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ABSTRACT Two IL-1 receptors have been identified,
termed type I and type II. The extracellular domain of the type
II IL-1 receptor is released from certain cells and can function
as a specific inhibitor of IL-1p3 activity. We assessed the
ligand-binding properties of the type II membrane-bound and
soluble IL-1 receptor (sIL-lR) from the human B cell line Raji
by competition. Upon release, the affinity of sIL-lR for IL-la
and IL-1p remained constant, and both soluble and cell
surface IL-1 receptors bound to the same regions on the IL-1j3
molecule as defined by binding of a series of IL-1,8 mutant
molecules. However, the affinity of sIL-IR for the IL-1 recep-
tor antagonist (IL-lra) decreased by a factor of 2000 when
compared with the cell surface receptor. Type II sIL-lR and
IL-lra had an additive effect in inhibiting the binding of IL-1,B
to cell surface IL-1 receptors. In contrast, the combination of
recombinant type I sIL-lR with IL-Ira abrogated the inhibi-
tion seen with each of the individual agents alone. The type II
cell surface IL-1 receptor failed to bind the biologically inac-
tive IL-1p3 precursor molecule, but binding to the IL-1p8 pre-
cursor was observed on cellular release of the receptor; this
was confirmed with 35S-labeled IL-1,3. Binding of IL-1p8 pre-
cursor by sIL-lR inhibited the precursor's ability to be pro-
cessed to the mature, biologically active 17-kDa species. These
observations suggest that the type II sIL-lR inhibits IL-1,B at
two steps, by preventing processing of propeptide and by
blocking the interaction of mature IL-1p with type I IL-1
receptor. In addition, type II sIL-lR does not interfere with
inhibition mediated by IL-lra.

The human IL-1 gene family comprises IL-la, IL-1f3, and IL-1
receptor antagonist (IL-lra). All three share limited amino acid
identity and bind to the same receptors on different cell types (1).
In the case of IL-ia and IL-11, ligand-receptor interaction ac-
tivates signaling pathways involved in both immune and inflam-
matory responses. Binding of IL-lra to the IL-1 receptor (IL-lR)
does not trigger signal transduction, and the actions of IL-la and
IL-113 are blocked by this unique antagonist protein (2).
Both IL-ia and IL-1,B are initially synthesized as precursor

proteins of 31 kDa and are processed to 17-kDa mature
polypeptides upon release. However, release does not seem to
be dependent on processing, as significant amounts of IL-1
precursor can be found in the extracellular medium (3). The
IL-la precursor is biologically active but the IL-113 precursor
is unable to bind the IL-lR and is biologically inactive (4). The
enzyme responsible for processing the IL-1l3 precursor is a
heterodimeric cysteine protease derived from a single proen-
zyme, possibly by autocatalysis (5, 6). As the processing en-
zyme possesses no hydrophobic leader sequence, it probably
remains within the cytoplasm. The IL-183 precursor can still be
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processed to an active form after secretion by extracellular
proteases such as chymotrypsin, collagenase, elastase, and
cathpepsin G, which are present at high levels in some inflam-
matory fluids (7).
Two distinct IL-lRs have been identified, termed type I and

type II (8, 9). The type I IL-lR is an 80-kDa glycoprotein found
predominantly on T cells and fibroblasts, whereas the type II
IL-lR is a 60- to 65-kDa molecule that is expressed on acti-
vated T cells, B cells, monocytes, and neutrophils (9). Evidence
suggests that the type II IL-lR is not signal-transducing (10,
11), and its function on the cell surface is unknown.
The action of IL-1 is modulated not only by IL-lra but also by

the release of a type II soluble IL-iR (sIL-lR) (12). This 47-kDa
soluble receptor is present in normal human plasma (13), serum,
and synovial inflammatory exudate and in culture supernatants of
activated peripheral blood mononuclear cells and neutrophils
(14, 15). sIL-lR is also released from the human B-cell Burkitt
lymphoma cell line Raji, which expresses only type II IL-iR (16,
17). Here we report the characterization of the ligand-binding
properties of sIL-lR in comparison to the cell surface receptor.
The results provide evidence that the type II sIL-lR may have
evolved as an efficient regulator of IL-113 activity.

MATERIALS AND METHODS
Cell Culture. The human Burkitt lymphoma line Raji was

used as a source of type II IL-lR and sIL-lR. The murine
thymoma cell line EL-4 NOB.1 was used as a source of type I
IL-lR. Both lines were obtained from the European Cell
Culture Collection (Porton, Wilts, U.K.). The human mono-
cytic cell line THP-1 was obtained from R. Solari (Glaxo). All
cell lines were maintained at 37°C in RPMI 1640 culture
medium containing 5% fetal bovine serum in a 5% C02/95%
air atmosphere. Raji-derived sIL-lR was affinity purified (12).
Recombinant human type I sIL-lR produced from the murine
myeloma cell line NS1 was obtained from Genzyme.
Assays for Binding to Soluble and Cell Surface Receptors.

Assays were performed with 10 nM 1251-labeled IL-1,B (NEN;
specific activity, 125 ,tCi/,tg; 1 ,tCi = 37 kBq) as described
(14). Recombinant human IL-la, IL-1,3, and IL-113 precursor
were gifts from E. Kawashima (Glaxo Institute of Molecular
Biology, Geneva). Recombinant human IL-lra was a gift from
S. Eisenberg (Synergen, Boulder, CO).
Immunoblot Analysis of IL-1,8. IL-1f3 peptides were sub-

jected to SDS/15% PAGE and transferred electrophoretically
to nitrocellulose filters (0.45-,um pore size; Bio-Rad). After
incubation for 1 hr at room temperature in 5% bovine serum
albumin/200 mM Tris HCl, pH 7.4/0.15 M NaCl/0.2% Tween

Abbreviations: IL-1, interleukin 1; IL-1R, IL-1 receptor; sIL-1R, sol-
uble IL-1R; IL-lra, IL-1R antagonist.
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20 to block nonspecific sites, the filter was incubated overnight
at room temperature with a 1:500 dilution of polyclonal sheep
anti-IL-113 antiserum (gift of S. Poole, National Institute for
Biological Standards and Control, U.K) in blocking buffer.
Binding of antibody was subsequently detected by incubation
with donkey anti-sheep IgG-alkaline phosphatase conjugate
(Sigma) followed by naphthol AS-MX phosphate and fast blue
RR salt.

Expression of IL-113 Mutants. Construction and expression
of site-specific IL-1l3 mutants have been described (18). Wild-
type and mutant IL-1l3 proteins were obtained by osmotic
shock (19). Purity of the recombinant proteins was assessed to
be 90-95% by SDS/PAGE and Coomassie blue staining. Com-
petitive inhibition experiments were performed with 125I-
labeled human IL-1l3 and various dilutions of Escherichia coli
extracts containing unlabeled wild-type or mutant IL-1l3 and
the IC50 value was estimated graphically. Results were ex-
pressed as a percentage of the IC50 for the mutant molecule
compared with the unlabeled wild-type IL-1f3.

Construction of SP6 Expression Vectors and in Vitro Tran-
scription/Translation. An IL-1X3 precursor expression plas-
mid was constructed by excision of an EcoRI-Xba I digestion
fragment containing the coding region of the IL-13 precursor
from the mammalian expression vector pRSVIL-lj3pre (20)
followed by insertion into pGEM-4Z (Promega) cut with
EcoRI/Xba I. The mature IL-1l3 expression plasmid was con-
structed by cloning an Nsi I-BamHI digestion fragment from
the E. coli expression vector pMGIL-l,B (21) into pGEM-3Z
cut with Pst I/BamHI. Transcription and translation were
performed with an SP6 coupled reticulocyte lysate system
(Promega) containing 1 j,g of supercoiled plasmid DNA and
40 ,Ci of [35S]methionine (Amersham; specific activity, 1000
Ci/mmol). After transcription/translation, lysates were cen-
trifuged through Sephadex G-50 columns to remove unincor-
porated [35S]methionine.

Covalent Crosslinking of sIL-1R with IL-1. Affinity-
purified sIL-1R was covalently crosslinked in solution to ra-
diolabeled IL-1 molecules ('10 ng/ml) with disuccinimidyl
suberate (14). Specificity was assessed by inclusion of 100-fold
excess nonradioactive IL-la or IL-13. Crosslinked complexes
were identified by SDS/10% PAGE followed by fluorography.

Assay for Inhibition of IL-1j Precursor Processing. Affinity-
purified sIL-lR or an identical preparation that had been depleted
of sIL-1R by a second passage over an IL-l affinity column was
incubated at various concentrations with 50 ng of recombinant
human pro-IL-l3 in a final volume of 100 pl. After the binding
reaction mixtures were incubated at 4°C ovemight, 10 PI ofTHP-1
cell extract (prepared by freeze-thawing 108 THP-1 cells per ml in
10 mM Tris HCl, pH 8.1) was added and the temperature was
raised to 37C for 2 hr. IL-1l3 peptides were resolved by SDS/15%
PAGE, transferred electrophoretically to 0.45-pm nitrocellulose
filters (Bio-Rad) and detected by immunoblotting using sheep
polyclonal anti-IL-1(3 antiserum.

RESULTS
IL-1 Ligand Binding to sIL-1R and Cell Surface IL-1R. IL-1

ligand binding to the Raji-derived sIL-lR and cell surface type
I and type II IL-1Rs was studied by competition binding of
unlabeled IL-1 ligands with 125I-labeled IL-1,B. Equilibrium
dissociation constants (Kd) were estimated from the EC5o
values by using the Cheng-Prusoff relationship (22). These
estimates were based on Kd values for the binding of 125I IL-1f,
determined by Scatchard analysis of direct-binding data, of 2.7
nM for the type II sIL-lR and 2.2 nM for the cell surface type
II IL-1R (12).
The competitive binding curves (Fig. 1A and B) reveal that

the various IL-1 ligands bind with different affinities to the
type II cell surface IL-lR and sIL-lR. Human IL-la bound to
the sIL-lR and cell surface IL-lR with equally low affinity (Kd
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FIG. 1. Cross-competition of 125I-IL-1l3 binding to IL-iRs. Iodi-
nated IL-1,3 (10 nM) was incubated with Raji cells (A), Raji sIL-iR
(B), or EL-4 cells (C) together with various concentrations of IL-la
(0), IL-1f3 (o), IL-lra (-), or pro-IL-13 (0) for 4 hr at 8°C. Ligand-
receptor complexes were separated from free ligand by centrifugation
through phthalate oil mixture (A and C) or by precipitation with 12%
(wt/vol) polyethylene glycol (PEG-8000). (B) Binding in the absence
of competitor was 4702 ± 242 cpm for Raji cells, 8869 + 427 cpm for
Raji sIL-lR, and 3314 ± 223 cpm for EL-4 cells. Results are repre-
sentative of at least three experiments.

values of 1.5 and 1.6 ,uM, respectively). IL-lra bound to the cell
surface IL-lR with an estimated Kd of 14 nM but had -2000-
fold lower affinity for the sIL-lR (25 ,uM). The 31-kDa pro-
IL-1,3 molecule failed to bind the Raji cell surface IL-iR but
bound to the sIL-1R with an estimated Kd of 191 nM. The
competition assays using the type I IL-lR-bearing murine
thymoma cell line EL-4 NOB.1 (Fig. iC) confirmed previously
published results (2,4) in that IL-la, mature IL-1,3, and IL-lra
all bound with approximately equal affinity, whereas pro-
IL-13 did not bind at all.

Binding of Mutant IL-13 to IL-R. Changes in affinity for
IL-ira and pro-IL-13 presumably occur due to conformational
changes, loss of key residues, or steric hindrance in the type II
IL-lR upon release. To test whether the soluble and cell
surface IL-lRs bound to the same regions on IL-113, we per-
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formed cross-competition receptor binding assays using a se-
ries of site-specific mutants of IL-1p3. Mutations were gener-
ated in three regions of the IL-1lB molecule: residues 4-11, on
(3-strand 1; residues 74-80, a ,3-turn between strands 6 and 7;
and residues 88-97, a large turn between (-strands 7 and 8 (18,
23). Table 1 shows that mutations in the N-terminal region
frequently altered binding to the type I IL-lR on EL-4 cells.
However, these mutations rarely affected binding to the Raji
cell surface IL-lR or sIL-lR. Mutations at residues 76 and 79
had no significant effect on type I IL-1R binding but reduced
binding to both cell surface and soluble Raji IL-lR. Mutations
between residues 88 and 97, located on the same face of the
IL-183 molecule as the N-terminal amino acids, resulted in
variable changes in both type I and type II IL-lR binding. No
correlation was apparent between type I and type II IL-lR
binding to the IL-13 mutants. However, cell surface type II
IL-1R and sIL-iR binding was consistently similar with all the
mutant IL-1l3 molecules tested.

Interaction ofType H sIL-iR and Recombinant Type I sIL-iR
with IL-ra. Since the type II sIL-lR produced by Raji cells, in
contrast to recombinant type I sIL-lR has low affinity for IL-lra,
it may be more effective in blocking IL-1 activity in the presence
of IL-lra. To test this we titrated Raji sIL-lR, recombinant
soluble type I IL-lR, and IL-lra to give -50% inhibition in a Raji
cell surface IL-lR binding assay and then mixed IL-lra with
either Raji sIL-lR or recombinant type I sIL-lR (Fig. 2). Com-
bination of Raji sIL-1R and IL-lra increased the inhibition of
125I-IL-1( binding to Raji cells [86 ± 9% (mean ± SEM, n = 3)].
However, combination of recombinant type I sIL-lR and IL-lra
decreased the inhibition of 125I-IL-10 binding observed with the
individual agents (21 ± 3%).

Confirmation That Pro-I1>l1 Binds sIL-1R. The 30-kDa
and 17-kDa forms of IL-1( were synthesized using an SP6
RNA polymerase transcription-coupled rabbit reticulocyte ly-
sate (Fig. 3A). Proteins were tested for binding to the type II
sIL-lR by soluble covalent crosslinking. As with 17-kDa 125I-
IL-l(3 (12), crosslinking of 17-kDa 35S-labeled IL-i13 formed a
60-kDa complex from which the labeled IL-1(3 was displaced
with 100-fold excess nonradioactive IL-1lB but not with excess
IL-la. In contrast, 30-kDa IL-1l3 formed an 80-kDa complex
from which the labeled IL-1,B was fully displaced by 100-fold
excess 17-kDa IL-13 and partially displaced by 100-fold excess
17-kDa IL-la (Fig. 3B).
Function of Type II sIL-1R Binding to Pro-IL-118. To assess

whether binding of pro-IL-l,B to sIL-lR affected the proint-

Table 1. Binding of mutant IL-1l3 molecules to IL-iRs
% competitive binding

IL.1 ra
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FIG. 2. Interaction of IL-lra with sIL-1Rs. 125I-IL-1p (10 nM) was
incubated with either IL-lra (100 nM), NS1-derived recombinant
human type I sIL-IR (5 jig/ml), Raji-derived type II sIL-iR (1 ,ug/ml),
or combinations of type I sIL-1R or type II sIL-1R with IL-lra.
Inhibitor/IL-1, combinations were then added to Raji cells for 4 hr at
8°C. Ligand-receptor complexes were separated from free ligand by
centrifugation through phthalate oil mixture. Specific binding in the
absence of competing agent was 4044 ± 628 cpm (mean ± SEM, n =
3).

erleukin's ability to be processed to lower molecular weight
forms, we incubated pro-IL-1 3with affinity-purified sIL-lR or
an identical preparation that had been depleted of sIL-iR.
Neither the sIL-iR preparation nor the THP-1 lysate con-
tained detectable IL-113 (Fig. 4, lanes 1 and 2). Addition of
THP-1 lysate to recombinant pro-IL-183 generated an IL-1,B
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FIG. 3. Crosslinking of 35S-labeled IL-1l3 peptides to sIL-1R. (A) SP6
expression vectors (pGEM-3Z/4Z) containing cDNA encoding mature
I-11 3 or pro-IL-113 were used to produce 35S-labeled ILH1AP molecules by
coupled in vitro transcription/translation. Peptides were analyzed by
SDS/15% PAGE and detected by fluorography. Lane 1, vector contain-
ing mature IL-1r3 cDNA; lane 2, pGEM-3Z vector alone; lane 3, vector
containing pro-IL-l( cDNA; lane 4, pGEM-4Zvector alone. (B) Labeled
17-kDa IL-1(3 (lanes 1-3) and 31-kDa IL-143 (lanes 4-6) were incubated
with Raji sIL-1R overnight at 4°C and crosslinked with disuccinimidyl
suberate. After SDS/10% PAGE, complexes were identified by fluorog-
raphy. Lanes 1 and 4, no competing agent; lanes 2 and 5, excess IL-laC;
lanes 3 and 6, excess IL-1(3. Protein size markers are in kilodaltons.

Mutation

Arg4 Pro
Ser5 Gly
Ser5 Arg
Thr9 Glu
Thr9 Gly

Asp76 -, Val
Thr79 Ala
Lys88 Val
Asn89 - Phe
Tyr9- Leu
Lys92 Ser
Lys92 Arg
Lys93 Met
Lys93 - Arg
Lys94 Trp
Glu - Gly

Results are expressed as a percentage of the IC5o for the mutant
molecule compared with unlabeled wild-type IL-1,B.
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FIG. 4. Binding of pro-IL-113 to sIL-1R inhibits processing. Pro-
IL-13 (50 ng) in 100 gl was incubated at 4°C overnight with sIL-1R or
identical preparations depleted of sIL-1R by IL-1i affinity chroma-
tography. THP-1 cell lysate (10 ,ul) was added, the temperature was
raised to 37°C, and the incubation continued for 2 hr. IL-113 peptides
were analyzed by SDS/15% PAGE and immunoblotting. Lane 1,
sIL-1R preparation alone; lane 2, THP-1 lysate alone; lane 3, pro-
IL-1,3 alone; lane 4, pro-IL-l,B and THP-1 cell lysate; lanes 5-7,
pro-IL-118 and THP-1 cell lysate with 2 jig, 0.5 ,ug, and 125 ng of
sIL-1R, respectively; lanes 8-10, pro-IL-1,8 and THP-1 cell lysate with
preparations equivalent to lanes 5-7 but depleted of sIL-1R; lane 11,
recombinant mature IL-1,B.

species that comigrated with mature 17-kDa IL-1f (lane 4).
Preincubation of pro-IL-113 with 2 jig or 0.5 jig of sIL-iR (as
determined by Coomassie blue staining) inhibited the ability of
the THP-1 lysate to process pro-IL-113 to the 17-kDa form
(lanes 5 and 6); However, 125 ng of sIL-lR failed to inhibit
processing of pro-IL-183 (lane 7). The preparation that had
been depleted of sIL-iR by IL-1i3 affinity chromatography
with a similar total protein concentration did not inhibit pro-
cessing at any of the concentrations used (lanes 8-10).

DISCUSSION
This report describes the binding characteristics of the type II
sIL-lR and the cell surface type II IL-1R from which it is
derived. The Raji cell surface type II IL-lR has greater affinity
for IL-13 than for IL-la. These properties are retained in the
sIL-iR, and the affinities for IL-ia and IL-1X3 seem to be
identical to those of the cell surface IL-iR (12). However,
shedding of the IL-1R from Raji cells caused significant
changes in the affinity for IL-ira and 31-kDa pro-IL-113. The
affinity of the IL-lR for the IL-Ira fell after shedding, while
the shed but not the cell surface type II IL-1R bound pro-IL-
113. The binding of pro-IL-113 by sIL-iR indicates that the
N-terminal region of mature IL-1,B is unlikely to be important
for interaction with the type II IL-iR. Further evidence for this
was revealed by the use of single site-specific mutants of IL-113.
Mutations in the N-terminal region of mature IL-13 did not
have a deleterious effect on type II IL-1R binding; however,
these mutations frequently affected binding to the type I
IL-1R. The N terminus has been shown to be important for
type I receptor binding and IL-1 bioactivity (24). Our results
are in good agreement with previously published data showing
that mutation of Arg4 to Asp but not to other residues reduced
IL-1f binding to the murine type II IL-1R (25). However, this
mutation also caused loss of binding to the type I IL-iR,
possibly indicating that an-acidic side chain cannot be tolerated
at this position in IL-13 (25). When the N-terminal sequences
of the three IL-1 ligands were compared, the only well-
conserved residue was Arg4 (26). We also tested mutants in
another region of the IL-113 molecule previously demonstrated
to be critical for the binding of the type I IL-iR. Residues
88-97 lie within a large turn between 13-strands 7 and 8 and,
together with the N-terminal region, form part of a neutral-
izing epitope on one face of the IL-113 molecule (18). Muta-
tions in this region frequently reduced binding to type I IL-lR
and in sQme cases reduced binding to type II IL-iR. Mutations
in the 1-turn region between strands 6 and 7 (residues 74-80),
a region not important for type I IL-IR binding, significantly
reduced binding to both the soluble and cell surface type II
IL-lR. These data indicate that type II IL-1R recognizes

different epitopes on the IL-1X3 molecule than type I IL-1R,
although it appears that the two receptors are unable simul-
taneously to bind the same ligand molecules (27), suggesting
that some overlap in binding regions occurs.
We found that IL-lra bound to human cell surface type II

IL-iR with high affinity (Kd of 14 nM), in good agreement with
published data (28, 29). However, after release from the cell
surface the affinity of sIL-lR for IL-lra fell '2000 fold (Kd of
25 ,uM). If sIL-lR and IL-lra are to function as effective
inhibitors of IL-1 action, it is important that they do not bind
and so neutralize each other. The low affinity of the type II
sIL-lR for IL-lra indicates that IL-lra would be unlikely to
compete with IL-183 for binding to sIL-lR. The lack of IL-lra
binding to the shed form of type II IL-iR suggests that regions
in type II IL-iR proximal to the transmembrane domain may
be important for IL-lra but not IL-113 binding activity. As yet
no published studies are available on the regions of type II
IL-iR important for ligand binding.
Type I sIL-lR and IL-lra are currently undergoing clinical

trials for the treatment of allergic and inflammatory diseases,
and preliminary results indicate that these agents have con-
siderable therapeutic potential (32). However, use of type II
sIL-lR would allow combined therapy with IL-lra, possibly
achieving a greater in vivo inhibition of IL-1 action. Con-
versely, treatment with type II sIL-lR alone would block only
IL-1if action, leaving IL-la function intact; this may be useful
in the treatment of chronic inflammatory diseases where sus-
tained complete blockade of IL-1 action may weaken host
defense mechanisms.
The binding properties of type II sIL-lR are very similar to

those described for the product of the vaccinia virus open
reading frame B15R. This protein has 30% amino acid se-
quence identity to type II IL-iR (9) and exhibits binding
properties identical to those of the sIL-iR-i.e., high affinity
for IL-1if and low affinity for IL-ia and IL-lra (30). It is
therefore likely that B15R represents a virally acquired extra-
cellular domain of type II IL-1R. The IL-1,8 precursor is unable
to bind the cell surface type I IL-lR and therefore is biolog-
ically inactive (4). Here we have demonstrated that pro-IL-1i3
also fails to bind cell surface type II IL-1R. However, cross-
competition data indicated that shed pro-IL-i13 was able to
bind with an intermediate affinity (Kd of 190 nM) to type II
sIL-lR. The sIL-lR may act as a carrier molecule for the
precursor in the circulation; however, we showed that sIL-lR
would be capable of blocking the processing of the precursor
once it has been released from the cell. Presumably, sIL-lR
inhibits processing by either masking the cleavage site on
pro-IL-if3 or altering the conformation of the pro-IL-l13 mol-
ecule so that IL-1 converting enzyme or other proteolytic
enzymes fail to recognize their cleavage sites. Conversion of
pro-IL-l1, to the mature form is also the target for viral
inhibition. Cowpox virus encodes a 38-kDa protein member of
the serpin superfamily, CrmA, that inhibits the IL-1 converting
enzyme (31). Interestingly, both of the viral mechanisms of
IL-I inhibition so far described are directed specifically against
IL-i,3 whereas sIL-lR found in serum, synovial exudate, and
peripheral blood mononuclear cell supernatant binds IL-13
with greater affinity than IL-la. These findings are consistent
with the idea that IL-1i is more important in the inflammatory
response -and functions as a soluble molecule, whereas IL-la
delivers its signals during cell-cell interaction.

It is clear that IL-1 is unique among cytokines in that its
actions are controlled both by a receptor antagonist protein
and a soluble receptor. In order that these two regulatory
molecules do not neutralize each other, sIL-lR selectively
loses affinity for IL-lra upon release. Additionally, sIL-lR
gains affinity for the precursor form of IL-183 and when bound
prevents the processing of the inactive precursor to its mature
biologically active form. Hence the natural type II sIL-iR can
control the bioactivity of IL-113 at the level of receptor binding
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and peptide processing and complements the activity of the
natural receptor antagonist.
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