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Abstract

The PROmotion of Breastfeeding Intervention Trial (PROBIT) cluster-randomized a program 

encouraging breastfeeding to new mothers in hospital centers. The original studies indicated that 

this intervention successfully increased duration of breastfeeding and lowered rates of 

gastrointestinal tract infections in newborns. Additional scientific and popular interest lies in 

determining the causal effect of longer breastfeeding on gastrointestinal infection. In this study, 

we estimate the expected infection count under various lengths of breastfeeding in order to 

estimate the effect of breastfeeding duration on infection. Due to the presence of baseline and 

time-dependent confounding, specialized “causal” estimation methods are required. We 

demonstrate the double-robust method of Targeted Maximum Likelihood Estimation (TMLE) in 

the context of this application and review some related methods and the adjustments required to 

account for clustering. We compare TMLE (implemented both parametrically and using a data-

adaptive algorithm) to other causal methods for this example. In addition, we conduct a simulation 

study to determine (1) the effectiveness of controlling for clustering indicators when cluster-

specific confounders are unmeasured and (2) the importance of using data-adaptive TMLE.
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1. Introduction

The PROmotion of Breastfeeding Intervention Trial (PRO-BIT) [Kramer et al. (2001, 2002)] 

was undertaken in order to obtain randomized control trial evidence of the health effects of 

longer breastfeeding. This was done by cluster randomizing a breastfeeding support 

intervention which encouraged exclusivity and duration. The effect of the PROBIT 

intervention on gastrointestinal tract infection in the newborns was originally evaluated 

using a stratified intention-to-treat analysis. The results indicated a significant reduction in 

infection incidence for infants whose mothers had been assigned to the intervention group 

[Kramer et al. (2001)]. The intervention was presumably effective because it successfully 

encouraged breastfeeding, which subsequently improved infant health. However, because 

breastfeeding itself was not randomized, the estimated effect obtained in the study can at 

best be considered a biased assessment of the effect of breast-feeding on infection. Due to 

the ethical and practical impossibility of randomizing breastfeeding, estimation of the causal 

effect of breastfeeding must be obtained through statistical methods.

Our goal is therefore to estimate the causal effect of breastfeeding duration on the number of 

infections a newborn is expected to experience in their first year. One of the challenges 

involved in analyzing this effect is the confounding presence of intermediate infections 

(occurring at any time during the year). The presence of an infection affects both the 

continuation of breastfeeding and the outcome (since it deterministically increases the 

outcome by one). Therefore, intermediate infection is a time-dependent confounder. Since 

infection is also hypothesized to be affected by previous breastfeeding status, standard 

regression methods (including or excluding the time-dependent confounder) may produce a 

biased estimate of the causal parameter [Robins (1986)]. Causal methods are therefore 

required to isolate the desired effect. Additional confounding also occurs due to baseline 

differences in the study group and by informative participant dropout.

Many longitudinal methods have been developed that correctly take into account time-

dependent confounders predicted by past exposure. One such method is inverse probability 

of treatment weighting (IPTW) for marginal structural models [Hernán, Brumback and 

Robins (2000), Robins, Hernán and Brumback (2000)]. However, IPTW is not 

semiparametric efficient [Robins and Rotnitzky (1992)] and has poor performance under 

certain common scenarios [Petersen et al. (2012)]. The shortcomings of simple weighting 

methods have since spurred the development of new estimators with better properties. 

Efficient estimating equation methodology [Bang and Robins (2005), Robins and Rotnitzky 

(1992), van der Laan and Robins (2003)] produces estimators that are double robust 

(consistent under partial model misspecification) and efficient when correctly specified. 

Targeted maximum likelihood estimation (TMLE) [van der Laan and Rubin (2006)] shares 

these properties, but because it is a substitution estimator, it can be made to be stable and 

produce estimates bounded within the parameter space in some situations where IPTW 
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performs poorly [Gruber and van der Laan (2010)]. In addition, TMLE is often implemented 

fully nonparametrically, which avoids modeling errors caused by incorrect parametric 

assumptions.

van der Laan (2010) established a TMLE procedure for longitudinal data based on a binary 

decomposition of the intermediate variables (the time-dependent confounders). This method 

has been described and implemented by Rosenblum and van der Laan (2010a) and 

Schnitzer, Moodie and Platt (2013) for two time points, and Stitelman, De Gruttola and van 

der Laan (2012) for a survival outcome. However, the implementation of this method for 

large numbers of time points results in heavy computational requirements and a restriction 

on the form of the data (specifically, requiring discretized intermediate covariates). More 

recently, van der Laan and Gruber (2012) developed a simpler and more flexible 

implementation of TMLE for longitudinal data based on the ideas of Bang and Robins 

(2005).

An initial causal analysis of the PROBIT study using different double-robust causal methods 

was performed by Schnitzer, Moodie and Platt (2013) but was limited to two time points. In 

this paper, after giving more details about the PRO-BIT study and the scientific question of 

interest (Section 2), we describe several options for potentially unbiased estimation of the 

effect of breastfeeding on infection: (a) G-computation [Robins (1986)], (b) a variant of G-

computation that we call sequential G-computation [Bang and Robins (2005)], and (c) a 

longitudinal TMLE based on sequential G-computation [van der Laan and Gruber (2012)] 

(Section 3). The subsection on the longitudinal TMLE demonstrates a 6 time-point 

implementation for estimation of the effect of breastfeeding duration on gastrointestinal tract 

infection, with modified variance estimation reflecting the clustered design of the PROBIT. 

In Section 4 we present the results of analyzing the PRO-BIT data with each of these 

methods in addition to IPTW. Finally, we compare this TMLE approach to the other causal 

techniques for longitudinal data in a simulation study designed to imitate the analysis of the 

PROBIT data.

2. The PROBIT data

The PROBIT study paired participating maternal hospitals according to (1) geographic 

region in Belarus, (2) urban or rural status, (3) number of deliveries per year and (4) 

breastfeeding rates upon discharge. One hospital of each pair was then assigned to receive a 

breastfeeding support intervention that involved retraining all midwives, nurses and 

physicians involved in labor, delivery and the postpartum hospital stay. The control 

hospitals were assigned to continue their current practice. Thirty-four hospitals were initially 

randomized, but three were dropped from the study due to eventual refusal to follow the 

assignment or falsification of data.

The PROBIT study enrolled healthy, full-term, singleton infants of mothers who intended to 

breastfeed, weighing at least 2500 g, soon after birth. Follow-up visits were scheduled at 1, 

2, 3, 6, 9 and 12 months of age to record various measures of health and size, including 

number of gastrointestinal infections over each time interval. At each follow-up visit, it was 

established whether the mother continued to breastfeed.
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Within the 31 hospitals, 17,046 mother/infant pairs were recruited into the trial. Of these, ten 

were missing necessary baseline information and were removed from the analysis. The 

remaining 17,036 subject pairs were used in the analysis. Characteristics of the complete 

data set (including missing data summaries) are presented in Table 1. Within the hospitals, 

the number of recruited patients varied between 232 and 1180 with median 471.

Measured baseline potential confounders of the effect of breastfeeding on infection (and 

predictors of outcome) were chosen to be mother’s education, mother’s smoking status 

during pregnancy, mother’s age, family history of allergy, number of previous children, 

whether the birth was by cesarean section, gender of child, gestational age, Apgar score for 

health of the newborn, geographic region, and the weight, height, head circumference at 

birth, and hospital. The hospital (or cluster) was included in the set of potential confounders 

because the conditions of the hospital frequented by a patient can affect both their infant’s 

health outcome and their decision to continue breastfeeding. In addition, since similar 

patients may be clustered within a hospital, hospital may act as a proxy for unmeasured 

baseline characteristics.

The hypothetical intervention of interest for this analysis was breastfeeding up until a given 

time. The binary intermediate variable at a given time was whether or not gastrointestinal 

infection occurred in the interval immediately preceding the time point. The outcome is the 

total number of infections occurring up until 12 months of age.

A subject was defined as censored at the first visit where information required in the 

analysis was missing. The number of censored subjects at each time point is described in 

Table 2. Absenteeism or study drop-out are often dependent on subject-specific 

characteristics and current health, which is why adjustment for censoring was considered 

necessary.

At each visit, the number of gastrointestinal infections since the last visit were counted. In 

addition, breastfeeding status at that time was obtained. There is therefore uncertainty about 

exact time-ordering of each infection and breastfeeding cessation within a time interval. By 

defining the exposure as breastfeeding status at time-point t, we can consider that this 

intervention point occurs after infection counts measured over the previous interval. With 

six visits, and the outcome assessed at the sixth visit, this means that only the first five 

exposure nodes are considered in the analysis. However, we observe six censoring times 

(occurring before each of the six follow-up times). Figure 1 gives a graphic display of the 

time-ordering of the observed data.

Intermediate infections were considered to be an important time-varying confounder 

because mothers were less likely to continue breastfeeding when their infant became ill. 

Therefore, even if breastfeeding has absolutely no effect on infection, ignoring this 

confounding effect would make it seem like infants who experienced infections were also 

breastfed for shorter periods of time. Table 2 also shows a summary of the infection counts 

at each time point. Few children experienced more than one infection during a given time 

interval, so the time-dependent confounder was summarized as a binary indicator of 

infection. However, we used the true number of infection counts for the outcome.
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3. Estimation for longitudinal data

As in the PROBIT study, suppose we observe longitudinal information from n individuals of 

the form O = (W, C1, L1, A1, C2, L2, …, LK−1, AK−1, CK, Y). Let K be the total number of 

follow-up visits, and the subscripts on each variable indicate the visit at which that variable 

was measured. The variable W is the collection of potentially confounding variables at 

baseline. The variables Ct, t = 1, …, K, indicate whether a subject has been censored before 

the tth time point. Intermediate infection was represented by Lt, t = 1, …, K − 1, indicating 

whether the infant had any gastrointestinal infections between time-points t − 1 and t. If a 

subject has been censored, define their missing Lt and Y values to be zero. The variables At, t 

= 1, …, K − 1, denote breastfeeding status at time-point t (At = 1 means continued 

breastfeeding). The outcome Y is the total number of infections accrued up until and 

including visit K. For any time-dependent variable X, we will use X̄t = (X1, …, Xt) to denote 

the history of X up to and including Xt.

Let ā = (a1, a2, …, aK−1) denote a fixed breastfeeding regimen. For instance, breastfeeding 

past the first time period, then stopping before the second would be written as (1, 0, 0, …, 

0). Because breastfeeding is approximately monotone, the regimens of interest are 

equivalent to a corresponding duration of breastfeeding. Following the Neyman–Rubin 

model [Rubin (1974)], define the counterfactual variable  as the observation Lt that an 

individual would have had if they had followed the breastfeeding regimen ā and remained 

uncensored. Similarly, Yā is the counterfactual number of infections that would have been 

observed under breastfeeding regimen ā. The target of inference is the marginal mean 

counter-factual outcome, denoted ψā = E(Yā). The standard causal missing data problem 

arises from observing each individual under only one breastfeeding regimen.

3.1. The G-computation method

G-computation [Robins (1986), Snowden, Rose and Mortimer (2011)] is a likelihood-based 

approach to estimating a causal parameter. It is often described as a substitution estimator 

because it takes a fit of the likelihood and substitutes it into a function to get an estimate of 

the parameter of interest. Suppose our observed data O consist of n independently and 

identically distributed draws from a true underlying distribution f(O). This density may be 

decomposed corresponding to the time-dependent structure of the data as

where Q is the joint conditional distribution of the Y, Lt and W variables that can be 

decomposed into conditional distributions QY, QLt, t = 1, …, K, and QW. Similarly, g is the 
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conditional distribution of the exposure and censoring variables that can be decomposed into 

gAt, t = 1, …, K − 1, and gCt, t = 1, …, K.

Given a fixed breastfeeding regimen, ā, we can define the distribution Qā of the 

corresponding counterfactual variables Yā, , W (under the causal assumptions of 

consistency and sequential ignorability discussed in Section 4.1) as

where āt = (a1, …, at) is the component of the fixed regime up until time-point t. The 

targeted parameter of interest, specifically the marginal mean under a fixed breastfeeding 

regimen ā, can then be described as ψā̂ = EQYā where the expectation is taken under Qā.

Because the intermediate variables Lt, 1 ≤ t ≤ K − 1, are binary, the expression for ψā = 

EQYā simplifies to

(1)

Each component of the above expression can be estimated from the observed data. Only the 

conditional mean of Y and the conditional probabilities for Lt, 1 ≤ t ≤ K, must be fit to 

produce a G-computation estimate. The mean and the conditional probabilities can be 

estimated using any parametric method as desired.

To obtain an estimate of the parameter using G-computation, first get a prediction of each 

conditional expectation and probability in equation (1) for each subject, i. The QW can be 

estimated using the empirical density so that QW (wi) = 1/n for each subject (with baseline 

variables wi). Then, the predicted values for the conditional expectation and probabilities are 

combined according to equation (1), where the integral is replaced by summation over all 

subjects, i.

G-computation does not rely on the full specification of the density Q. However, it requires 

correct specification of the conditional models for the mean and each of the probabilities in 

order to obtain unbiased estimation of the parameter ψā. No closed form or asymptotic result 

is available for the G-computation standard error, so using a nonparametric bootstrap is 

often suggested [Snowden, Rose and Mortimer (2011)]. To properly assess the variance in 

the clustered design, the analyst might use the pairs clustered bootstrap [Cameron, Gelbach 

and Miller (2008)] by resampling clusters instead of individuals.
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3.2. Sequential G-computation formulation

As suggested by Bang and Robins (2005) and used by van der Laan and Gruber (2012), an 

alternative decomposition of the parameter of interest, and therefore an alternative to the 

standard likelihood G-computation, can be constructed by taking sequential expectations of 

the outcome. Their result is an application of the property of iterated expectations.

Under the causal assumptions of sequential exchangeability and consistency, the marginal 

mean under breastfeeding regime ā and no censoring can be reexpressed as

(2)

by sequentially breaking up the expectations into nested conditional expectations. This 

decomposition of the expectations is continued until the outermost expectation is only 

conditional on W.

In order to obtain an estimate of the parameter using this decomposition, a model must be fit 

for each level of conditioning, beginning with the innermost expectation. To more easily 

refer to each model fit, van der Laan and Gruber (2012) described the conditional models of 

the counterfactuals iteratively. Let

be the outcome expectation conditional on the full history, for those who followed the 

regime ā and were fully observed. The fit Q̄K is obtained using a conditional modeling 

method. Then, recursively define

for each successive nested expectation. The overbar in Q̄t denotes a mean.

This alternative decomposition of the parameter can be used to compute an estimate of the 

parameter of interest using the following algorithm. It is done by producing model fits for 

each of the Qt̄’s, obtaining predictions for each individual, and then taking a mean of Q̄1 

over all participants. Specifically, the estimation algorithm proceeds as follows:

1. First, model the outcome Y given all of the covariate history, for only those 

completely uncensored subjects with observed breastfeeding regime ĀK−1 = āK−1. 

This can be done using logistic regression or any appropriate prediction method. 

(Alternatively, a general conditional expectation conditional on ĀK−1 can be fit 

using all uncensored subjects and then evaluated at āK−1 in order to smooth over all 

observations.)
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2. Then, using the model produced in (1), predict the conditional outcome for all 

subjects (including those censored), resulting in the fit Q̄K,n.

Then, iteratively for t = K, …, 2,

3. Fit a model for Q̄t,n from the previous step conditional on covariates L̄t−1 using 

only subjects uncensored up until time t − 1 (i.e., subjects with Ct−1 = 0) with 

observed breastfeeding status Āt−2 = āt−2. (Again, this model can be alternatively fit 

using all uncensored subjects, conditioning on Āt−2, and then evaluating at āt−2.)

4. For all subjects, predict a new conditional outcome from this last model, producing 

the fit Q̄t−1,n.

Repeat steps 3 and 4 for each time point (going backward in time) until predictions Q ̄1,n are 

obtained for the outcome conditional on only the baseline covariates, W. The parameter 

estimate is then obtained by taking a mean of Q̄1,n over all observations. As in the previous 

G-computation method, variance estimates are computed using bootstrap cluster resampling. 

Note that the above procedure does not depend on the type or dimension of the variables Lt 

and W, and fits one model per time point (where there is an intervention or censoring).

3.3. Efficient estimation for longitudinal data

Both G-computation algorithms described here require correct specification of different 

decompositions of the underlying data generating form. Alternatively, efficient 

semiparametric estimation allows for root-n consistent estimation with the added benefit of 

double robustness [Tsiatis (2006), van der Laan and Robins (2003)]. Briefly, influence 

curves are weighted score functions that contain all of the information about the asymptotic 

variance of the related estimator. The efficient influence curve for a given parameter is the 

influence curve that reaches the minimal variance bound. One possible way of obtaining 

efficient semiparametric inference is to estimate the components of the efficient influence 

curve and then use it as an estimating equation by setting it equal to zero and solving for the 

target parameter.

Corresponding to the original G-computation factorization of the likelihood, van der Laan 

(2010) derived a representation of the efficient influence curve for a longitudinal form with 

binary intermediate variables. Similarly, Stitelman, De Gruttola and van der Laan (2012) 

modified the corresponding theory for survival data. The alternative formulation for the 

efficient influence curve was developed by Bang and Robins (2005) and used by van der 

Laan and Gruber (2012), allowing for a general longitudinal form and much easier 

estimation procedures for higher-dimensional or more complex longitudinal data.

Let ḡt, t = 2, …, K, be the probability associated with obtaining a given history of 

breastfeeding ā up until time t − 1 and no censoring up until time-point t, conditional on the 

observed history L̄t−1 and W. Specifically, let
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(3)

for t = 2, …, K, and where A0 and a0 are null sets. Further, let ḡ1(W) = Pr(C1 = 0 | W) be the 

probability of being uncensored at the first time point, conditional on baseline covariates, W. 

These probabilities can be estimated using logistic regression, for instance. As derived and 

explained for a general longitudinal structure in van der Laan and Gruber (2012), the 

efficient influence curve D(O) for a fixed ā can then be written recursively for the PROBIT 

data as the sum of the components

(4)

where Q̄K+1 = Y is defined for notational convenience (and the dependencies of some 

components repressed). I (·) is an indicator function.

With each of the ḡt and Q̄t components estimated using any given prediction method, the 

parameter ψā can be estimated by setting the sum of the K + 1 components equal to zero and 

solving for ψ̂ā. In addition to being efficient, such an estimator is double robust: it is 

consistent if either the models for Q̄t, t = 1, …, K, or the models for ḡt, t = 1, …, K, contain 

the truth.

3.4. TMLE using the alternative G-computation formulation

The sequential G-computation method described in Section 3.2 is a substitution estimator 

because it is a function of a component of the likelihood, specifically the nested conditional 

expectations, Qt̄. The general TMLE procedure begins with some choice of substitution 

estimator, but modifies this estimator by updating the fits of the conditional expectations in 

order to produce a parameter estimate that satisfies the equation of the efficient influence 

curve set equal to zero. This parameter estimate is efficient and double robust. The general 

TMLE procedure has been described previously, for example, by Gruber and van der Laan 

(2010), Rosenblum and van der Laan (2010b), van der Laan and Rubin (2006).

Details regarding the construction of the sequential longitudinal estimator are given by van 

der Laan and Gruber (2012). The first step in the TMLE procedure is to fit the conditional 

densities {Q̄t, t = 1, …, K} using a method of choice. For the update step, the logistic loss 

function is chosen even for our case of an integer-valued outcome (which is reduced to 

proportions by shifting and scaling the vector to [0, 1]) due to the boundedness properties of 

the inverse of its canonical link function. The logistic loss becomes particularly valuable 

when there is sparsity at certain levels of the covariates or exposure [Gruber and van der 

Laan (2010)].
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The next step is to fluctuate each of the initial density estimates {Q̄t,n, t = K, …, 1}, starting 

at t = K, with respect to a new parameter, εt. A subscript n will be used to denote a fitted 

value. The fluctuation function for each Q̄t (εt) can be described as

(5)

for some expression Gt. Again letting Q̄K+1 = Y, the estimate for εt is found by minimizing 

the empirical mean of the logistic loss function

(6)

which is equivalent to solving the empirical mean score (or derivative of the loss function) at 

zero. This requires that the function Gt be defined and estimated.

According to the general TMLE procedure, the above fluctuation function in equation (5) is 

required to satisfy two conditions: (1) the fluctuation function must reduce to the original 

density when εt = 0, and (2) the derivative with respect to εt of the loss function at εt = 0 

must linearly span the efficient influence curve. The first condition is clearly satisfied when 

εt = 0. Taking the derivative of the loss function in equation (6) with respect to εt gives

Therefore, the score spans the efficient influence curve when Gt is defined as

The covariate Gt is often described as “clever” because it allows the score to span the 

efficient influence curve.

The update step is carried out by minimizing the empirical mean of the loss function, 

, with respect to εt. This is equivalent to running the logistic regression in 

equation (5): no intercept, with offset logit(Q̄t,n) and unique covariate Gt (Ct, Āt−1, L̄t−1, W). 

Let εt̂ be the estimate of the coefficient for Gt, which is the maximum likelihood estimate 

(or, equivalently, the minimum loss-based estimate) for εt.

Once all of the densities have been updated to give { , t = K, …, 1}, the parameter ψā is 

estimated as the mean of  over all subjects, that is,  (where wi is 

the observed baseline vector for subject i).
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This TMLE is double robust: it is consistent if either the models for Q̄t, t = 1, …, K, or the 

models for ḡt, t = 1, …, K, contain the truth. In addition, because of the usage of the logistic 

loss function and the corresponding fluctuation function in equation (5), the parameter 

estimates are bounded, regardless of the size of the weights, . This makes TMLE robust 

to certain kinds of data sparsity that cause large weights. A comparison of the fundamental 

qualities of the G-computation estimators, TMLE and IPTW, can be found in Table 3.

3.4.1. TMLE procedure for the PROBIT data—We observed the following procedure 

in our estimation of the parameter ψā, for a given breastfeeding regimen ā. As described 

above, our interpretation of the structure of the PROBIT data set is O = (W, C1, L1, A1, C2, 

L2, …, A5, C6, Y). There are six intervention nodes: censoring can occur at any of them and 

breastfeeding status is assessed at t = 1, …, 5. All subjects are initially breastfeeding, so 

breastfeeding regimen is equivalent to the total duration of breastfeeding. If a subject has 

been censored, impute their missing Lt and Y variables with zero values:

1. Fit models predicting breastfeeding and censoring (resp.) at each time point, 

conditional on all previous history. For each model, compute a predicted 

probability for each subject conditional on Āt = āt and Ct = 0.

• Given the monotone nature of breastfeeding, if ā = (1, 0, 0, 0, 0), for 

instance, the predicted probability of not breastfeeding at time 3 will be 

one for all participants, since it is conditional on stopping before time 2.

2. Using the predictions from step 1, calculate the propensity score ḡt,n from equation 

(3) for each subject.

3. Set Q̄7,n = Y, where Y is rescaled to [0, 1]. Then, for t = 6, …, 1,

• For the subset of subjects with Āt−1 = āt−1 and Ct = 0, fit a model for 

E(Q̄t+1,n | L̄t−1). Using this model, predict the conditional outcome for all 

subjects and let this vector be denoted Q̄t,n.

• Construct the “clever covariate” Gt (Ct, Āt−1, L̄t−1, W) = I (Ct = 0, Āt−1 = 

āt−1)/ḡt,n.

• Update the expectation by running a no-intercept logistic regression with 

outcome Q̄t+1,n, the fit logit(Q̄t,n) as an offset and clever covariate Gt as 

the unique covariate. Let ε̂t be the estimated coefficient of Gt.

• Update the fit of Q̄t by setting

and then obtain a predicted value of  for all subjects.

Note that the model for Q̄1 is modeled using only subjects with C1 = 0. 

The resulting fit Q̄1,n is only conditional on W and is estimated for all 

subjects.
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4.
Having fit  for each subject, take the mean. Rescale the mean (do the inverse of 

the original scaling of Y). This is the TMLE for ψā.

The standard errors can be calculated using a sandwich estimator, which uses the influence 

curve to approximate the asymptotic variance. First, the value of the influence curve D(O) is 

estimated for each subject. The clusters Zm are indexed by m = 1, …, M. Let ρm = E(Di Dj) 

for two elements in the cluster Zm and let  be the common variance for 

subjects in cluster Zm.

Assuming independence between the clusters and common variance for elements in a 

cluster, the large sample variance of the estimator is approximated using

where nm is the size of cluster Zm. The supplemental article Schnitzer et al. (2014) contains 

details about the form of the influence curve under clustering. The expectations can be 

estimated by taking the empirical covariance and variance within each of the clusters. 

Confidence intervals are calculated assuming Normality of the estimator, using the estimate 

plus and minus 1.96 times the estimated standard error.

4. Analysis of the PROBIT

The PROBIT data were analyzed by both G-computation methods; TMLE with parametric 

modeling of the sequential conditional means and conditional probabilities of breastfeeding 

and censoring (logistic main terms regression for binary breastfeeding status and censoring, 

and for the outcome shifted and scaled to [0, 1]); TMLE with Super Learner to model the 

conditional expectations and probabilities; and a stabilized IPTW estimator. All models 

were implemented directly in R Statistical Software [R Development Core Team (2011)] 

with the exception of Super Learner which we fit using the R library SuperLearner [Polley 

and van der Laan (2011)]. Super Learner calculates predictions using each method in a 

library, and then estimates the ideal combination of these results based on the k-fold cross-

validated error. The library we chose included main terms logistic regression, generalized 

additive modeling [Hastie (2011)], the mean estimate, a nearest neighbor algorithm [Peters 

and Hothorn (2011)], multivariate adaptive regression spline models [Milborrow (2011)] 

and a stepwise AIC procedure [stepAIC from Venables and Ripley (2002)].

A stabilized IPTW estimator was computed by obtaining the solution of the empirical mean 

of
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set equal to zero. To be consistent, IPTW relies on correct modeling of the breast-feeding 

and censoring probabilities in ḡ6. IPTW was implemented using logistic regressions to fit 

each of these conditional probabilities.

The standard errors for all methods except the G-computations were calculated using the 

sandwich estimator, adjusting for clustering as described in Section 3.4.1. The standard 

errors for the G-computation methods were estimated using pairs cluster bootstrap 

[Cameron, Gelbach and Miller (2008)] by resampling the 31 clusters with replacement, 

repeating 200 times, recalculating the estimates, and taking the standard error of the 

estimates. Confidence intervals were calculated by taking the 2.5th and 97.5th quantiles of 

the resampled estimates.

Both G-computations were found to be sensitive to modeling choices when fitting the 

conditional expectations. In particular, we implemented both G-computations with Poisson 

regressions and with logistic regressions using a rescaled outcome. For the standard G-

computation, both parametric specifications produced very similar point estimates, but the 

Poisson model was found to be highly unstable through the cluster bootstrapping while the 

logistic model was more stable. For the sequential G-computation, the Poisson model 

produced uninterpretable point estimates that deviated substantially from the other models, 

while the point estimates of the logistic model conformed more or less to the other results. 

Only the logistic results are therefore presented in the table.

The estimates of three comparisons of interest are presented in Table 4. The first parameter 

of interest is the difference between the marginal expected number of infections (in the first 

year or life) for infants who were breastfed for between 3 and 6 months compared to infants 

who were breastfed for between 1 and 2 months. The second parameter compares infants 

who were breastfed for greater than 9 months to those breastfed for 3 to 6 months. The third 

parameter compares greater than 9 months to between 1 and 2. The table presents the 

estimates, standard errors and 95% confidence intervals for each parameter of interest as 

calculated by each method.

All of the methods estimated a negative parameter value for the difference, corresponding 

with the interpretation that longer durations of breastfeeding reduce the expected number of 

gastrointestinal infections. TMLE with Super Learner and likelihood G-computation found a 

statistically significant difference for each comparison. Only IPTW found an insignificant 

estimate for the first comparison. Sequential G-computation, IPTW and parametric TMLE 

found an insignificant estimate for the second comparison. All methods determined that 

there is a true difference between the marginal mean infection counts for breastfeeding for 

over nine months versus between one and two months.

The estimates of the difference parameters varies substantially between methods. In two of 

the comparisons, TMLE with Super Learner produced higher estimates than all of the other 

methods (almost twice the size of the smallest estimates). IPTW gave the smallest estimates 

of the differences. Likelihood G-computation consistently produced the smallest standard 

errors and TMLE with Super Learner produced the second smallest.
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4.1. The validity of a causal interpretation

A causal interpretation of the analysis of the PROBIT data requires several important but 

untestable assumptions, including the sequential randomization assumption. In other words, 

all confounders are assumed to have been measured and included in W, including all 

prognostic factors of infection that also predict censoring. The complexities of the 

substantive matter make it challenging to believe that we identified all the common causes 

of breastfeeding cessation and infections [Kramer et al. (2011)]. However, we argue that by 

controlling for cluster as a baseline variable, much of this confounding effect may have been 

alleviated (this is investigated in Section 5).

In addition, we must assume no interference between study units (mother/infant pairs) and 

that only one version of the treatment (i.e., breastfeeding) is applied to all units [together 

referred to as the stable unit treatment variable assumption, or SUTVA; Rubin (1978)]. The 

assumption of no interference requires that the breastfeeding status of one mother does not 

influence the outcome of another’s child. We believe this to be very plausible because 

mothers spent short periods of time in the hospital which limited their interaction. For the 

second assumption, due to the discretization of the study design, different durations of 

breastfeeding are grouped together. We must assume that it does not matter when a mother 

ceases to breastfeed within an interval.

5. Simulation study

A simulation study was performed where data were generated as a simplified version of the 

PROBIT data set. Five hundred subjects were generated in each of 31 clusters. The baseline 

covariates W and U were generated as Gaussian variables with cluster-specific means drawn 

from separate Gaussian distributions. The time-dependent variables (C1, L1, A1, C2, L2, A2, 

C3, L3) were generated independently for each subject conditional on the subject’s history, 

including baseline variables W and U (and not otherwise clustered). Binary variables At, t = 

1, 2, indicate continued breastfeeding, Ct, t = 1, 2, 3, are censoring indicators, and Lt, t = 1, 

2, 3, indicate the presence of infections. The outcome  is a count variable. 

Breastfeeding status was generated as conditional on the baseline variables and immediate 

preceding covariates at every time point. In particular, breastfeeding was specifically made 

to be less likely to continue when infection was indicated at the current time point. 

Breastfeeding (like censoring) is a monotone process, and so A2 = 1 is only possible if A1 = 

1. The probability of censoring was conditional on baseline covariates and most recent 

infection status; censoring was less likely if breastfeeding continued at the previous time 

point and more likely if an infection occurred at the previous time point. Infections were 

generated conditional on baseline variables and breastfeeding for the past two visits, so that 

longer duration of breastfeeding decreased the probability of infection. The strengths of the 

associations between exposure/censoring and intermediate infections were designed to 

reflect the true PROBIT results. Details of the data generation can be found in the 

supplemental article Schnitzer et al. (2014).
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The parameter ψā = E(Yā) was estimated for ā = (0, 0) and ā = (1, 1). The parameter of 

interest, reflecting the first parameter of interest in the PROBIT study, was δ = ψ(1,1) − 

ψ(0,0).

A concern we had during the planning of the PROBIT study was that we may be missing 

some important confounders of the effect of breastfeeding on infection. Therefore, we 

attempt to explore this issue in the simulation study by omitting the variable U from the 

modeling. In a second modeling scenario, we illustrate how adjusting for the cluster like a 

baseline confounder can successfully adjust for unmeasured confounding that is 

characterized by the cluster itself. In addition, we test the scenario where U is included in 

the modeling so that the results could be compared. Finally, we test a scenario where we 

suppose that the analyst is given transformed versions of W and U [using two of the 

transformations in Kang and Schafer (2007)] and the models are run using these transformed 

variables.

One thousand data sets of 500 × 31 = 15,500 observations were generated. Under each of the 

four modeling scenarios (unmeasured U, adjusting for cluster, adjusting for U and 

transformed confounders), the performance of the TMLE was compared to G-computation, 

the sequential formulation of the G-computation formula and a stabilized IPTW estimator. 

TMLE was implemented in two ways: with main terms logistic regressions to estimate all 

probabilities and with Super Leaner, using only main terms logistic regression and a nearest 

neighbors algorithm in its library (a small subset of the library used in the PROBIT 

analysis). Standard errors were computed using influence curve inference where available 

and nonparametric bootstrap resampling otherwise (details in the footnote of Table 5). Due 

to the way the data were generated, the sequential G-computation was always incorrectly 

specified (in the model form), as were the outcome models for the TMLE.

As a small departure from the real data, the simulated data allowed only one infection at 

each time interval (as opposed to more than one event). The G-computation used the 

information that the outcome was a sum of the first two binary infection variables and the 

additional binary variable, L3, measured at time t = 3. Thus, , so that the G-

computation simplified to the empirical mean of

Note that using the information regarding the number of infections at each time interval for 

the PROBIT data analysis would have required fitting multinomial models in the likelihood 

G-computation. With so few subjects having more than one infection at any given time, we 

did not feel that substantial information could be added by increasing the complexity of the 

model for the applied example using a similar approach.
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5.1. Simulation results

The results of each of the models under each modeling scenario are displayed in Table 5. 

With an unmeasured confounder related to cluster, both G-computation models performed 

the most poorly in terms of bias, root mean-squared error (rMSE) and coverage. TMLE 

produced an improvement in these measures, and adding Super Learner improved all 

measures of performance except for the standard error. IPTW had the lowest bias, but higher 

standard errors, resulting in overcoverage. When cluster was used as a surrogate for the 

unmeasured confounder, all of the methods produced results with much lower bias and 

standard errors. When all confounders were measured and adjusted for, G-computation, 

parametric TMLE and IPTW all had a reduction in bias compared to the previous scenario 

and performed ideally, despite parametric TMLE being model-misspecified in the outcome 

models. TMLE with Super Learner produced slight undercoverage. The sequential G-

computation was model-misspecified and produced high bias and standard error, leading to 

poor coverage (since it is not double robust). When the confounders were transformed, all of 

the parametric models were incorrectly specified, leading to high bias and low coverage. 

Among the parametric models, IPTW had the lowest bias and the highest root mean-squared 

error. TMLE with Super Learner (using only one data adaptive algorithm in its library) was 

essentially unbiased with ideal coverage.

6. Discussion

In this article we applied five different causal methods to the PROBIT data to obtain 

estimates of the differences in the marginal expected number of infection counts for 

different breastfeeding durations. All methods agreed that extending the duration of 

breastfeeding significantly lowers the expected number of gastrointestinal infections. TMLE 

with Super Learner produced much larger effect estimates, for example, its estimate was 

almost double the IPTW estimate for the comparison between 1–2 and 9+ months of 

breastfeeding. This represents a clinically important difference in the estimated effect. Super 

Learner also reduced the higher standard error of the TMLE procedure to a level comparable 

to that of the G-computation (which is an efficient parametric estimator).

Using the mean estimate from TMLE with Super Learner, altering the breast-feeding 

durations of 16 mothers from between one and two months to over nine months will avoid 

one infant infection (i.e., the Number Needed to Treat or NNT) on average in this 

population. This can roughly be compared with the intention-to-treat result in the original 

PROBIT study [Kramer et al. (2001)], where they obtained a NNT of 24 for the presence 

ofany gastrointestinal infection over the first year when contrasting subjects who did and did 

not receive the breastfeeding intervention. We have therefore shown that breastfeeding itself 

might have a larger impact on childhood infections than suggested by the original PROBIT 

analysis.

In the simulation study we generated baseline confounders from a distribution with a cluster-

specific mean. The simulation results demonstrated that bias (and inflated standard error) 

incurred by cluster-specific unmeasured confounders can be adjusted for using the cluster 

indicators themselves as baseline covariates. We also showed that under the plausible 
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scenario of being given transformed versions of the confounders, only TMLE with Super 

Learner was able to unbiasedly estimate the parameter of interest.

TMLE is a double-robust method, as it only requires correct specification of the conditional 

probabilities of the intervention (here, breastfeeding and censoring) or of the nested 

conditional expectations of the outcome (theQ̄t’s) to be consistent. Contrastingly, IPTW 

relies on correct specification of the probabilities of the intervention, and the G-

computations rely on correct specification of the outcome models. When the probabilities of 

intervention are modeled in the same way for IPTW and TMLE, in absence of data sparsity, 

and when the outcome models are incorrectly specified, these two methods are expected to 

perform similarly (as seen in the simulation study and possibly in the PROBIT results). In 

many other contexts, advantages of longitudinal TMLE over IPTW and G-computation have 

been established through simulation study in van der Laan and Gruber (2012), Petersen et al. 

(2014), Stitelman, De Gruttola and van der Laan (2012), and Schnitzer, Moodie and Platt 

(2013).

It is important to note that for longitudinal data with time-dependent confounding, there may 

not exist a data generating distribution that corresponds to the way the outcome is modeled 

in the TMLE (i.e., in the sequential G-computation). Therefore, we recommend that data 

adaptive methods like Super Learner always be used with TMLE in the longitudinal setting. 

Because TMLE with Super Learner is arguably the most reliable estimator (assessed through 

theory and simulation studies), we have reason to believe that the magnitude of the effect of 

breastfeeding is actually larger than suggested by the methods that use parametric modeling 

and larger than the effect reported in the original PROBIT analysis.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Fig. 1. 
Time-ordering of the variables in the PROBIT study. Data were collected at baseline and six 

follow-up times. At each follow-up time point, breastfeeding status (At) and presence of 

infection over the past interval (Lt) were noted. Censoring occurring at time t (Ct = 1) 

indicates that later breastfeeding and infection status were not observed.
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Table 3

Comparison of methods

Method Required for consistency Robust to data sparsity Variance estimate Respects parameter boundaries

G-comp. CE ✓ BS ✓

G-comp. seq. NE ✓ BS ✓

IPTW propensity ×* EIC/BS ×

TMLE propensity or NE ✓ EIC ✓

CE: conditional expectations; NE: nested expectations; BS: bootstrap; EIF: efficient influence curve; propensity: the conditional probabilities of 
intervention (e.g., breastfeeding) and censoring.

*
Improvement under weight stabilization.
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Table 4

Differences in marginal expected number of infections under different breastfeeding durations

Method Estimate S.E. 95% C.I.

3–6 months vs 1–2 months

G-comp. (likelihood) −0.032 0.008 (−0.046, −0.019)

G-comp. (sequential) −0.039 0.013 (−0.062, −0.016)

IPTW −0.021 0.011 (−0.042, 0.000)

Parametric TMLE −0.027 0.010 (−0.045, −0.008)

TMLE with SL −0.039 0.010 (−0.058, −0.020)

9+ months vs 3–6 months

G-comp. (likelihood) −0.013 0.004 (−0.020, −0.005)

G-comp. (sequential) −0.014 0.013 (−0.027, 0.004)

IPTW −0.013 0.010 (−0.032, 0.007)

Parametric TMLE −0.021 0.013 (−0.047, 0.004)

TMLE with SL −0.024 0.007 (−0.038, −0.010)

9+ months vs 1–2 months

G-comp. (likelihood) −0.045 0.010 (−0.065, −0.027)

G-comp. (sequential) −0.053 0.018 (−0.084, −0.020)

IPTW −0.034 0.014 (−0.061, −0.007)

Parametric TMLE −0.048 0.018 (−0.084, −0.012)

TMLE with SL −0.063 0.013 (−0.088, −0.038)

G-comp.: G-computation, using both methods described in the text, likelihood in Section 3.1 and sequential in Section 3.2; TMLE: targeted 
maximum likelihood estimation; SL: Super Learner; IPTW: inverse probability of treatment weighting (stabilized).
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