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Abstract

Background—Abuse of alcohol during adolescence continues to be a problem, and it has been 

shown that earlier onset of drinking predicts increased alcohol abuse problems later in life. High 

levels of impulsivity have been demonstrated to be characteristic of alcoholics, and impulsivity 

has also been shown to predict later alcohol use in teenage subjects, showing that impulsivity may 

precede the development of alcohol use disorders. These experiments examined adolescent 

drinking in a high-drinking, relatively impulsive mouse population, and assessed its effects on 

adult drinking and adult impulsivity.

Methods—Experiment 1: Selectively bred High-Alcohol Preferring (HAPII) mice were given 

either alcohol (free choice access) or water only for two weeks during middle adolescence or 

adulthood. All mice were given free choice access to alcohol 30 days later, in adulthood. 

Experiment 2: Adolescent HAPII mice drank alcohol and water, or water alone, for two weeks, 

and were then trained to perform a delay discounting task as adults to measure impulsivity. In each 

experiment, effects of volitional ethanol consumption on later behavior were assessed. We 

expected adolescent alcohol exposure to increase subsequent drinking and impulsivity.

Results—Mice consumed significant quantities of ethanol, reaching average blood ethanol 

concentrations (BECs) of 142 mg/dl (adolescent) or 154 mg/dl (adult) in Experiment 1. 

Adolescent mice in experiment 2 reached an average of 108 mg/dl. Mice exposed to alcohol in 

either adolescence or adulthood showed a transient increase in ethanol consumption, but we 

observed no differences in impulsivity in adult mice as a function of whether mice drank alcohol 

during adolescence.

Conclusions—These findings indicate that HAPII mice drink intoxicating levels of alcohol 

during both adolescence and adulthood, and that this volitional intake has long-term effects on 

subsequent drinking behavior. Nonetheless, this profound exposure to alcohol during adolescence 

does not increase impulsivity in adulthood, indicating that long-term changes in drinking are 

mediated by mechanisms other than impulsivity.
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Introduction

Alcohol abuse among adolescents is a problem in the U.S. Earlier onset of drinking is 

correlated with increased alcohol abuse problems later in life; for example, one study 

showed that among high school students, those who drank alcohol before age 13 were 7 

times more likely to binge drink 6 or more times per month than students who did not drink 

prior to high school (Grunbaum et al., 2004). Additionally, it is estimated that 45% of 

subjects that drink alcohol before age 14 develop alcohol abuse disorders, compared with 

10% who start drinking after age 21 (Grant and Dawson, 1997). Adolescent heavy drinkers 

tend to drink less frequently than adults with alcohol use disorders (AUDs), but drinking 

episodes are marked by excessive binge-like consumption (Schulenberg et al., 1995). Risk 

factors for binge drinking in adolescents include attention-deficit/hyperactivity disorder and 

conduct disorder, each of which is characterized by the underlying factor of high levels of 

impulsive behavior, or impulsivity (4th ed., DSM-IV, APA, 2000). Furthermore, strong risk 

factors for AUDs in adulthood are anti-social personality disorder and bipolar disorder, 

which also share the symptom of impulsivity (Grant et al., 2005).

A suggested mechanism for the correlation between an onset of drinking in adolescence and 

continued alcohol use problems is that adolescence represents a critical period of cortical 

development (Crews et al., 2007). Adolescents tend to be highly active and seek sensation 

and novelty, traits that manifest themselves differently across individuals (Spear, 2000). It 

has been suggested that activities engaged in during adolescence become habits in 

adulthood, partially due to the shaping of the brain during this period (Crews et al., 2007). 

Importantly, the prefrontal cortex (PFC) and limbic system undergo many developmental 

changes during adolescence which may be stunted by substance use (Crews and Boettiger, 

2009). However, genetics may be a more crucial factor in alcoholism (Knopik et al., 2009). 

Endophenotypes are heritable biological processes and trait behaviors that may underlie, and 

are genetically related to, dysfunction including addiction and comorbid disorders 

(Gottesman and Gould, 2003). Evidence from many human and animal studies supports 

impulsivity as a candidate endophenotype for alcohol-related disorders (Ernst et al., 2006; 

Mitchell et al., 2006; Oberlin and Grahame, 2009; Petry, 2001). However, the possibility 

that adolescent alcohol use increases impulsivity beyond heritable levels is difficult to study 

in humans.

Impulsivity has been categorized into components, one of which is cognitive impulsivity, or 

impulsive choice. This is generally represented by difficulties in waiting for a reward or in 

declining an immediate reward associated with later punishment (Arce and Santisteban 

2006). Most studies of impulsivity and alcoholism in humans have concentrated on 

cognitive impulsivity as measured by the Iowa gambling task (IGT) or delay discounting 

(DD) tasks (Bechara et al., 1994; Mazur, 1987). DD operationally defines impulsivity as 

preference for smaller, immediate rewards over larger, delayed rewards (Rachlin and Green, 

1972), and has revealed a positive relationship between alcohol preference and impulsivity, 

in naïve animals and alcohol-naïve or abstinent human subjects with a family history of 

alcoholism (Bjork et al., 2004; Ernst et al., 2006; Mitchell et al., 2006; Oberlin and 

Grahame, 2009; Petry, 2001). Additionally, earlier onset of alcohol abuse during 

adolescence correlates with increased impulsivity in abstinent adult subjects (Bjork et al., 
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2004). The question remains whether heightened impulsivity in these early drinkers causes 

or stems from the alcohol drinking experience. By manipulating voluntary alcohol 

consumption prior to impulsivity testing, we sought to assess the ability of past alcohol 

consumption to influence both impulsivity and subsequent drinking behavior.

Lines of high-alcohol preferring (HAP) and low-alcohol preferring (LAP) mice were 

bidirectionally selected for high and low voluntary ethanol consumption (Grahame et al., 

1999; Oberlin et al., 2011). HAPII mice are impulsive relative to LAPII mice as measured 

by DD, making them a valid animal model of an impulsive, at-risk human population 

(Oberlin and Grahame, 2009). It is unknown if HAPII mice are useful developmental model 

for studying the ontogeny of alcohol-drinking behaviors. Adolescent rodents differ from 

adults on measures of novelty-seeking, impulsivity, and stress-responsivity, modeling 

behaviors observed in teenage humans (Hefner and Holmes, 2007; Spear, 2000). The 

adaptations in neural circuitry, neurobehavioral characteristics, and rapid body growth that 

are most comparable to the teenage years in humans occur during early and middle 

adolescence, comprising postnatal days (P) 28–42 (Spear, 2000). However, even high-

drinking rodent populations do not drink sufficient alcohol during 24-h, free-choice access 

to induce overt intoxication, making it difficult to study pharmacologically relevant drinking 

behavior in adolescents (Bell et al., 2006; Crabbe et al., 2010).

Studies have examined adolescent and adult drinking concurrently using rats (i.e. Bell et al., 

2006; Siegmund et al., 2005; Vetter et al., 2007), and assessed behavioral changes in 

adulthood following adolescent ethanol exposure (i.e. Fullgrabe et al., 2007; Salimov et al., 

1996; Siegmund et al., 2005), but relatively few studies have performed similar assessments 

of adolescent and adult drinking using mice. One study that did compare adolescents and 

adults under conditions that led to pharmacologically relevant intakes showed that 

adolescent C57BL/6J mice, a commonly used high-drinking inbred strain, consume more 

ethanol than their adult counterparts during 2-h daily access periods during which water is 

unavailable (Moore et al., 2010). However, adolescents and adults did not differ in blood 

ethanol concentrations (BECs) from adult mice under these conditions. HAPII mice freely 

drink far greater amounts of ethanol than C57 mice during free-choice access (Matson and 

Grahame, 2011; Oberlin et al., 2011; Yoneyama et al., 2008), suggesting that free-choice 

drinking in HAPII mice may be an effective model for studying adolescent volitional 

alcohol intake and its potential effects.

To examine the adolescent free-choice drinking patterns of HAPII mice and test the effects 

of exposure to ethanol on later drinking, a two-bottle choice drinking study was conducted 

using adolescent and adult animals. This experiment featured concurrent characterization 

alcohol drinking patterns during the dark-cycle (when the vast majority of intake occurs) in 

adults alongside adolescents, to assess whether the patterns were consistent with similar 

levels of pharmacologically relevant alcohol exposure. After a period of abstinence, drinking 

was re-examined when both populations were adults. We hypothesized that adolescent 

exposure would increase ethanol intake in adulthood, and that adolescent animals would 

drink more than adult animals. Additionally, we assessed the effects of free-choice 

adolescent drinking on adult impulsivity in HAPII mice, using the DD task to assess 

differences in impulsivity in adulthood. We hypothesized that mice that freely drink ethanol 
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during adolescence would demonstrate greater adult impulsivity, and that increases in 

impulsivity within that group would depend on the amount of ethanol consumed during 

adolescence.

Materials and Methods

Experiment 1 – Drinking in Adolescence and Adulthood

Animals—60 mice were bred on-site from HAPII progenitors, and represented the 37th 

(adolescent) and 38th (adult) generation of HAPIIs. Eight litters of adolescent mice and 8 

litters of adult mice were used, each litter yielding 1–2 animals of each sex. Mice were 

counterbalanced across sex and litter within each age group into a water and alcohol group 

such that 7 of 8 litters were represented in each treatment group. Mice were individually 

housed in polycarbonate cages (27.9×9.5×12.7 cm) with Cellsorb bedding at an ambient 

temperature of 21 ± 1° C starting one week prior to the Exposure Phase. A reverse light 

cycle was used, with lights on from 20:00 to 08:00 hours. Mice had ad lib access to food and 

water during all phases. Animals in the adolescent group were 28 ± 2 days old at the 

beginning of the Exposure Phase, while animals in the adult group were 60 ± 2 days old. 

These two age groups were run concurrently. A timeline for this experiment is displayed in 

Figure 1.

Exposure Phase

Procedure: During the Exposure Phase, adolescent and adult Alcohol Group mice drank 

from two 25ml graduated cylinders containing either water or 10% EtOH solution. Food was 

placed on the floor. Water group adolescent and adult mice also drank from two 25ml 

graduated cylinders, but both contained water. Volume readings were taken daily at the 

same time for 14 days using red illumination, with the exception of the last 2 days, when 

readings were taken every 2 hours from 08:00 hours to 20:00 hours. On these 2 days only, 

mice drank from 10ml serological pipets. Bottle sides were alternated every third day to 

eliminate side preference. Body weights were also taken at this time.

Retro-orbital Bloods: Based on the results of multiple dark-cycle bottle readings, we 

determined that retro-orbital blood samples taken at 16:00 hours would provide a good 

estimation of peak blood ethanol concentrations (BECs). On the 15th day of the Exposure 

Phase, mice were taken to another room for sample collection via the retro-orbital sinus 

within 5 min of removing alcohol bottles, using a light-shielded transporter. Bloods from 

water group mice were discarded, while alcohol group bloods were centrifuged, and a 1µL 

sample of the plasma was analyzed for ethanol concentration using gas chromatography 

against a 0–250mg/dl standard. Mice were then returned to the colony room and water 

bottles were restored.

Data Analysis: Intake data from each Phase was organized into SPSS and repeated-

measures analyses of variance (ANOVAs), with group, age, and sex as between-subjects 

factors and day as a within-subjects factor, were performed. The final 2 days of the 

experiment were separately analyzed to assess the pattern of daily intakes. ANOVAs were 

used to assess water intakes in ml/kg, weights of animals, and bihourly alcohol intake data. 
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Individual ANOVAs were used to assess day-by-day differences of ethanol drinking and 

preference. A p-value of 0.05 was set as the significance threshold for statistical tests 

throughout experiments.

Testing Phase – Adult Drinking—The Testing Phase began 30 days after the 

completion of the Exposure Phase and was followed a similar protocol, but all animals had 

alcohol and water access, and bihourly intakes were not measured. Data from this phase 

were analyzed in the same manner as the Exposure Phase.

Experiment 2 – Adolescent Drinking and Adult Impulsivity

Animals—48 HAPII, S37 mice were bred on-site. Six litters of adolescent mice were used, 

each litter yielding 2–6 animals of each sex. Mice were counterbalanced across sex, litter, 

and DD run order into a water and alcohol group. Given the presence of multiple littermates 

in like treatment conditions, data from these animals were averaged and treated as an n of 1 

in statistical analysis. Mice were housed identically to Experiment 1. Animals were 

transported into the experimental room on P22/P23 and single-housed on P25/P26. Mice had 

ad lib access to lab food during all phases. During the Exposure Phase mice had 24-hour 

access to water, while in the Testing Phase mice had restricted water access for 2 hours a 

day after testing. Mice were 28/29 days old at the beginning of the Exposure Phase, 46/47 

days old at the beginning of Testing Phase shaping, and 105 ± 15 days old during the 

collection of target DD data. A timeline for this experiment is displayed in Figure 1.

Exposure Phase—All data collection procedures were modeled after those described for 

Experiment 1 Exposure Phase. A repeated-measures ANOVA with group and sex as 

between-subjects factors and day as a within-subjects factor was performed.

Testing Phase – Adult Impulsivity

Procedure: DD shaping began at P46/47. Mice were moved to the testing room using a 

light-shielded transporter unit at 10:00 hours, and were tested 5 days a week. Operant boxes 

were wiped with a wet sponge prior to each session. At the end of daily testing, all mice 

received 2-hour water access in their home cage. Additionally, mice were weighed and had 

their ear tags checked each Monday. During weekends, they had ad lib access to water, and 

were deprived at 5 PM on Sundays.

Apparatus and Behavioral Assessment: Twelve identical operant boxes were configured 

according to protocol of Oberlin and Grahame (2009). These boxes featured a nosepoke 

light, two levers with lights, and descending sipper tube to deliver saccharin (0.032%) 

reinforcement. Boxes were controlled using MedPC IV software on a PC. Mice underwent 5 

stages of shaping with the final stage serving as 0-second delay testing, according to 

procedure of Oberlin and Grahame (2009). If mice failed to complete 20 trials during Stages 

1–4 of shaping or to achieve adjusted amounts of 1.6 seconds or higher on 3 consecutive 

days during Stage 5, they were excluded from testing. Delays of 1, 2, 4, 8, and 12 seconds 

were introduced, and each delay received 4 days of testing.
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Data Analysis: Adjusted amounts, saccharin intake, and trials completed were organized 

using Microsoft Excel spreadsheets. K values, overall constants representing impulsivity for 

each subject, were generated as described by Oberlin and Grahame (2009). A multivariate 

ANOVA examined for effects of group and sex, as well as any interaction effects, on 

adjusted amount data, while a univariate ANOVA assessed effects on k values. Individual 

ANOVAs were also performed on each delay. Paired-samples t-tests tested for overall 

differences between each consecutive delay. Additionally, k values were correlated with 

both the first day of drinking in adolescence to assess effects of novelty on impulsivity as 

well as all averaged days of drinking to assess high consumption’s effect on impulsivity.

Results

Experiment 1

Exposure Phase—All subjects used in Experiment 1 proceeded through to its 

completion. Mice increased g/kg alcohol intake over the course of the first 12 days (Fig. 2-

A). A repeated-measures ANOVA revealed significant effects of Day (F(11,286) = 24.52, p 

< .001) and Sex (F(1,26) = 6.75, p = .015), but no significant Day × Sex or Day × Age 

interaction effects. Contrary to our hypothesis, adult animals drank more than adolescent 

animals (F(1,26) = 10.45, p = .003; Madult = 19.35 ± 0.42 g/kg/day, Madolescent = 15.50 ± 0.51 

g/kg/day). While a Sex × Age interaction was not seen, a second ANOVA on adolescent 

data only revealed no effect, whereas an ANOVA considering adult data only showed a 

significant sex difference (F(1,13) = 12.70, p = .003). Overall means and SEMs (n = 7 or 8): 

adult female: 21.75 ± 0.46; adult male: 17.25 ± 0.59; adolescent female: 16.46 ± 0.74; 

adolescent male: 14.41 ± 0.67. Day-by-day intake stratified by sex is seen in Table 1. Adult 

consumptions were consistent with prior HAPII data (Oberlin et al., 2011). Alcohol 

preference data demonstrated an Age difference consistent with reduced g/kg ethanol 

consumption and greater water consumption by adolescents (F(1,26) = 29.29, p < .001; Fig. 

2-B). An ANOVA on ml/kg water drinking data, stratified by Group, revealed similar 

effects of Age (Fs(1,26) ≥ 15.84, ps < .001) and Day (Fs(11,286) ≥ 4.94, p < .001) in each 

group. A Day × Sex interaction was in the water group (F(11,286) = 4.067, p < .001), but not 

the ethanol group (Table 2).

On days 13–14 of acquisition, surprisingly, no difference between ages was found. This lack 

of effect may be due to the change in methodology (the addition of intake readings every 2 

hours), but it is additionally predicted by the non-significant age difference on Day 12. It 

may be that as adolescent mice aged, their intakes became more similar to adults, although 

as stated above, the Age × Day interaction missed significance. The similarity between 

adolescent and adult drinking patterns (Fig. 3; no significantly different time intervals) 

justified our decision to take bloods from adolescents and adults at the same time of day. 

Peak consumption was observed from 08:00–16:00 hours. Retro-orbital BEC data taken at 

16:00 hours on Day 14 showed remarkably high BECs in adolescents (M = 141.8 ± 25.3 

mg/dl) and adults (M = 154.3 ± 10.0 mg/dl); the difference between age groups was not 

statistically significant.

An ANOVA comparing averaged weights on Days 3, 6, 9, and 12 revealed effects of Day 

(F(3,156) = 88.58, p < .001), Sex (F(1,52) = 21.48, p < .001), Age (F(1,52) = 76.65, p < .001), 

O’Tousa et al. Page 6

Alcohol Clin Exp Res. Author manuscript; available in PMC 2014 December 08.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Day × Sex (F(3,156) = 3.21, p = .024), and Day × Age (F(3,156) = 8.59, p < .001). 

Importantly, no Group effects were seen. Data suggests that adolescents gained more weight 

than adults over the course of the Exposure Phase (seen in Table 3).

Testing Phase – Adult Drinking—During this phase, data outliers representative of 

fluid spills were adjusted to the median of the day they occurred twice on Day 6 and once on 

Day 8. Inspection of data indicated that the groups converged after 8 days of alcohol access, 

so the first 8 days of alcohol access in the Testing Phase were statistically analyzed in 

isolation. ANOVA results revealed significant effects of Day (F(7,364) = 6.47, p < .001), Sex, 

and Group (Fs(1,52) ≥ 6.66, ps ≤ .013), and a Day × Group interaction (F(7,364) = 2.13, p = .

040). As shown in Figure 4-A and -B, groups previously exposed to ethanol consumed 

significantly more ethanol on two of the first four days of post-exposure testing than 

ethanol-naïve groups as shown by individual ANOVAs. During the Testing Phase in 

general, animals failed to reach the typical level of intake for HAPIIs, although intake levels 

were comparable to the high-drinking inbred strain, C57Bl/6J (Yoneyama et al., 2008). 

Overall means and SEMs for exposed groups (n = 7 or 8): Adult female: 17.84 ± 0.46; adult 

male: 12.52 ± 0.69; adolescent female: 18.07 ± 0.55; adolescent male: 15.55 ± 0.50. Overall 

means and SEM’s for non-exposed groups (n = 7 or 8): Adult female: 14.95 ± 0.66; adult 

male: 11.73 ± 0.78; adolescent female: 16.20 ± 0.76; adolescent male: 11.59 ± 0.82.

Experiment 2

Exposure Phase—All subjects proceeded through to completion of this phase. A visibly 

less-pronounced increase in drinking over 10 days was observed in this experiment 

compared to Experiment 1 (Fig. 5). Nonetheless, a repeated-measures ANOVA revealed an 

effect of Day on ethanol consumption (F(9,198) = 13.03, p < .001) and as with Experiment 1 

adolescents, no effect of Sex nor Sex × Day interaction (ps > 0.05). Bihourly readings 

showed high consumption from 08:00–13:00 hours and peak intakes at 11:00–13:00 hours 

(Fig. 6). Retro-orbital bloods were taken earlier in the day than in Experiment 1, at 12:00 

hours, because of the observed peak in drinking levels from 11:00–13:00 hours. Bloods 

again showed high BECs in adolescents (M = 108.8 ± 13.3 mg/dl), though somewhat lower 

likely due to the four-hour difference in time. There was no sex difference observed in 

BECs.

Testing Phase – Adult Impulsivity—Three mice, all in the alcohol group, were not 

tested due to shaping difficulties. Nonetheless, there were not any Group or Sex differences 

throughout shaping. Significant Group (or Sex) differences were not observed at any delay 

(Fig. 7). A univariate ANOVA also revealed no Group (or Sex) differences in k values. 

However, each increase in delay decreased subjective valuation for all delays save the 

increase from 8 to 12 seconds (ps < .001). Pearson correlation analysis showed no 

relationship between k-values and either ethanol intake during the first day or total ethanol 

intake over the Exposure Phase (ps ≥ .343).
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Discussion

This research demonstrates that pharmacologically relevant consumption of ethanol during 

adolescence or adulthood facilitates later drinking, but that exposure to alcohol during 

adolescence does not increase adult cognitive impulsivity. Experiment 1 shows that free 

choice alcohol drinking facilitates later ethanol consumption in HAPII mice, regardless of 

age. Both adolescent and adult mice achieved high BECs throughout the dark cycle, 

characteristic of sustained intoxication. However, intake was only increased in the exposed 

groups during the first 4 days of re-exposure access. Results are complicated by the fact that 

all mice failed to reach intakes characteristic of HAPII mice. Overall, Experiment 1 only 

partly supports previous studies demonstrating sustained increased intakes in adulthood 

following ethanol exposure in C57BL/6J mice (Moore et al., 2010; Strong et al., 2010). 

Instead, these findings are more consistent with studies using lower-drinking populations 

such as Wistar rats (Siegmund et al., 2005), DBA/2J mice (Moore et al., 2010), WSC-1 mice 

(Tambour et al., 2008), and a vapor exposure study using Sprague-Dawley rats (Slawecki 

and Betancourt, 2002), in showing no or modest effects of adolescent exposure on adult 

intake. Altogether, these findings suggest genetics are a prime contributor to heavy ethanol 

consumption in these animal models, and genetic differences in baseline intake don’t predict 

which populations will show long-term increases in alcohol consumption following 

adolescent exposure.

Because P rats are bred to drink high levels of ethanol, like HAPII mice, results of 

adolescent drinking studies using these animals should be analogous to this research. 

Although Bell et al. (2006) showed significantly higher intakes in adolescents as compared 

to adult P rats, no age effects on BECs were observed. In addition, adolescent BECs were 

much lower than in the present findings, less than 60 mg/dl in spite of the use of concurrent 

access to multiple concentrations of alcohol. Another study with P rats showed that 

adolescents exposed to ethanol acquired EtOH operant responding quicker than non-exposed 

animals, a result in agreement with our transient increase in drinking (Rodd-Henricks et al., 

2002). Our results uniquely suggest that ethanol exposure in adolescence or adulthood in a 

selectively bred high-drinking population such as HAPII mice causes elevated initial 

drinking levels relative to non-exposed animals, but that the non-exposed mice quickly show 

similar drinking levels. This effect may be due to established tolerance in exposed animals, 

or a behavioral or neurobiological difference that rapidly manifests itself in non-exposed 

mice upon ethanol exposure.

This experiment was also important because it was the first to assess adolescent and adult 

24-hour free choice drinking concomitantly in a high-drinking mouse population. Other 

similar experiments looked at adolescent and adult ethanol consumption using the drinking-

in-the-dark (DID) paradigm (Metten et al., 2011; Moore et al., 2010), and intermittent 

drinking (Melendez, 2011). Melendez (2011) and Moore et al. (2010) showed that 

adolescent C57BL/6J mice had higher intakes of ethanol using each paradigm than their 

adult counterparts, but without differences in BECs. Given these data along with increased 

intakes in adulthood seen following adolescent exposure in this strain, C57BL/6J mice 

appear to be uniquely affected by ethanol consumption during adolescence. Metten et al. 

(2011) demonstrated that adult mice selectively bred for high alcohol consumption using the 
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DID drank more than adolescents, and once adolescent mice entered adulthood their intakes 

matched the ones that initiated as adults. Thus, their results were in agreement with our 

current research. Findings suggest that whether the adolescent or adult animal voluntarily 

consumes more ethanol varies based upon drinking procedure and between populations.

Our research also showed that HAPII adolescent and adult mice reach roughly the same 

BECs during free-choice access. Adolescent BECs were higher than those previously 

mentioned in the study by Moore et al. (2010). Additionally, g/kg/day consumptions were 

the highest observed in any study assessing adolescent intake, including Siegmund et al. 

(2005), Melendez et al. (2011), and Metten et al. (2011). Furthermore, consumption was 

higher than those observed in forced administration studies that have demonstrated 

neurological changes from adolescent exposure (Coleman et al., 2011; Crews et al., 2000), 

although these studies used rats. Our procedure resulted in high BECs with no food, water, 

or alcohol deprivation, important considerations in relatively polydipsic and hyperphagic 

adolescent animals. Therefore, we had a valid prospect of detecting an effect in adulthood 

based on adolescent free-choice exposure. Our results also support the adolescent HAPII 

mouse as a candidate for future free-choice drinking developmental research. The 

observation that body weights were not affected by ethanol consumption is consistent with 

low stress levels as expected with a voluntary access model. Other rodent models that cause 

similar sustained BECs, such as liquid diet or vapor chamber, are sources of stress to 

animals and/or cause marked weight loss (Anji and Kumari, 2008; Kang et al., 2004). We do 

note that although our animals reached pharmacologically relevant BECs, behavior could 

also be influenced by changes in taste hedonics that occur during free-choice access (e.g., 

Kiefer et al., 1995). Thus, increases in subsequent drinking observed could be due to taste 

familiarity, pharmacological/neuroadaptive changes, or a combination of these.

Interesting post-hoc results of Experiment 1 were that ethanol intakes resumed at lower 

levels following abstinence, and animals never reached the expected intake levels for HAPII 

mice during the Testing Phase. Given that the adolescent water group commenced ethanol 

consumption at about the same age as the adult alcohol group, it was expected that each 

group would show similar drinking patterns, but this was not supported. The lack of an 

acquisition effect is particularly interesting, as HAPII mice usually show a gradual increase 

in drinking (Oberlin et al., 2011). The results of Experiment 1 may suggest an effect of 

being single-housed for an extended period of time prior to drinking leading to diminished 

ethanol intake, as HAPII mice usually drink ethanol shortly after single-housing. Previous 

research using adult rats suggests that social isolation suppresses ethanol consumption 

(Doremus et al., 2005). These findings suggest a potential shortcoming in our design, which 

called for a period of abstinence after the end of adolescence following exposure, as is 

commonly done to assess effects specific to this developmental period (Metten et al., 2011; 

Moore et al., 2010; Vetter et al., 2007). However, the results of developmental exposure are 

potentially confounded because all mice underwent an abstinence period following the 

termination of their initial free-choice drinking phase. There is currently no other 

information about the effects of forced abstinence in HAPII mice. Overall, our unexpected 

results warrant consideration of social, environmental, and epigenetic factors in the drinking 

behaviors of high-alcohol-preferring lines.
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Both experiments 1 and 2 showed that adults had larger sex differences in drinking than 

adolescents, although this didn’t result in differences in BECs between the sexes in either 

age. Adult sex differences in drinking have been seen repeatedly in HAPII mice (Oberlin et 

al., 2011; Trujillo et al., 2011). Together with the current findings, these data suggest that 

adult sex differences in intake may result from late-adolescence hormonal changes. These 

findings are consistent with a study showing that estrogen increased alcohol intake in 

ovariectomized adult C57Bl/6J mice (Rajasingh et al., 2007). Speculatively, these findings 

suggest that post-pubertal estrogen release may elevate alcohol consumption in female 

HAPII mice, but further studies are needed to validate this observation.

In spite of the high BECs encountered during adolescence, and despite our ability to detect 

systematic effects on subjective reward valuation of increasing delays to the delayed 

reinforcer, we were unable to detect effects of adolescent exposure on impulsivity as 

measured by DD. Previous unpublished results from our lab suggest that adult ethanol 

exposure using forced injections also doesn’t affect DD in HAP mice. These results imply 

that past or present ethanol consumption does not increase cognitive impulsivity, as assessed 

by subjective sensitivities to delayed rewards, in HAP mice. We cannot prove a null effect, 

but if the effect size were similar to the HAP/LAP line difference we previously observed 

(about 25% of the less impulsive group mean; Oberlin and Grahame, 2009), this experiment 

would have been sensitive to it. Additionally, our group sizes were consistent with several 

prior studies that detected significant effects (Helms et al., 2006; Pinkston and Lamb, 2011; 

Wilhelm and Mitchell, 2009). Finally, we detected effects of delay duration on the 

subjective value of the reinforcer, demonstrating that this study possessed sufficient power 

to observe changes in behavior in response to a manipulation.

However, our results could be specific to impulsivity measured with by DD, as a study of 

adult performance in the 5-choice serial reaction time test showed a significant effect of 

adolescent alcohol intake (Semenova, 2012). Using DD, several experiments suggest that 

populations of animals that display high alcohol intake are more impulsive than low-

drinking and non-selected populations, including the aforementioned study using HAP/LAP 

mice (Oberlin and Grahame, 2009) and another using inbred strains derived from selectively 

bred High- and Low- Alcohol Drinking rats (Wilhelm and Mitchell, 2008). Additionally, 

research using outbred mice has shown that animals displaying greater levels of impulsivity 

later show greater locomotor sensitization to ethanol than non-impulsive animals (Mitchell 

et al., 2006). Taken together with the present findings, these results suggest that innately 

high cognitive impulsivity is a predispositional factor for high drinking behavior, rather than 

a trait resulting from prior alcohol use.

This interpretation of the animal findings is consistent with longitudinal human research that 

has failed to observe significant impulsivity differences between alcohol drinkers and non-

drinkers in adolescence. However, other cognitive deviations that appear to result from 

adolescent binge drinking are observed (Goudria et al., 2007; Medina et al., 2008; Squeglia 

et al., 2009). Teenage drinkers show decrements in verbal encoding tasks, such as failure to 

encode the quantity of words of non-drinkers (Schweinsburg et al., 2010). Deficits in spatial 

working memory function and abnormalities in brain response to the task are also seen in 

adolescents with AUDs (Tapert et al., 2004). Future animal research should seek differences 
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in parallel tasks resulting from adolescent alcohol exposure to further validate the human 

findings. Our results show that ethanol exposure during adolescence fails to increase 

impulsivity in HAPII mice. Thus, the observed transient increase in drinking in adolescents 

and adults is seemingly mediated by an effect other than higher levels of impulsivity. The 

causes of changes in drinking should be addressed by future research.

In sum, this study suggests that alcohol exposure promotes later alcohol use regardless of the 

age at which it occurs, although this effect doesn’t appear to be mediated by changes in 

cognitive impulsivity. Evidence suggests that different animal populations are differentially 

susceptible to these effects of alcohol exposure on subsequent drinking, a result that may 

translate to humans. Conclusions have the greatest generality when studies examining 

adolescent and adult ethanol consumption utilize a variety of genotypes and a range of 

drinking onset ages in each genotype, and the current findings contribute a new population, 

with very high innate levels of drinking, to the literature.
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Figure 1. 
Timeline schematic of Experiment 1 and Experiment 2. Exposure (alcohol drinking), Aging 

(deprivation or shaping), and Testing (drinking or delay discounting) phases are shown for 

each experiment.
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Figure 2. 
A. Experiment 1 Exposure Phase overall drinking in adolescent (n = 15) and adult (n = 15) 

animals, collapsed across sex, over 12 days, from P28–P39 or P60–P71. Adult animals 

consumed significantly more ethanol over this time period, and significant differences on 

individual days are marked by *’s (p < .05). B. Experiment 1 Exposure Phase alcohol 

preference in adolescent and adult groups over 12 days. Adult animals demonstrated a 

significantly higher alcohol preference over the entire data set, and significant differences on 

individual days are marked by *’s (p < .05). Data in these figures and others are expressed as 

mean + SEM.
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Figure 3. 
Experiment 1 Exposure Phase g/kg/hr drinking patterns over 2 days, from P40–41 or P72–

73. No significant differences were observed between adolescent (n = 15) and adult (n = 15) 

groups during any time interval.
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Figure 4. 
Experiment 1 Testing Phase. Alcohol exposed mice drank more alcohol than water exposed 

mice in both age groups, though non-exposed groups increased consumption over the first 8 

days. Significant differences on individual days are marked by *’s (p < .05). A. Animals 

exposed to alcohol (n = 15) or not (n = 15) as adolescents. B. Animals exposed to alcohol (n 

= 15) or not (n = 15) as adults.
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Figure 5. 
Experiment 2 Exposure Phase adolescent g/kg/day ethanol intake in adolescent mice (n = 

24) over 10 days, from P28–P37. No sex effect was observed in these data.
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Figure 6. 
Experiment 2 Exposure Phase g/kg/hr drinking patterns over 3 days, from P38–P40. No sex 

effect was observed in these data.
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Figure 7. 
Experiment 2 Testing Phase group mean adjusted amounts + SEM in seconds of access 

shown at each delay tested. While a trend toward increased impulsivity in the EtOH group is 

seen at the 2-second delay (p = .12), no significant group differences were observed at any 

delays measured.
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