

# NIH Public Access

**Author Manuscript** 

*Medchemcomm.* Author manuscript; available in PMC 2015 September 01.

## Published in final edited form as:

Medchemcomm. 2014 September ; 5(9): 1359–1363. doi:10.1039/C4MD00109E.

# Optimization of the anti-cancer activity of phosphatidylinositol-3 kinase pathway inhibitor PITENIN-1: switching a thiourea with 1,2,3-triazole

Yadagiri Kommagalla<sup>a</sup>, Sinziana Cornea<sup>b</sup>, Robert Riehle<sup>c</sup>, Vladimir Torchilin<sup>c</sup>, Alexei Degterev<sup>b</sup>, and Chepuri V. Ramana<sup>a</sup>

<sup>a</sup>Division of Organic Chemistry, CSIR-National Chemical Laboratory, Pune, India 411008

<sup>b</sup>Department of Developmental, Molecular and Chemical Biology, Tufts University, 136 Harrison Avenue, Boston, MA 02111

<sup>c</sup>Department of Pharmaceutical Sciences, Bouve College of Health Sciences, Northeastern University, 140 The Fenway, Boston, MA 02115

# Abstract

We previously reported encouraging *in vitro* and *in vivo*anti-cancer activity of *N*-((3-chloro-2-hydroxy-5-nitrophenyl)carbamothioyl)benzamide (termed PITENIN-1). In the current work, we describe the structure-activity relationship study of PIT-1 series, based on the replacement of central thiourea unit with a 1,2,3-triazole, which leads to increased liver microsomal stability, drug likeness and toxicity towards cancer cells.

Overactivation of PI3K signaling is a common feature of many types of human cancer.<sup>1</sup> Increased activation of a variety of PI3K effectors, through their binding to the PI3K product, lipid PIP3, provides multiple growth, survival, migration and metabolic advantages to cancer cells. Not surprisingly, small molecule targeting of the PI3K pathway, including direct inhibition of PI3K isoforms as well as its multiple effectors (Akt, mTOR, PDK1, etc.) has attracted major attention. While many approaches focused on targeting enzymatic activities in the PI3K network, we and others have recently described a new approach aimed at targeting a universal central step in PI3K signal transduction, i.e. binding of PIP3 to PH domains of effector proteins.<sup>2</sup> In particular, we have developed two new classes of small molecule antagonists of PIP3, termed PIT-1 [N-((3-chloro-2-hydroxy-5nitrophenyl)carbamothioyl)benzamide] and PIT-2 [(Z)-5-(2-benzyl-5-hydroxy-4nitrobenzylidene)-2-thioxothiazolidin-4-one] (Figure 1).<sup>3,4</sup> These two structurally dissimilar molecules displayed very similar activities in cancer cells, including induction of apoptosis and metabolic stress and inhibition of cell migration and invasion. Furthermore, both PIT-1 and PIT-2 displayed synergistic toxicity with TRAIL in human glioblastoma U87MG cells. These activities have been linked to the inhibition of Akt signaling and actin remodeling by ARF6, two pathways regulated by PI3K.<sup>3,4</sup> These *in vitro* activities of PITs translated into

<sup>©</sup> The Royal Society of Chemistry 2012

Electronic Supplementary Information (ESI) available: For synthesis and characterization data and spectra of all the new compounds see DOI: 10.1039/c000000x/

the significant inhibition of tumor growth and lung metastasis formation in 4T1 and B16-F10 syngeneic xenograft models by the dimethyl analog of PIT-1.<sup>3,4</sup>

Despite the promising initial results, PITs displayed obvious limitations, including high micromolar activity as well as multiple non-drug-like features. In particular, nitrophenyl and thiourea moieties of PIT-1 represent potential toxicity concerns and metabolic liabilities. Initial analysis of PIT-1 series revealed surprisingly specific SAR for a micromolar compound suggesting several changes to the molecule, leading to some increase in activity and changes in targeting different PH domains.<sup>3,4</sup> In particular, the addition of two methyl groups to the phenyl ring in PIT-1 (DM-PIT-1, Figure 1) resulted in some increase in activity and improved incorporation into long-circulating PEG-PE micelles for *in vivo* delivery.<sup>3,5</sup> Furthermore, changes to the nitrophenyl ring were identified. However, these results did not address the main limitations of PIT-1 series, which was the target of our current work.

In the processes of refining the initially identified structural scaffold of the PIT-1, our first concern was to replace the susceptible thiourea unit with a stable bioisostere.<sup>6</sup> The 1,2,3-triazole structural motif has attracted our attention in this regard considering the fact that the triazole is a safe bioequivalent surrogate for the amide bond and that this concept has found its application in the area of anticancer agents as well as in developing non-nucleoside reverse transcriptase inhibitors.<sup>7,8</sup> As shown in Figure 1, triazole-PITs have been designed as the structural mimics of DM-PIT-1 and as potential second-generation PITenins (PITs), in anticipation of better antitumor activity.

Scheme 1 reveals the salient features of the synthesis of the newly designed trizole PITENINS. The alkynone precursors **3a–3e** have been prepared by following a two-step sequence consisting the addition ethynylmagnesium chloride to corresponding aldehydes **2a–2e** and subsequent IBX oxidation. The azidophenols **4a–4f** have been synthesized from the corresponding aminophenols by following the standard azidation procedures and are used immediately. The copper catalyzed [3+2] cycloaddition reaction of alkynones **3** with azidophenols **4** has been carried out under established click reaction conditions (20 mol% CuSO4, 20 mol% Na-ascorbate in tert-BuOH-water, at rt) to obtain the requisite 1,2,3triazole PITENINS.<sup>9</sup> Table 1 summarizes the details of the compounds synthesized. All the new compounds have been characterized completely with the help of spectral and analytical data.

The initial screening of **1aa** against growth of A2780 human ovarian cancer cells revealed that **1aa** has comparable activity with the corresponding PIT-1 analogue.<sup>10</sup> In addition, the corresponding methyl ether **1af** was completely inactive consistent with the importance of free –OH group in the original thiourea series.<sup>3</sup> In this course of SAR studies, we have installed the dimethyl groups and isopropyl groups on the ring A along with variable functional groups on the ring C. However, this approach was not effective. Replacing the aryl ring A with a napthyl unit has been also examined, albeit with no improvement in the activity. In contrast, we found that the addition of the -CF<sub>3</sub> group at the C-3 and C-5 positions on ring A in combination with a chloro group at the C-4 position of the ring C

(**1ea**) showed excellent improvement (20 times higher than that of the DM-PIT-1) in antitumor activity.

In order to examine whether the addition of an extra hydrogen bond donor in between the triazole and ring A will have any effect, the compound **1fa** has been synthesized (Scheme 2). The compound **1fa** has showed good activity, which, however is lower than that of **1ea**.

Having examined a wide range of analogs, compound **1ea** has been selected for further progress in the direction of examining its pharmacological properties. The mode of activity of **1ea** has been studied by lipid overlay assay, measuring the binding of the AktPH domain to PI(3,4)P2 spotted on nicrocellulose membrane, as previously described.<sup>3</sup> Compound **1ea** displayed substantially higher activity compared to PIT-1 (Figure 2A). We further examined inhibition of PI3K/Akt signaling in human glioblastoma U87MG and ovarian carcinoma A-2780 cells. Interestingly, we observed very robust inhibition of the TORC1/p70S6K/S6 pathway downstream from Akt, which correlated with cytotoxicity of the compounds and suggested that increased activity of **1ea** translated into more specific inhibition of a particular pathway downstream from PI3K/Akt (Figure 2B). Other targets of the compound **1ea** in the PI3K/Akt signaling pathway remain to be fully elucidated in the future.

Subsequently, the cytotoxicity of new PIT analogs in three different cancer cell lines (U87MG, A2780 and T47D) has revealed that **1ea** displayed highest activity in all cases (Figure2C). In addition to activation of cell death, PITs displayed several additional important properties. First, we found that PIT-1 analogs reverse resistance of cancer cells to anti-cancer cytokine TRAIL. This led to synergistic cytotoxicity of PIT-1 and TRAIL when applied in combination.<sup>3</sup> This useful property was retained with **1ea** (Figure 2C and Table 2). Second, PIT-1 analogs not only increased cell death, but also suppressed cell migration and invasion though the attenuation of actin cytoskeleton remodeling.<sup>4</sup> Consistently, **1ea** displayed significantly increased activity in cell migration assay (Figure 2D).

Finally, one of the major goals of our study was to improve the pharmacological properties of PIT-1/DM-PIT-1. DM-PIT-1 displayed  $T_{1/2}=1.8 \text{ min} (\text{CL}=1262 \,\mu\text{L*min}^{-1}\text{mg}^{-1})$  in mouse liver microsomal stability assay *in vitro*. Compound **1ea** displayed  $T_{1/2}=119 \text{ min} (\text{CL}=19.4 \,\mu\text{L*min}^{-1}\text{*mg}^{-1})$  in the same assay. Pharmacokinetics analysis following i.v. injection of 1 mg/kg of the drug showed reasonable  $T_{1/2}=3.22 \text{ hr}$  with CL of 930 mL/hr/kg and bioavailability of 85.1% following i.p. administration. Furthermore, **1ea**, unlike DM-PIT-1, complied with 4 out of 5 Lipinski rules, with the exception of liphophilicity (calculated LogP = 5.3). Overall, our SAR analysis describes a new analog of PIT-1 with significantly improved anti-cancer activity and pharmacological properties, which may present a promising molecule for further analysis in mouse xenograft models.

#### Conclusions

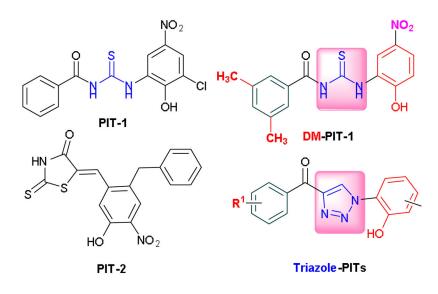
In summary, a structure-activity relationship (SAR) study of the *N*-((3-chloro-2-hydroxy-5nitrophenyl)carbamothioyl)benzamide (PIT-1) series revealed that increased liver microsomal stability and toxicity towards cancer cells could be achieved by replacing the central thiourea unit with the 1,2,3-triazole heterocycle unit. Secondly, the nitro group of the

nitrophenyl moiety can be replaced with chlorine, removing another potential liability. Finally, the addition of two trifluoromethyl moieties to the second phenyl ring of the molecule further increased activity, but also resulted in the increased lipophilicity. Overall, a derivative incorporating all of the modifications (i.e. **1ea**) displayed good stability *in vitro* and *in vivo* and significantly increased toxicity against a number of cancer cell lines alone and also in combination with TRAIL. Interestingly, compound **1ea** displayed particularly robust activity in inhibiting the mammalian Target of Rapamycin Complex 1 (TORC1) signaling downstream from Akt. Mechanism of this inhibition is currently under investigation.

# **Supplementary Material**

Refer to Web version on PubMed Central for supplementary material.

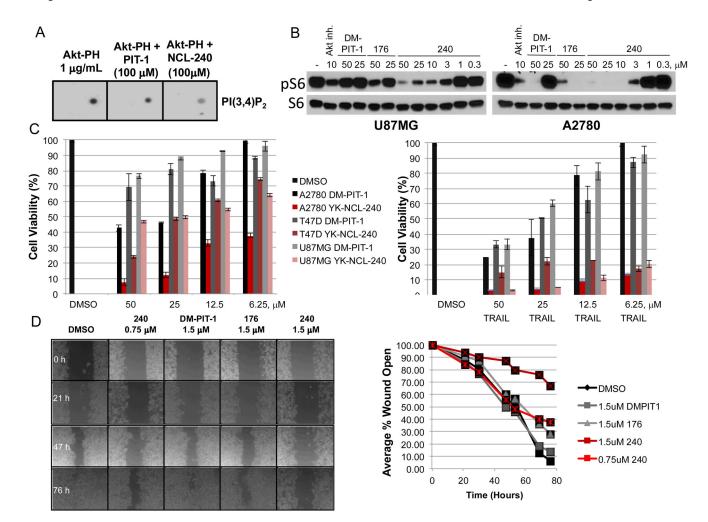
#### Acknowledgments


We would like to thank Dr. Jinbo Lee for helpful discussions. CVR and YK thank CSIR (India) for funding this project (12 FYP ORIGIN program, CSC0108) and for a fellowship to YK. This work was supported in part by NIH/NCI U54CA151881 grant to V.T. and A.D.

## References

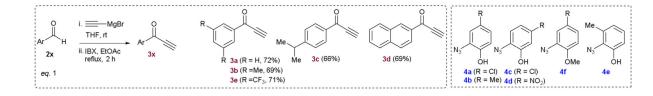
- 1. Wong KK, Engelman JA, Cantley LC. Curr Opin Genet Dev. 2010; 20:87-90. [PubMed: 20006486]
- 2. McNamara CR, Degterev A. Future Med Chem. 2011; 3:549-565. [PubMed: 21526896]
- Miao BC, Skidan I, Yang JS, Lugovskoy A, Reibarkh M, Long K, Brazell T, Durugkar KA, Maki J, Ramana CV, Schaffhausen B, Wagner G, Torchilin V, Yuan JY, Degterev A. Proc Natl Acad Sci U S A. 2010; 107:20126–20131. [PubMed: 21041639]
- Miao B, Skidan I, Yang J, You Z, Fu X, Famulok M, Schaffhausen B, Torchilin V, Yuan J, Degterev A. Oncogene. 2012; 31:4317–4332. [PubMed: 22179837]
- Skidan I, Miao B, Thekkedath RV, Dholakia P, Degterev A, Torchilin V. Drug Deliv. 2009; 16:45– 51. [PubMed: 19555308]
- 6. a) Tron GC, Pirali T, Billington RA, Canonico PL, Sorba G, Genazzani AA. Med Res Rev. 2008; 28:278–308. [PubMed: 17763363] b) Patani GA, LaVoie EJ. Chem Rev. 1996; 96:3147–3176. [PubMed: 11848856] c) Jochim AL, Miller SE, Angelo NG, Arora PS. Bioorg Med Chem Lett. 2009; 19:6023–6026. [PubMed: 19800230] d) Brik A, Alexandratos J, Lin YC, Elder JH, Olson AJ, Wlodawer A, Goodsell DS, Wong CH. ChemBioChem. 2005; 6:1167–1169. [PubMed: 15934050] e) Angelo NG, Arora PS. J Am Chem Soc. 2005; 127:17134–17135. [PubMed: 16332031] f) Palmer MH, Findlay RH, Gaskell AJ. J Chem Soc Perkin Trans 1. 1974; 4:420–428.
- a) Thirumurugan P, Matosiuk D, Jozwiak K. Chem Rev. 2013; 113:4905–4979. [PubMed: 23531040] b) Hou JL, Liu XF, Shen J, Zhao GL, Wang PG. Expert Opin Drug Discov. 2012; 7:489–501. [PubMed: 22607210] c) Agalave SG, Maujan SR, Pore VS. Chem Asian J. 2011; 6:2696–2718. [PubMed: 21954075]
- Selected papers on use of 1,2,3-triazole unit in the development of anti-cancer/anti-viral therapeutics: Jayaprakash KN, Peng CG, Butler D, Varghese JP, Maier MA, Rajeev KG, Manoharan M. Org Lett. 2010; 12:5410–5413. [PubMed: 21049912] Alvarez R, Velazquez S, Sanfelix A, Aquaro S, Declercq E, Perno CF, Karlsson A, Balzarini J, Camarasa MJ. J Med Chem. 1994; 37:4185–4194. [PubMed: 7527463]
- a) Himo F, Lovell T, Hilgraf R, Rostovtsev VV, Noodleman L, Sharpless KB, Fokin VV. J Am Chem Soc. 2005; 127:210–216. [PubMed: 15631470] b) Rostovtsev VV, Green LG, Fokin VV, Sharpless KB. Angew Chem Int Ed. 2002; 41:2596–2599.

 The synthesis of compound 1aa and its activity as potassium channel activator has been reported earlier by: Calderone V, Giorgi I, Livi O, Martinotti E, Mantuano E, Martelli A, Nardi A. Eur J Med Chem. 2005; 40:521–528. [PubMed: 15922836]





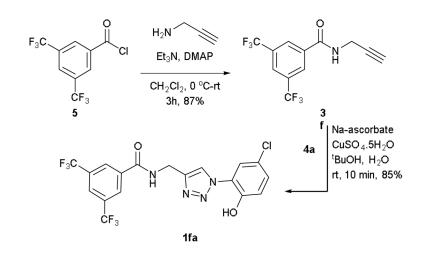

#### Figure 1.


Structures of the two classes (PIT-1 and PIT-2) of inhibitors of phopshotidylinositol-3 kinase (PI3K) signaling pathway, termed PITENINS (PITs) and the newly designed 2<sup>nd</sup> generation triazole-PITs

Kommagalla et al.



#### Figure 2.


Increased activity of **1ea**. A) Increased inhibition of PI(3,4)P2/Akt-PH domain binding by **1ea**.Lipid overlay experiment was performed as performed as described in.<sup>3</sup> B) Inhibition of S6 phopshorylation by **1ea**. U87MG or A2780 cells were treated with indicated concentrations of inhibitors for 7 hr, followed by Western blotting using phopsho-S6 and total S6 antibodies.C) Increased cytotoxicity of **1ea** compared to DM-PIT-1 in multiple cell types. Cells were treated with indicated concentrations of inhibitors alone or in combination with 1 µg/ml TRAIL for 24 hr. Cell viability was determined using CellTiter-Glo assay. D) **1ea** efficiently blocks migration of A2780 cells. Wound healing assay was performed as previously described.<sup>4</sup> Cell monolayers were treated with indicated concentrations of inhibitors, followed by a scratch wound. Size of the cell free area was photographed at indicated periods of time. Quantification of open wound area is shown on the right.



#### Scheme 1.

Synthesis of alkynones 3a-3e (eq.1) and their Cu-catalyzed [3+2]-cycloaddition (eq.2) with selected 2-azidophenols 4a-4e

Page 9



Scheme 2. Synthesis of triazole1fa

#### Table 1

The synthesis of and screening results with 1,4-disubstituted 1,2,3-triazoles<sup>*a*</sup>

| $\begin{array}{c} \hline \textbf{3x} + \textbf{4y} \\ eq. 2 \end{array} \xrightarrow{\begin{array}{c} \text{CuSO}_{4}.5\text{H}_{2}\text{O}(20 \text{ mol}\%) \\ \text{sodium ascorbate}(20 \text{ mol}\%) \\ \hline \textbf{1xy} \\ \hline \textbf{1xy} \\ \textbf{1xy} \\ \hline \textbf{1xy} \hline \ 1xy$ |                              |                         |                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------|-------------------------|-------------------------|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Triazole (Yield, Code)       | EC <sub>50</sub> (µmol) |                         |  |  |
| S.No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                              | alone                   | with TRIAL <sup>b</sup> |  |  |
| 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 103.6                   | 51.6                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1aa (87%, YK-NCL-176)        |                         |                         |  |  |
| 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | >100                    | >100                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1ab (91%, YK-NCL-184)        |                         |                         |  |  |
| 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 48.9                    | 42.3                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1ac (87%, YK-NCL-191)        |                         |                         |  |  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 8.1                     | 8.0                     |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1ae (84%, YK-NCL-185)        |                         |                         |  |  |
| 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | >100                    | >100                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1af (82%, YK-NCL-178)        |                         |                         |  |  |
| 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                              | 57.8                    | 30.6                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | <b>1ba</b> (83%, YK-NCL-190) |                         |                         |  |  |
| 7                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | N=N HO                       | >100                    | >100                    |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 1bb (85%, YK-NCL-193)        |                         |                         |  |  |

Kommagalla et al.

| $\begin{array}{c} \hline & \\ \hline 3x \\ eq. 2 \end{array} + \begin{array}{c} 4y \\ \hline & \\ \hline \\ \hline$ |                                   |       |                         |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|-------|-------------------------|--|--|
| ед. 2 <sup>1</sup> BuOH:H <sub>2</sub> O (3:1), rt<br>ЕС <sub>50</sub> (µmol)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                   |       |                         |  |  |
| S.No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Triazole (Yield, Code)            | alone | with TRIAL <sup>b</sup> |  |  |
| 8                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\mathbf{ho}$                     | >100  | 64.4                    |  |  |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 1bd (86%, YK-NCL-194)             | 89.1  | 70.5                    |  |  |
| 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 1be (91%, YK-NCL-192)             | 104.0 | 98.4                    |  |  |
| 11                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | $\mathbf{1ca} (86\%, YK-NCL-195)$ | 64.1  | 41.6                    |  |  |
| 12                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1cb</b> (83%, YK-NCL-197)      | >100  | >100                    |  |  |
| 13                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1ce</b> (82%, YK-NCL-196)      | >100  | >100                    |  |  |
| 14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>Ida</b> (87%, YK-NCL-186)      | >100  | >100                    |  |  |
| 15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | <b>1db</b> (91%, YK-NCL-188)      | >100  | >100                    |  |  |

Kommagalla et al.

| (<br>eq. 2 | $\begin{array}{c} \textbf{3x} + \textbf{4y} \\ \textbf{eq. 2} \end{array} \xrightarrow{\begin{array}{c} \text{CuSO}_{4}.5\text{H}_{2}\text{O} (20 \text{ mol}\%) \\ \textbf{sodium ascorbate (20 \text{ mol}\%)} \\ \textbf{1xy} \\ \textbf{sodium ascorbate (20 \text{ mol}\%)} \end{array}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                         |                         |  |  |  |
|------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------|-------------------------|--|--|--|
| S.No       | Triazole (Yield, Code)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | EC <sub>50</sub> (µmol) |                         |  |  |  |
|            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | alone                   | with TRIAL <sup>b</sup> |  |  |  |
| 16         | $ \begin{array}{c} \begin{array}{c} \begin{array}{c} \begin{array}{c} \end{array}\\ \end{array}\\ \end{array} \\ \begin{array}{c} \end{array} \\ \end{array} \\$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 85.2                    | 74.9                    |  |  |  |
| 17         | $F_{3}C_{+} \xrightarrow{O}_{N=N} \xrightarrow{O}_{HO}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 11.99                   | 3.15                    |  |  |  |
| 18         | $F_{9}C + F_{1}C + F$ | 16.2                    | 14.0                    |  |  |  |

 $^a\mathrm{Experiments}$  were performed in A2780 cells as described in the Electronic Supplementary Information

 $^b{\rm TRIAL}\mbox{-}$  Tumor necrosis factor–Related Apoptosis–Inducing Ligand