] for 

more details.

Key findings based on our experiments include: (i) Market based distribution is inherently 

inequitable, (ii) Prevalence of elastic demand leads to inequitable distribution (due to price 

increase); this provides ways to evaluate government investment, (iii) There is an optimal 

allocation strategy of AVs between public and private stockpiles, (iv) Natural behavior 

adaptations in conjunction with well established logistics (markets + public distribution) 

reduce and delay the peak infection rate.

5 Conclusions

The use of machine learning and reasoning methods in support of computational 

epidemiology is a rich area with many significant research challenges. Key areas for future 

research include:

New methods and data sources for extending synthetic populations

This is a relatively understudied problem, and formal characterization of the difficulty of the 

problem as well as efficient and effective algorithm development needs to be undertaken.

Integrating model-driven methods with data mining approaches

We have hinted at some possibilities here but more opportunities abound, e.g., using a 

combination of approaches to design quarantine policies from field data, behavioral models, 

and a theory-driven statement of epidemiological objectives.

Social network sensors

Can we develop new methods and surrogates for identifying sentinel populations from both 

massive passive data (twitter) and for use in clinics and hospitals?

Fine-grained modeling of social media datasets

As techniques for content modeling and text mining become increasingly sophisticated, we 

believe there will be a greater carryover of such methods to syndromic surveillance with 

real-time epidemiological applications.
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Active data collection, leading to co-evolving policy, simulation, and mining

There is increasing interest in conducting cell phone surveys and integrating such survey 

data with more passively gathered information. Active data can help ‘fill in the gaps’ that 

traditional data mining of passive datasets. For instance, a survey of disease symptoms in a 

targeted region combined with mining of tweets can give lead time advantages in detecting 

an emerging epidemic.
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Figure 1. 
(i) An example graph and (ii) its dominator tree.
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Figure 2. 
Monitoring an epidemic using a social network sensor based on the dominator heuristic 

enables earlier detection, i.e., the peak in the sensor curve occurs ahead of the peak in the 

general population.
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Figure 3. 
Isis is a web-based decision support environment that allows public health epidemiologists 

to analyze various counter-factual scenarios related to epidemic planning.

Marathe and Ramakrishnan Page 11

IEEE Intell Syst. Author manuscript; available in PMC 2014 December 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript


