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Abstract

Background—Crossed High Alcohol Preferring (cHAP) mice were selectively bred from a cross 

of the HAP1xHAP2 replicate lines, and demonstrate blood ethanol concentrations (BECs) during 

free-choice drinking that are reminiscent of those observed in alcohol-dependent humans. 

Therefore, this line may provide an unprecedented opportunity to learn about the consequences of 

excessive voluntary ethanol consumption, including metabolic tolerance and liver pathology. 

Cytochrome p450 2E1 (CYP 2E1) induction plays a prominent role in driving both metabolic 

tolerance and ethanol-induced liver injury. In this report, we sought to characterize cHAP drinking 

by assessing whether pharmacologically relevant BEC levels are sustained throughout the active 

portion of the light-dark cycle. Given that cHAP intakes and BECs are similar to those observed in 
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mice given an ethanol liquid diet, we assessed whether free-choice exposure results in metabolic 

tolerance, hepatic enzyme induction, and hepatic steatosis.

Methods—In Experiment 1, blood samples were taken across the dark portion of a 12:12 light-

dark cycle to examine the pattern of ethanol accumulation in these mice. In Experiments 1 and 2, 

mice were injected with ethanol following 3–4 weeks of access to water or 10% ethanol and water, 

and blood samples were taken to assess metabolic tolerance. In Experiment 3, 24 mice had 4 

weeks access to 10% ethanol and water or water alone, followed by necropsy and hepatological 

assessment.

Results—In experiment 1, cHAP mice mean BEC values exceeded 80 mg/dl at all sampling 

points, and approached 200 mg/dl during the middle of the dark cycle. In experiments 1 and 2, 

ethanol-exposed mice metabolized ethanol faster than ethanol-naïve mice, demonstrating 

metabolic tolerance (p < .05). In experiment 3, ethanol-drinking mice showed greater expression 

of hepatic CYP 2E1 than water controls, consistent with the development of metabolic tolerance 

(p < .05). Ethanol access altered neither hepatic histology nor levels of ADH and ALDH.

Conclusions—These results demonstrate that excessive intake by cHAP mice results in 

sustained BECs throughout the active period, leading to the development of metabolic tolerance 

and evidence of CYP 2E1 induction. Together these results provide additional support for the 

cHAP mice as a highly translational rodent model of alcoholism.
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Introduction

Alcoholism is defined by uncontrolled and excessive use of alcohol to the degree that 

individuals continue its use in the wake of adverse consequences (Morse and Flavin, 1992). 

A long history of rodent research has attempted to model human excessive alcohol 

consumption. In particular, 2-bottle free-choice procedures between water and ethanol have 

been widely used to assess both intake levels and ethanol preference in alcohol preferring 

inbred strains and selectively bred lines of rodents. It is a simple procedure, and has yielded 

a significant amount of information regarding the correlated traits, neurobiology, and the 

genetics of ethanol preference (McBride and Li, 1998). These procedures also have a high 

level of face validity for modeling human alcohol consumption, considering they capture a 

naturalistic, voluntary behavior. Further, variation in reinforcement driven behavior appears 

to be strongly related to differences in free-choice alcohol consumption (Green and 

Grahame, 2008).

Traditionally, there have been limitations to free-choice studies, because most rodents drink 

in discrete bouts and do not sustain a high rate of intake. Pharmacologically relevant blood 

ethanol concentrations (BECs) have been found in different strains of rats and mice, though 

these levels are modest and are often not sustained for long periods of time in a way that 

models excessive human intake (Aalto, 1986; Agabio et al., 1996; Dole and Gentry, 1984; 

Murphy et al., 1986). Complicating the free-choice procedure is that individual differences 

in consumption throughout the diurnal cycle have made it difficult to predict high intake 

Matson et al. Page 2

Alcohol Clin Exp Res. Author manuscript; available in PMC 2014 December 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



periods, therefore making it difficult to manipulate or measure behaviors related to alcohol 

consumption (Crabbe, 2010). As a result, daily fluid intake values have been reported, which 

does not provide information about the relationship between consumption and intoxication, 

as might be indicated by concurrently assessing intake and BECs. Observing moderate 

ethanol intake and low BEC levels during free-choice access has also made it difficult to 

ascertain whether animals are consuming ethanol for its pharmacologic effects (Cunningham 

et al., 2000; Rodgers et al., 1963).

Recently, we observed ethanol drinking patterns in selectively bred high alcohol preferring 

(HAP) mice, and observed that all of the lines demonstrate stable, excessive patterns of 

ethanol intake across the dark portion of a 12:12 light-dark cycle (Matson and Grahame, 

2011). HAP mice were selected from the HS/Ibg line (Institute of Behavior Genetics, 

Boulder, CO) for their ethanol intake during free-choice access to 10% ethanol and water 

over a four-week period (Grahame et al., 1999; Oberlin et al., 2010). While all of the HAP 

lines drink considerable quantities of alcohol, the highest intakes are seen in the crossed 

HAP (cHAP) line, generated by a cross and subsequent selection from HAP replicate 1 

(HAP1) X HAP replicate 2 (HAP2). At peak hours of intake, all of the lines reach moderate 

to high BECs, with the HAP1 and crossed HAP (cHAP) line reaching mean BEC levels of 

greater than 200 mg/dl (Matson and Grahame, 2011). These observations challenge the 

previously held notion that rodents will not consistently drink at a rate that will surpass their 

capacity to metabolize ethanol during free-choice access. Further, the HAP1 and cHAP lines 

demonstrate BECs and levels of intake that are reminiscent of those observed in alcohol-

dependent humans (Mello and Mendelson, 1970), and therefore, may provide a unique 

opportunity to learn about the vulnerabilities and consequences of voluntary chronic, 

excessive consumption in rodents (Leeman et al., 2010).

The development of tolerance in some capacity is often a characteristic of alcohol-dependent 

individuals, and is thought to be an important factor in the development of dependence. 

Tolerance is defined the by the DSM-IV as a need for markedly increased amounts of a 

substance to achieve intoxication, or a diminished effect with continued use of the same 

amount of a substance (American Psychological Association, 2000). Metabolic tolerance is a 

type of dispositional tolerance involving an increase in the excretion rate of ethanol, and has 

been demonstrated in humans as well as mice and rats following ethanol liquid diet or 

injection procedures (Hall et al., 2001). In a series of experiments, Lieber and DeCarli 

(1968; 1970) demonstrated that a hepatic microsomal ethanol oxidizing system (MEOS) 

exists in both rats and humans, and that this system metabolizes ethanol in a separate 

pathway from that involving ethanol oxidation by alcohol dehydrogenase (ADH) and 

catalase. MEOS activity also increases following chronic exposure to ethanol liquid diet 

compared to pair-fed animals. It is now clear that adaptations in MEOS, through induction 

of cytochrome p450 enzymes, result in increased ethanol metabolism following chronic 

exposure to a liquid ethanol diet (Lieber and DeCarli, 1972; Ohnishi and Lieber, 1977). 

Specifically, the induction of cytochrome p450 2E1 (CYP 2E1) is thought to play a 

prominent role in driving metabolic tolerance, as it is induced following chronic exposure to 

high levels of blood ethanol (Lieber, 1997; Ronis et al., 1993). Induction of CYP 2E1 also 

results in increased production of reactive oxygen species and acetaldehyde following heavy 

ethanol use, and this has been postulated to be an important mechanism for ethanol-induced 
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liver injury (for review Lieber, 2004). Although modest ADH induction has been found 

following chronic ethanol exposure, this was demonstrated to be a downstream effect of 

ethanol inhibiting gonadal hormone production (Rachamin et al., 1980). More recently, 

Badger et al. (2000) found cyclic induction of ADH in rats given alcohol by chronic 

intragastric infusion, which correlated with cyclic changes in urinary alcohol levels, but this 

phenomenon has not been seen with the amounts of ethanol rodents will voluntarily 

consume.

The Lieber-DeCarli ethanol liquid diet was developed as an alternative to free-choice 

ethanol procedures, largely because the low intakes observed during testing do not result in 

alteration in hepatic pathology as has been observed in humans with heavy drinking. The 

diet incorporates ethanol into a liquid diet resulting in high ethanol intake, high BECs, and 

evidence of hepatic steatosis after 24 days of access (DeCarli and Lieber, 1967; Lieber and 

DeCarli, 1970). This paradigm has successfully allowed for the investigation on the 

mechanisms of alcohol-induced liver damage (for review Lieber and DeCarli, 1989). While 

this has become the standard method of inducing fatty liver in rodents, a free choice 

drinking and feeding paradigm would be a substantially simpler system for testing 

pathological effects of heavy alcohol use on the liver and possibly other organs.

In this report, cHAP drinking behavior was characterized by assessing whether 

pharmacologically relevant BEC levels are sustained throughout the active portion of the 

light-dark cycle during chronic free-choice access to 10% ethanol. We hypothesized that 

pharmacologically relevant levels would be maintained throughout the dark period, and 

decrease at the beginning of the inactive (light) period. Metabolic tolerance has previously 

been observed in P rats following chronic free-choice access to ethanol and water, but this 

procedure also involved providing 4 days of forced access prior to free-choice ethanol 

access (Lumeng and Li, 1986). To our knowledge, metabolic tolerance has not been 

demonstrated in rodents following strictly voluntary ethanol consumption. Given the high 

ethanol intakes observed in cHAP mice, it is plausible that chronic exposure to ethanol will 

result in metabolic tolerance and corresponding changes in hepatic histology. In this study, 

we examined hepatic histology to assess whether the high intake and BEC levels in cHAP 

mice caused ethanol-induced liver injury, as the levels we observe in these mice during free-

choice ethanol access are similar to those observed in mice and rats given an ethanol liquid 

diet.

Materials and Methods

Male and female cHAP mice were born in the IUPUI Animal Care Facilities. Water and 

food (Purina 5001) were available ad libitum, and ambient temperature was maintained at 21 

± 1° C. All experiments were performed in drug-naïve mice, and the animals were single-

housed approximately 1 week before beginning testing.

Experiment 1 consisted of 47 female and male cHAP mice from the 17th generation aged 

55–66 days old at day 1 of ethanol access. Experiment 2 consisted of 24 female and male 

cHAP mice from the 18th generation, aged 64 to 81 days old at day 1 of ethanol access. In 

experiments 1 and 2, mice were put on a reverse 12:12 light dark cycle at least 2 weeks prior 
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to the study. Experiment 3 consisted of 24 female and male cHAP mice from the 18th 

generation, aged 57–66 days old at day 1 of ethanol access.

Experimental Procedures

Experiment 1

Ethanol mice (n = 36) had access to water and a 10% ethanol solution for 26 days. Intakes 

were recorded and bottles sides were switched 3 times per week using 25- and 50-ml 

graduated cylinders mounted on wire cage tops. Water mice (n = 11) were given water 

access using two 25 ml tubes. On day 22, the ethanol-exposed mice had access to 10% 

ethanol and water using 10 mL tubes (readable to ± .05 mL), and bihourly readings were 

taken from 6 am-10pm, 2 hours prior to lights off and 2 hours after lights on. On day 24 of 

ethanol access, retro-orbital blood samples were taken at 4 time-points across the cycle in a 

between-subjects manner with 8–9 animals sampled at each time-point (10 am, 2 pm, 6 pm 

and 10 pm). Ethanol bottles were returned until lights on (8 pm) the following day, when 

they were removed to allow for the clearance of blood ethanol before metabolism testing on 

day 26. Beginning at lights off (8 am), 6 ethanol-naive and 6 ethanol-exposed mice were 

each given a 2 g/kg intra-peritoneal (i.p.) injection of 20% v/v ethanol. Each mouse was 

sampled via the retro-orbital sinus at 25 and 75 minutes. Another cohort of mice was 

sampled at 50 and 125 minutes, but these data are not reported, because several of the mice 

reached zero blood ethanol levels at 125 minutes and we were unable to estimate the slope 

of ethanol metabolism. The dose and time parameters were adapted from Grahame and 

colleagues (1999), and were used to obtain linear regressions of ethanol elimination rates. 

All blood samples were determined using an Analox Analyzer (Analox Instruments, 

Luneburg, MO, USA)

Experiment 2

In experiment 2, 12 male and female cHAP mice had access to 10% ethanol and water, and 

12 male and female cHAP mice had access to water for 3 weeks using the same procedure 

described for Experiment 1. On day 21, ethanol bottles were removed at 8pm (lights on) to 

allow ethanol to clear prior to testing on the following day. In experiment 1, we observed 

that the ethanol-exposed animals metabolized all ethanol prior to 125 minutes, thus we 

chose to increase the dose to 3 g/kg. Beginning at lights off (8 am) the following day, all 

mice were given a 3 g/kg injection of 20% ethanol (v/v, diluted from 100% using a 0.9% 

saline solution). Each mouse was sampled via the retro-orbital sinus twice with a cohort 

having blood drawn at at 25 and 75 minutes, and another cohort having blood drawn at 50 

and 125 minutes following the injection (12 mice at each time-point, 5–6 per group). Blood 

ethanol concentrations were assessed using gas chromatography as previously described 

(Lumeng et al., 1982). This experiment extended the result from experiment 1 by assessing 

whether metabolic tolerance is evident at another dose (3 g/kg) at which certain enzymes 

may be differently recruited, as well as whether the effect persists throughout clearance. 

Experiment 2 also allowed us to assess whether metabolic tolerance is evident following the 

third week (versus fourth week) of ethanol exposure.
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Experiment 3

In experiment 3, 12 male and female cHAP mice had access to 10% ethanol and water for 4 

weeks using the same procedure described for Experiment 1, and an additional 12 mice had 

access to water during this time. We lengthened the access period from 3 to 4 weeks to 

increase the likelihood of observing pathological effects of ethanol consumption on the liver. 

All mice were weighed and anesthetized using isoflourane. A blood sample was taken via 

cardiac puncture and liver tissues were harvested as rapidly as possible, immediately freeze-

clamped with Wollenberger tongs at the temperature of liquid nitrogen, powdered under 

liquid nitrogen with a mortar and pestle, and stored at −80°C for analysis. A part of the 

sliced liver tissues was fixed in 10% formalin solution for routine hematoxylin and eosin 

staining. Frozen sections of the liver were stained with Oil Red O. Sixty milligrams of whole 

liver tissue powder prepared under liquid nitrogen were homogenized with RIPA buffer. 

Protein concentrations were determined by the Bio-Rad assay. Equal amounts of protein (20 

μg of protein) were separated on SDS-polyacrylamide gels, transferred to a nitrocellulose 

membrane by the wet blotting method, and probed with antibodies as indicated. The 

following primary antibodies were used: anti-CYP2E1 (Abcam, Cambridge, MA), anti-

human ADH (Dr. William Bosron, Indiana University), and anti-ALDH2 (Dr. Henry 

Weiner, Purdue University). The amounts of bound antibodies were assessed by the 

peroxidase activity of horseradish peroxidase-conjugated secondary antibody, as detected by 

chemiluminescence with Lumi-light Western blotting substrate (Amersham Biosciences, 

Piscataway, NJ).

Analyses

Experiment 1

The pattern of drinking rhythms was analyzed using a Repeated Measures ANOVA using 

Time (9 time-points) and Sex as independent variables. To look at the time-course of BECs, 

a Sex x Time-point (10 am, 2 pm, 6 pm, 10 pm) ANOVA was performed. Pearson 

correlations were performed to assess whether there was a correlation between the rate of 

alcohol intake and BEC at each time-point, as well as across all time-points.

Individual metabolic rates were calculated using a linear regression, and the slopes were 

derived to assess changes in BEC across minutes. To assess whether metabolic tolerance 

develops following chronic access to ethanol, a Group x Sex ANOVA assessed whether 

there were significant differences in slope between the sexes, as well as between ethanol-

exposed and water-exposed mice. Separate Sex x Group ANOVAs were performed to assess 

for body weight differences in all three experiments on test day.

Experiment 2

Linear regressions were calculated to assess change in BEC across minutes. To assess 

whether metabolic tolerance developed following chronic access to ethanol, we compared 

the slopes of these regressions using an omnibus Cohort x Group x Sex ANOVA to 

determine if there were significant differences in the slope between the sampling cohorts, 

sexes, and between ethanol-exposed and water-exposed mice.
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Experiment 3

Liver weight was divided by body weight to obtain a liver/body weight ratio. A Group x Sex 

ANOVA was run to assess whether there were differences in this ratio between the sexes or 

between ethanol-naïve and ethanol-exposed groups. Separate Group ANOVAS were run to 

determine if there were differences in levels of ALDH, ADH, and CYP-2e protein between 

ethanol-exposed and water control mice. We chose not to include Sex as a factor, since the 

gels were stratified by sex during electrophoresis, therefore making it difficult to directly 

compare the sexes. Hepatic histology was determined from hematoxylin and eosin staining.

Results

Experiment 1

A timeline of the procedure is presented in Figure 1A. As previously observed, cHAP mice 

maintain a stable drinking rhythm during the dark portion of the light-dark cycle following 

chronic access (Matson and Grahame, 2011). The rate of intake is low during the 2 hours 

prior to lights off, and rapidly increases to a high level during the following 2 hours. 

Mauchley’s Test of Sphericity was significant (p < .05), therefore we used the Greenhouse-

Geisser test for repeated measures. A repeated measures ANOVA indicated there was a 

main effect of Sex, F(1, 34) = 13.58, p < .05, with females drinking at a higher rate than 

males. There was also a main effect of Time, F(2.12, 72.02) = 50.00, p < .05 (Figure 1), but 

there was no interaction of Time and Sex, F(2.12, 72.02) = p > .05. Time was further 

analyzed to assess whether there was a peak point of intake. A Bonferroni adjustment was 

used to conduct post-hoc analysis of the Time variable (.05/9 timepoints = .006), which 

revealed that the highest point of intake (8–10 am) was significantly different from all other 

time-points (ps < .006) (Figure 1B).

A Sex x Time between-subjects ANOVA indicated there were significant differences in 

BEC values across the four sampling points, F(3, 27) = 5.05, p < .05, but there was no 

difference in BEC between the sexes, F(1, 27) = 2.43, p > .05. There was also no interaction 

of Time and Sex, F(3, 27) = .58, p > .05. Post hoc analyses were performed for Time using a 

Bonferroni correction (.05/4 = .013), and indicated that the BEC values at 2 pm and 6 pm 

were not different from each other, but were significantly higher than BEC at 10 pm. The 

BEC values from the 10 am sampling point were not significantly different from any other 

time-point. Mean ± SEM BEC values (in mg/dl) were 112 ± 20 at 2 hours after lights off, 

189 ± 27 at 6 hours after lights off, 194 ± 30 at 10 hours after lights off, and 90 ± 22 at 2 

hours after lights on (Figure 2a). A Bonferroni correction was used to assess whether there 

were significant Pearson correlations for rate of intake and BEC (.05/5 = .01). There was a 

significant correlation between rate of intake across all sampling points and BEC (p < .01), 

but there were no significant correlations between rate of intake and individual sampling 

points (ps > .01) (Figure 2b).

A Sex x Group ANOVA indicated there was a significant difference in ethanol metabolism 

between the chronically ethanol-exposed and water-exposed mice F(1, 8) = 6.05, p < .05, 

with metabolic rates of 2.3 ± .4 mg/dl/min and 1.5 ± .2 mg/dl/min, respectively (Figure 3a). 

There were no differences in metabolic rate between the sexes, F(1, 8) = 4.98, p > .05 and 
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there was no interaction of Sex and Group, F(1, 7) = 3.14, p > .05. Another Sex x Group 

ANOVA indicated males were heavier than females, F(1, 19) = 14.99, p < .005, with body 

weights of 24.2 ± .6 g and 21.3 ± .3 g, respectively. There were no significant differences in 

body weight between ethanol- and water-exposed mice, F(1, 19) = .14, p > .05, nor was 

there an interaction of Sex and Group, F(1, 19) = 0.00, p > .05.

Experiment 2

During the last week of ethanol access, cHAP mice averaged intakes of 23.0 + .67 g/kg. A t-

test indicated that the sexes did not differ in intake, t(10) = .568, p > .05. To assess 

differences in alcohol metabolism as a function of drinking history, a Cohort x Group x Sex 

ANOVA indicated that there was a significant main effect of Group, F(1, 16) = 14.42, p < .

005. Ethanol-exposed mice metabolized ethanol faster than ethanol-naïve mice with rates of 

2.4 ± .2 mg/dl/min and 1.8 ± .1 mg/dl/min, respectively (Figure 4). There was also a main 

effect of Sex, F(1, 16) = 5.43, p < .05. Males metabolized ethanol faster than females, with 

metabolic rates of 2.2 ± .2 and 1.9 + .1 mg/dl/min, respectively. There was no main effect of 

Cohort, F(1, 16) = 4.29, p > .05 nor were there any significant interactions, Fs(1, 16) < 3.25, 

ps > .05. A Sex x Group ANOVA on body weight at time of testing indicated that male mice 

were heavier than female mice, F(1, 20) = 21.30, p < .05, with body weights of 24.6 ± .4 g 

and 22.2 ± .2 g, respectively. There was no significant effect of Group, F(1, 20) = .20, p > .

05, nor was there an interaction of Group and Sex, F(1, 20) = .06, p > .05.

Experiment 3

By the fourth week of ethanol access, cHAP intake averaged 27.6 ± 1.2 g/kg, although a t-

test indicated that there was no sex difference in ethanol intake, t(6) = 1.15, p > .05. A Sex x 

Group ANOVA indicated that there were no differences in the liver/body weight ratios 

between genders or between ethanol-exposed and –naïve groups, nor was there an 

interaction of sex and group F(1, 12) < .69, ps > .05. Another Sex x Group ANOVA 

indicated that males were heavier than females, F(1, 12) = 18.24, p < .05, with body weights 

of 25.9 ± 1.0 g and 21.2 ± .4 g, respectively. Again, there were no significant differences 

between ethanol-exposed and -naïve mice, F(1, 12) = 1.02, p > .05, nor was there an 

interaction of Sex and Group, F(1, 12) = 1.53, p > .05.

An ANOVA indicated that there was no difference in the level of ALDH protein between 

the ethanol-exposed and ethanol-naïve groups, F(1, 14) = .012, p > .05 (Figure. There was 

also no difference in the level of ADH protein between the ethanol-exposed and ethanol-

naïve groups F(1, 14) = .004, p > .05. Conversely, another ANOVA indicated there was a 

significantly higher level of CYP-2E1 in ethanol-exposed versus ethanol-naïve mice, F(1, 

14) = 42.96, p < .001 (Figure 5B, E, C, F). Histological examination showed no evidence of 

hepatic steatosis or other liver injury in ethanol-exposed mice compared to controls (Figure 

5A, D).

Discussion

In this paper, we have shown that the excessive rate of intake demonstrated in cHAP mice 

throughout the active portion of the light dark cycle also results in high blood ethanol levels 
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through the entire dark portion of the light dark cycle. Further, this high level of ethanol 

intake results in evidence of metabolic tolerance, as is demonstrated by a faster ethanol 

clearance and an increased level of hepatic CYP 2E1 expression compared to water-exposed 

control mice. Finally, this high level of exposure does not result in hepatic steatosis, which 

we had expected might occur based on previous results demonstrating that 4 weeks of 

ethanol liquid diet causes hepatic steatosis in mice (Lieber and DeCarli, 1963; DeCarli and 

Lieber, 1970).

The results from experiment 1 and recent observations in HAP mice challenge the notion 

that rodents will not voluntarily self-administer past their capacity to metabolize consumed 

ethanol (Matson and Grahame, 2011). In experiment 1, we were interested in assessing the 

daily “area under the curve” with regard to blood ethanol levels in the cHAP line, and were 

able to demonstrate that a majority of cHAP mice maintain pharmacologically relevant 

BECs throughout the dark portion of the light-dark cycle, and even up through 2 hours 

following lights on. Although BECs decrease following lights on, 67% of the mice still had 

pharmacologically relevant levels (> 80 mg/dl) at 10 pm. In addition, BEC is strongly and 

positively correlated with rate of intake across the day, and when taken with the replication 

of the drinking pattern in cHAP mice, suggests these animals engage in predictable alcohol 

consumption behavior that is highly useful for a variety of experiments. Quantification of 

the daily pattern of alcohol exposure in these mice may allow for behavioral, 

neurobiological, or genetic changes to be examined in a dose- and time-dependent manner.

Demonstrating high BECs in HAP mice not only allows for exploration of questions 

surrounding drinking and the presumed intoxication that results, but also for studying 

behaviors that may result from chronic alcohol intake. Few studies have assessed whether 

tolerance results following 24-hour, free-choice administration in rodents, as this type of 

drinking paradigm is often limited by the amount of ethanol rodents will voluntarily 

consume. It has been shown that P rats demonstrate metabolic tolerance following a period 

of free-choice access to ethanol, and further, that the degree of metabolic tolerance did not 

differ from P rats fed an alcohol liquid diet (Lumeng and Li, 1986). This procedure used a 4-

day period with ethanol available as the only source of liquid prior to free-choice ethanol 

access. Otherwise, forced access, injection, or gastric intubation of ethanol has typically 

been necessary to induce metabolic tolerance (Lieber, 2004). Although these models result 

in high BECs, free-choice consumption may be less stressful and closely models human 

behavior. Our results demonstrate that cHAP mice develop metabolic tolerance following 

strictly voluntary access to ethanol, which is a novel finding in rodents (Matson and 

Grahame, 2011). We also recently demonstrated that cHAP mice increase their daily ethanol 

intake during three weeks of free-choice access, therefore the increase may be at least 

partially driven by the development of metabolic tolerance, which is also thought to occur in 

human heavy ethanol consumption (Lieber, 2004; Matson and Grahame, 2011).

Further, cHAP mice had increased levels of CYP 2E1 protein following chronic ethanol 

exposure. This is consistent with a body of literature supporting the idea that increased CYP 

2E1 activity is largely responsible for driving metabolic tolerance in both rodents and 

humans (Takahashi et al., 1993). In addition, this adds to the evidence that this rodent model 

is unique in its ability to demonstrate physiological alterations in liver following chronic 
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exposure to high BECs through strictly voluntary ethanol access. It is interesting that 

changes in CYP 2E1 seem to be dependent on both the duration and the level of blood 

ethanol. CYP 2E1 induction has been shown to occur through post-translational mechanisms 

following lower BECs (< 200 mg/dl), but is driven by transcriptional and post-translational 

changes at high BECs (> 250 mg/dl) (Badger et al., 1993; Ronis et al., 1993). Our results 

demonstrate that there is a sufficient amount of ethanol exposure during free-choice access 

in cHAP mice to induce CYP 2E1 through increasing levels of the protein. Considering that 

cHAP mice will sustain BEC levels of between 100–200 mg/dl throughout the active portion 

of the light dark cycle, future studies should address whether there are accompanying 

increases in enzyme activity and mRNA expression of CYP 2E1.

Hepatic steatosis was not evident following chronic free-choice access to ethanol. This was 

somewhat surprising, as cHAP intake and BECs are similar to the levels observed in rats 

given an ethanol liquid diet (for review, Lieber and DeCarli, 1989). On the other hand, the 

C57/Bl6J (B6) inbred strain has been observed to consume ~19 g/kg/day and achieve BEC 

levels around 300 mg/dl during liquid ethanol diet access (Anji and Kumari, 2008). 

Although cHAP intake is higher, the BECs observed across the dark cycle are lower than 

what was observed in B6 mice given a liquid diet. Lower BECs in cHAP mice may be 

explained by the development of metabolic tolerance, as the rate of ethanol metabolism may 

be high enough to prevent BECs from reaching levels that are necessary to cause 

hepatotoxicity. Further, nutritional composition is important in determining the extent of 

ethanol-induced liver damage. It is well known that a high fat diet exacerbates alcohol-

induced fatty liver in rodents (D’Souza El-Guindy et al., 2010; Fisher et al., 2002). 

However, we observe fatty liver in C57 mice fed the Dytes low fat Lieber-DeCarli diet 

(Liangpunsakul et al., 2012). This diet contains 13.6 g fat/l and with intakes of 

approximately 15 ml/day, they consume 0.2 g of fat/day. The control Purina 5001 diet 

contains 4% fat, and with an average intake of 5 g/day of mouse chow, the intake would 

have been in the same range as with the liquid diet. Thus, the type of fat (pork fat for the 

Purina diet, hence saturated, which is known to protect against fatty liver vs polyunsaturated 

vegetable fat in the Dytes formulation), may be critical (You et al., 2005). In addition, there 

are strain differences in susceptibility to steatosis (unpublished data), and the selection of the 

HAP and cHAP mice involved testing breeding animals for alcohol consumption. Therefore, 

selection might have resulted in epigenetic changes that alter hepatic responses to alcohol.

In conclusion, the cHAP line demonstrates a stable, excessive pattern of ethanol intake and 

corresponding BECs across the dark portion of a diurnal cycle. Achieving stable, high intake 

in cHAP mice to the observed level of intoxication may provide a unique opportunity for 

modeling chronic, excessive human intake (Leeman et al., 2010). This excessive intake 

results in the development of metabolic tolerance in the cHAP line and evidence of CYP 

2E1 induction, which provides additional support for the cHAP mice as a highly 

translational rodent model of alcoholism. Together, our observations provide justification 

for exploration into other predisposing factors surrounding excessive consumption, as well 

as the development of other physiological and toxicological outcomes following voluntary 

chronic ethanol exposure.
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Figure 1. 
(A) Timeline for Experiment 1 (B) Chronic drinking rhythm in cHAP mice including 2 

hours before and after the dark portion of the cycle, with shading during the dark portion of 

the light-dark cycle and arrows indicating time of blood sampling on day 24. We report 

intake in g/kg/h and the asterisk (*) indicates the peak point of intake compared to all other 

points of intake.
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Figure 2. 
(A) BECs across the day in cHAP mice (n = 8–9 per time point). Mean BECs were 112 ± 20 

mg/dl at 2 hours after lights off (6/9 above 80 mg/dl), 189 ± 27 mg/dl at 6 hours after lights 

off (8/9 above 80 mg/dl), 194 ± 30 mg/dl at 10 hours after lights off (7/8 above 80 mg/dl), 

and 90 ± 22 mg/dl at 2 hours after lights on (6/9 above 80 mg/dl). (B) The correlation of 

BEC (mg/dl) with rate of intake across the day (g/k/h) until the point of blood sampling. 

Rate of intake was calculated by dividing intake in g/kg by the number of intake hours prior 

to sampling beginning at lights off (8 am).
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Figure 3. 
Clearance in ethanol-exposed and ethanol-naive mice following a 2 g/kg challenge dose 

with 20% ethanol. Ethanol-exposed mice metabolized alcohol faster than naïve mice with 

clearance rates of 2.3 ± .4 mg/dl/min and 1.5 ± .2 mg/dl/min, respectively.
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Figure 4. 
Clearance in ethanol-exposed and ethanol-naïve mice following a 3 g/kg challenge dose 

with 20% ethanol. Ethanol-exposed mice had a faster metabolism rate than ethanol-naïve 

mice with rates of 2.4 ± .2 mg/dl/min and 1.8 ± .1 mg/dl/min, respectively.
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Figure 5. 
Histological analysis of the livers and the protein expression of alcohol metabolizing 

enzymes (ADH, ALDH, and CYP 2E1) in mice with ad libitum access to either water or 

ethanol and water, and stratified by gender (males panels A–C and females panels D–F). 

There were no significant alterations in hepatic histology between with free access to water 

and ethanol for both genders (5A and 5D). The levels of ADH, ALDH, and CYP 2E1 were 

determined by western blotting (using actin as the loading control). There were no 

significant changes in the levels of ADH and ALDH in cHAP mice following ethanol access 

compared to water controls (p > .05). However, the expression of hepatic CYP 2E1 was 

significantly increased in mice with free access to ethanol when compared to water access 

controls (p < .05) (5B, 5C, 5E, and 5F).
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