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Abstract

Obstructive sleep apnea (OSA) is a disorder of repetitive sleep disruption caused by reduced or 

blocked respiratory airflow. Although an anatomically compromised airway accounts for the 

major predisposition to OSA, a patient's arousal threshold and factors related to the central control 

of breathing (ventilatory control stability) are also important. Arousal from sleep (defined by EEG 

desynchronization) may be the only mechanism that allows airway re-opening following an 

obstructive event. However, in many cases arousal is unnecessary and even worsens the severity 

of OSA. Mechanisms for arousal are poorly understood. However, accumulating data are 

elucidating the relevant neural pathways and neurotransmitters. For example, serotonin is critically 

required, but its site of action is unknown. Important neural substrates for arousal have been 

recently identified in the parabrachial complex (PB), a visceral sensory nucleus in the rostral pons. 

Moreover, glutamatergic signaling from the PB contributes to arousal caused by hypercapnia, one 

of the arousal-promoting stimuli in OSA. A major current focus of OSA research is to find means 

to maintain airway patency during sleep, without sleep interruption.

Introduction: Importance of arousal in obstructive sleep apnea (OSA)

OSA is a disorder of sleep disruption caused by repetitive episodes of upper airway collapse. 

Sleep onset in OSA patients is associated with a drastic reduction (hypopnea) or even 

complete elimination (apnea) of airflow, followed by brief awakening with re-establishment 

of the airway. This cycle may repeat hundreds of times over the course of a single night. 

OSA severity is quantified by the apnea/hypopnea index (AHI), the number of events per 

hour that last at least 10 sec and cause blood oxygen desaturation. AHI values greater than 5 

are considered to represent OSA, but patients with severe OSA may have an AHI of 30 or 

greater. Figure 1 shows a typical oscillatory breathing pattern in a person with severe OSA. 

Note that the breathing cycles between obstructed and unobstructed breaths and that each 

airway re-opening is associated with EEG arousal. OSA patients are unable to compensate 

for sleep-related increases in pharyngeal airway resistance without waking up. A portion of 

OSA morbidity is caused by detrimental effects of chronic intermittent hypoxia, however, 
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sleep fragmentation is responsible for many of the consequences of OSA including 

excessive daytime sleepiness and cognitive deficits [1].

A low arousal threshold can contribute to OSA pathogenesis

Several interacting traits contribute to OSA susceptibility with the most important of these 

being airway collapsibility [2,3]. The pharyngeal airway is vulnerable to collapse as this soft 

tissue structure can be narrowed by fat deposits and is dependent upon dilator muscle 

activity to retain patency. During wakefulness OSA patients can and do compensate for 

small airways. Most of this compensation takes the form of increased neuromuscular activity 

driving enhanced tone in upper airway dilator muscles such as the genioglossus (a tongue 

protruder) during wake [4]. However, for poorly understood reasons, the ongoing 

neuromuscular compensation often (but not always) fails during sleep causing OSA [5]. The 

extent to which the upper airway dilatory muscles can compensate is highly variable among 

individuals and strongly influences susceptibility to OSA.

Another trait that can influence OSA severity is the inherent stability of one's ventilatory 

control system. An OSA patient with unstable ventilatory control is prone to larger 

fluctuations in blood CO2 as the airway obstructs and reopens. Note the difference between 

the two arrows on the PetCO2 trace during the last obstructed breath and the first 

unobstructed breath in Figure 1. Hypocapnia is thought to precipitate the next obstruction: 

most apneas occur during the decline of waxing and waning ventilatory efforts. A new paper 

by Xie and colleagues nicely demonstrates that administration of CO2 to prevent hypocapnia 

following an apneic event is able to stabilize breathing in select OSA patients that exhibit 

not only collapsible airways, but also high CO2 chemosensitivity [6].

Finally, the arousal threshold is a key factor influencing OSA severity. In some cases, the 

increased respiratory efforts as CO2 rises are sufficient to re-establish breathing without 

causing arousal. The less one is able to tolerate the increased CO2 and mechanical stimuli 

that occur in flow-limited breathing without waking up, the more fragmented the 

individual's sleep will be. Moreover, the arousals themselves tend to perpetuate the cycle by 

worsening CO2 fluctuations. Specifically, arousals contribute to over-breathing and 

subsequent CO2 undershoot following an apnea, and these periods of reduced respiratory 

drive due to hypocapnia may contribute to the next episode of airway collapse [7,8]. Despite 

the widely held view that arousal is necessary for airway re-opening, evidence suggests that 

many obstructive events are resolved without arousal [8,9] and exploration of how this may 

happen is at the cutting edge of OSA research [10]. At least one study suggests that 

pharmacologically raising the arousal threshold can ameliorate OSA in select groups of 

patients [11]. Nonetheless for some patients arousal from sleep is the only process that 

provides sufficient muscle activation to open the airway and reestablish adequate airflow. 

Clearly arousal is both a blessing and a curse in the context of OSA: a vital survival 

response in some cases and a contributor to the disorder in others.

What triggers arousal in OSA?

The mechanisms by which airway obstruction causes arousal are uncertain although the 

available data implicate multiple contributing stimuli including hypercapnia, hypoxia and 
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the mechanical sensations associated with increased ventilatory effort [12]. During an 

obstructive apnea, airflow is reduced with a commensurate increase in blood CO2 and 

varying degrees of hypoxia. The accumulating CO2 and hypoxia drive increasing respiratory 

effort in turn producing progressively greater and greater negative airway pressures as well 

as proprioceptive feedback from contracting respiratory muscles. When these stimuli reach a 

critical threshold arousal occurs. Interestingly, arousal is associated with a particular level of 

respiratory effort (as assessed by mechanical metrics) in a given individual but not a 

consistent level of either blood CO2 or O2 [13,14]. These studies have been interpreted to 

emphasize the importance of mechanical stimuli in arousal. However, it is more likely given 

the complex and interdependent interactions between O2 and CO2 in the chemosensory 

system [15] and the fact that blood levels do not measure the level of either gas at the tissue 

levels where chemoreceptors reside, that respiratory effort may simply provide the most 

accurate and consistent readout of the total contribution of these two gases to simultaneously 

promote breathing and arousal. In the next sections I will describe the neural systems that 

control behavioral state and chemoreception as well as how they are linked together to 

elucidate arousal from OSA.

Arousal system

The arousal system can be defined as the neural substrates for maintenance of the waking 

state and consciousness. The concept of an ascending arousal system dates back to the 

experiments of Morruzi and Magoun demonstrating that brainstem lesions can cause coma 

whereas electrical stimulation can produce a wake-like pattern in the cortical EEG in 

experimental animals [16]. A wealth of neuroanatomical and physiological studies has 

subsequently identified a number of brain regions that may have been responsible for 

Morruzi and Magoun's observations. These areas a) have widespread forebrain projections 

with axons traversing the lesion and stimulation region and b) promote waking or wake-

associated phenomena [17]. However systematic studies placing lesions in these cell groups 

have identified only two subcortical regions that are critically required for maintaining a 

behaviorally responsive state: the basal forebrain and the parabrachial/precoeruleus region 

[18]. It is likely that one or more of the structures in the arousal network mediates OSA 

arousal.

Sleep system

Although sleep is a state of overall decreased brain activity, several groups of neurons are 

actually more active during sleep and serve to stabilize this state or promote the transition 

from wake to sleep. The most well-known of these are located in the preoptic hypothalamus 

and include the ventrolateral preoptic nucleus (VLPO) and median preoptic nucleus (MnPO) 

[17,19]. An additional group, the parafacial zone, is located in the medulla [20], and there 

may be other as yet uncharacterized sleep-active groups. Sleep-active neurons in the VLPO 

are inhibitory and project to many of the arousal neurons [21]. The VLPO is in turn inhibited 

by components of the arousal system. This network is hypothesized to act as a flip-flop 

switch which prevents simultaneous activity in sleep and wake-promoting areas, thereby 

favoring rapid and complete transitions between behavioral states [17]. VLPO lesions cause 

significant increases in spontaneous wake time [22].
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Since sleep-active GABAergic/galaninergic neurons in the VLPO presumably inhibit several 

arousal centers, including the PB, acute interruption of this activity would be expected to 

promote awakening. Therefore one possible mechanism for arousal would be acute 

withdrawal of the sleep-promoting influence of the VLPO. However, it is not known 

whether acute withdrawal of VLPO activity might be a wake-promoting influence during 

arousal from OSA. Evidence investigating this possibility,for example by acutely inhibiting 

the VLPO neurons optogenetically, would be welcome.

Chemoreceptor system

Blood levels of CO2 and O2 reflect the adequacy of ventilation and dictate ventilatory drive 

by acting on two sets of chemoreceptors located respectively in the periphery and in the 

brain. Peripheral chemoreceptors in the carotid body project centrally via the carotid sinus 

branch of the glossopharyngeal nerve and terminate in the nucleus of the solitary tract 

(NTS). Chemosensory neurons in the carotid body are more sensitive to a falling O2 than a 

rising CO2, but their sensitivity to CO2 rises as O2 falls, as occurs during apnea. Given that 

blood from the heart arrives at the carotid artery before the brain, the peripheral 

chemoreceptors respond to a change in blood gases with a shorter latency than central 

chemoreceptors [23]. Several types of central neurons are sensitive to changes in blood CO2, 

because the bicarbonate buffering in cerebrospinal fluid couples CO2 levels to changes in 

local pH.

Early experiments in cats demonstrated that the rostral medullary surface just lateral to the 

pyramidal tract is especially important in CO2 chemoreception. Subsequent work 

demonstrated two sets of neurons in this area that are responsive to CO2 (and pH) and play 

an important role in respiratory chemosensitivity. The retrotrapezoid nucleus (RTN) [24,25] 

which is adjacent to the facial nucleus at the ponto-medullary junction, is both intrinsically 

CO2 sensitive as well as also receiving signals from peripheral chemoreceptors via the NTS. 

A potential role of the RTN in arousal is indicated by experiments showing that optogenetic 

stimulation of the RTN not only increases ventilatory rate and volume, but also enhances the 

probability of transition from sleep to wake [26]. The RTN projects heavily to medullary 

respiratory control areas, but has a major ascending projection to the PB, which may 

contribute to arousal [27]. A second population of serotonin-containing CO2 sensitive 

neurons is found just caudal to the RTN in the area lateral to the pyramidal tract. Mice 

lacking serotonin neurons or with acutely inhibited serotonin neurons demonstrate very poor 

sensitivity to arousal from inspired CO2 [28-31]. These findings initially led to the 

hypothesis that serotoninergic neurons might carry the hypercapnic signal needed for 

arousal. However, the CO2 responsiveness of mice lacking serotonin neurons was restored 

by treating the mice with a serotonin 5HT2a receptor agonist [32]. Hence, serotonin is not 

required to carry the hypercapnic signal, but probably sensitizes the remaining brain 

circuitry to hypercapnia. Perhaps serotonin acts to increase the gain of the CO2 arousal 

pathway by modulating neuronal response properties as it does in the facial motor nucleus 

[33].
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Role of the parabrachial complex in OSA arousal

The parabrachial complex is an attractive candidate for mediating OSA arousal. As a key 

component of both the central respiratory [34] and arousal [18] networks, the PB is well 

positioned to access relevant data to determine whether respiratory difficulty warrants 

arousal. The PB receives intense inputs from both the NTS and the RTN that overlap in the 

external lateral, lateral crescent and Kolliker-Fuse subnuclei [27,35]. Via the NTS and the 

trigeminal system, the PB receives mechanosensory information from the airways. Via the 

NTS and the RTN the PB receives both peripheral and central chemoreceptor inputs. This 

connectivity suggests that the PB is appropriately positioned to translate visceral sensory 

stimuli to arousal [36]. To test the hypothesis that the neurons in the PB mediate 

hypercapnic arousal, Kaur and colleagues [36] developed a mouse model in which mice are 

periodically exposed to brief increases in CO2 ramping from near zero to 10% over 30 

seconds. When applied during NREM sleep, this stimulus is sufficient to cause a brief (often 

less than 5 sec) awakening on almost all trials. To test the role of glutamatergic PB neurons 

in hypercapnic arousal, they used mice that were genetically engineered so that the vesicular 

glutamate transporter (vGluT2) could be eliminated focally in the brain by injections of a 

viral vector containing the gene for cre-recombinase. When they deleted expression of 

vGluT2 in the from the external lateral (PBel) and lateral crescent (PBlc) subnuclei, the mice 

showed substantial deficits in hypercapnic arousal. Upon exposure to hypercapnia mice took 

on average about 3 times as long as normal to awaken, and in almost 30% of trials they 

failed to wake up at all during the CO2 presentation. Interestingly, the portion of the PB, 

which was most important for hypercapnic arousal overlaps with the zone of afferent input 

from the NTS and the RTN, consistent with the hypothesis that the external lateral PB is a 

relay for arousal signals to the forebrain.

Parabrachial-to-forebrain pathways that may mediate OSA arousal

The PBel and PBlc have very different output patterns[36]. PBlc primarily projects to the 

respiratory areas of the medulla, and is likely to be involved in the increased ventilatory 

efforts during hypercapnia. By contrast the PBel mainly projects to rostral targets, including 

the basal forebrain [37-39], lateral hypothalamus [40], midline thalamus [41], and the 

infralimbic cortex [40,42], as well as providing particularly strong projections to the 

extended amygdala including the bed nucleus of the stria terminalis and the central nucleus 

of the amygdala [37,40,43]. The PB-amygdala pathway has been associated with autonomic 

responses, ingestive behavior, conditioned taste aversion [44], and pain [45], but it has not 

previously been associated with arousal. However, the amygdala may affect the arousal 

system via projections to the locus coeruleus, infralimbic cortex, tuberomamillary nucleus, 

or lateral hypothalamus. Furthermore, the amygdala itself has been implicated in promotion 

of vigilance [46]. Areas of the PB that are adjacent to the PBel also project to the VLPO, but 

deleting glutamate transmission from these neurons is not likely to have impaired CO2 

arousal from sleep, because this would have decreased, not increased sleep propensity [47]. 

Further work will be necessary to uncover the specific PB pathway that contributes to 

hypercapnic arousal.
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Summary

In summary, despite its ostensible simplicity, OSA is a highly complex disorder with 

marked inter-individual variability in pathophysiology. The reciprocal interactions between 

ventilation and behavioral state is thought to contribute to a vicious cycle of arousal and 

over-breathing, falling back to sleep with under-breathing and airway closure, arousal and 

over-breathing, etc. An especially low arousal threshold can contribute to OSA in an 

individual who otherwise would not have it. OSA arousal is mostly likely mediated by PB 

neurons that receive a convergence of asphyxia-related sensations and project to the arousal 

system. Finally, a complete understanding of hypercapnic arousal must include elucidation 

of the role of serotonin, which may modulate responses at any or all of the synapses relaying 

hypercapnia detection to targets that cause arousal. Through further insights into the 

pathogenesis of OSA arousal, new therapeutic approaches are likely to emerge.
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Highlights

1. Arousal threshold is an important trait that determines obstructive sleep apnea 

severity.

2. Several respiratory stimuli associated with airway obstruction promote arousal.

3. Normal hypercapnia-evoked arousal requires intact glutamatergic signaling 

from the parabrachial nucleus.
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Figure 1. 
Typical OSA breathing pattern with recurrent obstructive events. This polysomnogram from 

a patient with obstructive sleep apnea shows multiple cycles over a four minute period of 

airway collapse accompanied by hypercapnia and hypoxia and terminating with arousal (A) 

and airway restoration. Traces show (from top to bottom) EEG, arterial oxygen saturation 

(SaO2), airflow (liters/sec), end tidal partial pressure of CO2 (PetCO2), ribcage and 

abdominal movements. Obstructive apneas are characterized by reduced or absent airflow 

despite attempts to breathe as shown by rib cage and abdominal movements. Hypoxia is 

measured by a pulse oximeter. The level of CO2 in exhaled air at the end of an expiratory 

cycle approximates the partial pressure of CO2 in arterial blood, whereas the signal drops 

towards zero during inspiration. In this example airflow was reduced but not completely 

abolished during the obstructions. The dotted line overlying the trace indicates average end 

tidal CO2. Note the rise in CO2 during the airway obstruction and the large breaths that 

accompany arousal at apnea termination and that drive the CO2 below baseline. The two 

arrows on the trace indicate the PetCO2 during the last obstructed breath and the first 

unobstructed breath. The magnitude of the PetCO2 undershoot is thought to contribute to the 

likelihood of another obstructive event occurring when the individual falls back to sleep. 

Adapted from [6].
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