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Abstract

A novel proposal for the zero-lag synchronization of the delayed coupled neurons,

is to connect them indirectly via a third relay neuron. In this study, we develop a

Poincaré map to investigate the robustness of the synchrony in such a relay system

against inhomogeneity in the neurons and synaptic parameters. We show that

when the inhomogeneity does not violate the symmetry of the system, synchrony is

maintained and in some cases inhomogeneity enhances synchrony. On the other

hand if the inhomogeneity breaks the symmetry of the system, zero lag synchrony

can not be preserved. In this case we give analytical results for the phase lag of the

spiking of the neurons in the stable state.

Introduction

Throughout the cortex, the spiking activity of groups of cells exhibits various

patterns of synchrony, during both spontaneous activity and under sensory

stimulation [1–7]. Synchronous firing of neurons has received much attention in

relation to the generation of brain rhythms and information processing at various

aspects in the neuronal systems, such as selective attention and the binding

problem [8–12]. Synchronized networks have a higher impact on their target

networks, and the entrainment of a target network establishes an exclusive

neuronal communication link [13]. It has been hypothesized that a dynamically

changing coherent activity pattern may ride on top of the anatomical structure to

provide flexible neuronal communication pathways [14–16].

Synchrony generation by networks of interconnected neurons is a subject of

many theoretical and numerical studies [13, 17–24]. The mechanism of these

phenomena has been subject of controversial debate in a more general context;

beyond its functional relevance, the zero time lag synchrony among such distant
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neuronal ensembles must be established by mechanisms that are able to

compensate for the delays involved in the neuronal communication [25–27].

A pair of neurons could either synchronize via direct connection or as a results

of common inputs and it is quite probable that a variety of mechanisms are

responsible for bringing synchrony at different levels (distinguishing for example,

among local and long-distance synchrony) and different cerebral structures. Early

studies on the synchronization of neurons with delayed connections showed that

excitatory connections do not readily synchronize the neurons and in fact they

usually lead to antiphase firing [28–30]. An almost complete framework has been

eventually developed later, revealing the role of the phase response curve (PRC) in

the synchronization of delayed coupled neurons [31–33]. PRC keeps track of how

much an input advances or delays the next spike in an oscillatory neuron

depending upon where in the cycle the input is applied [34–36] and is determined

by the type of bifurcation which results in repetitive firing of the neuron

[34, 35, 37], but see [38].

Synchronization is also affected by the configuration through which the

neurons interact. Fischer et al. [39] introduced a novel mechanism of

synchronization via dynamical relaying, followed by several other studies [40–42].

It has been shown that two distant neuronal populations are able to synchronize

at zero time lag if a third element acts as a relay between them. This mechanism

has proven to be remarkably robust for a broad range of conduction delays and

cell types [43]. Biological relevance of the concept justified by proposing thalamus

and hippocampus as the pivotal regions generating isochronal synchronization

between distant cortical areas by means of the dynamical relaying mechanism

[44]. Interestingly, connectivity studies in primate cortex have identified the relay

pattern as the most frequently repeated motif at the level of corticocortical

connections in the visual cortex, signaling the functional relevance of this

topology in the cortical networks [45–49]. Synchrony induced by the relay

configuration is based on the symmetric redistribution of incoming signals by the

relay between the two outer neurons [50]. This symmetry needs both the equal

parameters of the outer neurons and the symmetric links. In a minimal model, the

neurons are characterized by their firing rates, and the links by the synaptic

strengths and the delay times. All of these parameters bear substantial

inhomogeneity in the brain networks [36, 51–53] and it is quite reasonable to

investigate how such inhomogeneities can affect synchrony properties of the relay

system. In this study we extensively explore the role of inhomogeneity in the

neurons’ and links’ parameters on the synchrony of the outer neurons in the relay

system. We use phase reduction approximation and the Poincare maps to derive

analytic results for the stability of inphase (or near inphase) solutions in the

presence of inhomogeneity. The role of firing rate of neurons, synaptic strengths

and the transmission delay times is investigated. As the main outcome of the

study, we show that symmetric inhomogeneities (those which preserve symmetry)

have negligible disruptive effect on the synchrony and in some cases they can even

improve it. On the other hand, we show that the relay system is vulnerable to the

inhomogeneities which violate symmetry of the system. The analytic results are
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supported by the numerical experiments on the conductance based neuronal

models.

Methods

In our simulation we use Hodgkin-Huxley (HH) model described by a set of four

variables X~(V ,m,n,h), where V is the membrane potential, m and h the

activation and inactivation variables of the sodium current and n the activation

variable of the potassium current. The corresponding equations of the motion

read

C dV
dt ~{gNam3h(V{VNa){gK n4(V{VK){gL(V{VL)zIappzIsyn,

dm
dt ~ (m?(V){m)

tm(V)
,

dh
dt ~ (h?(V){h)

th(V)
,

dn
dt ~ (n?(V){n)

tn(V)
,

ð1Þ

where Iapp is the external current. The parameters gNa,gK and gL are corresponding

reversal potentials and C is capacitance per surface unit. We use the typical values

the parameters as follows:

VNa~50mV ,VK~{77mV ,VL~{54:4mV ,gNa~120mS=cm2,gK~36mS=cm2,

gL~0:3mS=cm2 and C~1mF=cm2. The functions m?(V),h?(V) and n?(V) and

the characteristic times (in milliseconds) tm,tn,th are given by:

x?(V)~ax=(axzbx),tx~1=(axzbx) with x~m,n,h and

am~0:1(Vz40)=(1{exp½({V{40)=10�),
bm~4exp½({V{65)=18�,ah~0:07exp½({V{65)=20�,bh~1=(1zexp½({V{35)

=10�),an~0:01(Vz55)=(1{exp½({V{55)=10�),bn~0:125exp½({V{65)=80�.
Let us recall that for small values of Iapp the system reaches a stable fixed point

(V~{65mV for Iapp~0). The transition from resting to spiking regime is

mediated by a subcritical Hopf bifurcation at a critical value of input current

I~9:2mA=cm2. The synaptic current Isyn is modeled by

Isyn(t)~Iij~{gsyn

X

spikes

a(t{tspike
j {tij)(Vi{Esyn), ð2Þ

where the a function

a(t)~
1

td{tr
( exp ({t=td){ exp ({t=tr)), ð3Þ

shows postsynaptic conductance time course after each spiking of presynaptic

neuron at time tspike
j . The time delay tij is the time needed for transmission of the
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signal from pre- to postsynaptic neuron, in this case from jth to ith neuron. The

reversal potential of the synapse is Esyn and tr and td determine the rise time and

decay time of the synaptic response, respectively. We set Esyn~30mV to model

excitatory synapses, and tr~0:2ms and td~3ms.

Phase-reduced models

Transition from resting to repetitive firing for HH neuron is mediated by a

subcritical Hopf bifurcation [54]. With a suprathreshold constant current, HH

model has an stable limit whose dynamics around the limit cycle can be well-

approximated by the phase reduction method [54].

Assuming a network of coupled limit cycle oscillators described by

_Xj~F(Xj)z
1
N

XN

k~1

AjkV ½Xj(t),Xk(t{tjk)�, ð4Þ

where Xj is the state of the jth oscillator, F(X) is the baseline vector field which

describes single oscillator dynamics. A is the adjacency matrix of the network and

V determines a coupling function. We assume the isolated neural oscillator has a

stable limit cycle with period T0, then a scalar phase variable h(X)[½0,2p) can be

defined for all X in some neighborhood of the attracting limit cycle whose

evolution is deduced from the chain rule

dhj(X)

dt
~vjzZ(h):

1
N

XN

k~1

AjkV ½Xj(t),Xk(t{tjk)� ð5Þ

Using the phase sensitivity of each oscillator Z(h)~+X(h)jX~X0(h) and droping

the error term of O(jV j2), the dynamics of the system can be reduced to the phase

equation

_hj~vjz
1
N

XN

k~1

AjkZ(hj):V ½hj(t),hk(t{tjk)� ð6Þ

which is valid in the attracting neighborhood of the limit cycle. Under the

assumption that V has nonzero components in just the voltage direction, we can

define the phase sensitivity of each oscillator Z(h), as the normalized phase

response curve (PRC) as follows [54].

Suppose the oscillation period is T0. A brief stimulus is applied to the voltage

variable in different times between two successive spikes of the neuron. This leads

to a change in the time of the next spike. For small perturbation, PRC is defined as
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PRC(h)~(1{
T
T0

): ð7Þ

The phase sensitivity is the PRC divided by amplitude of small perturbation h
[55]. Since the PRC and phase sensitivity are linearly dependent in the small h
limit, we have used them equally when their functional form was intended. In our

analytical studies, the spiking neurons are approximated with phase oscillators

and the synaptic currents by pulsatile stimuli. Then the model reduces to

_hi~viz
X

j

gijZ(hi)
X

n

d(t{tn
j {tij), ð8Þ

where tn
j is the nth spike time of j oscillator, which is presynaptic neuron, to the

oscillator i as the post synaptic neuron and, gij is the coupling strength from

neuron j to i.
In all the simulations, initial values for the dynamical variables are chosen from

a uniform distrbution in the appropriate range for each variable. The results are

Fig. 1. Time evolution of coupled phase oscillators. (a) Time evolution of two bi-directionally coupled
phase oscillators for Dh*p. (b) Time evolution of two bi-directionally coupled phase oscillators for Dh*0. T is
the period of the oscillators in the phase-locked state and tij is the delay time from pre-synaptic neuron j to
post-synaptic neuron i. Dhn (Dh’n) is the phase difference (modulo 2p) of two neurons at the nth spiking time of
first (second) neuron.

doi:10.1371/journal.pone.0112688.g001
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recorded after discarding 50 periods to ensure the results are not affected by the

transient dynamics.

Results

Two reciprocally coupled neurons

In this section we develop a map to analytically study the phase-locked state of two

neurons connected through reciprocal delayed pulsatile couplings. The map and the

formula presented here are complementary to the recent study [56] and give more

precise results for a wider range of parameters (see below). To construct the map we

record the phase of the neuron i at the time of nth spike of the neuron j, hi(tn
j ). In a

steady 1:1 locked mode, depending on the phase lag of spiking of two neurons and

the delay, two different situations can be observed (depicted in Fig. 1). In the first

case (case 1) between every two spikes of the two neurons, both the neurons or non

of them receive synaptic stimulations (Fig. 1a). In the other case (case 2) between

every two spikes of the neurons only one of the neurons experiences an incident

synaptic stimulation (Fig. 1b). In both cases we have (see Fig. 1):

h1(tnz1
1 )~h1(tn

1 )zv1Tzg12Z(v1t12zDh’n),

h2(tnz1
1 )~h2(tn

1 )zv2Tzg21Z(v2t21z2p{Dhn),
ð9Þ

where Dhn~h1(tn
1 ){h2(tn

1 ) (Dh’n~h1(tn
2 ){h2(tn

2 )) is the phase difference of two

neurons at the nth spiking time of first (second) neuron and will be used as the phase

lag of the neurons in locked states. Assuming Dv~v1{v2, subtraction of the

above equations gives

Dhnz1~DhnzTDvzg12Z(v1t12zDh’n){g21Z(v2t21{Dhn), ð10Þ

where the period (inter-spike interval) in the locked state, T, can be derived from

2p~v1Tzg12Z(v1t12zDh’n): ð11Þ

The locked state is characterized by the fixed points of Eq. 10. For case 1 there is

another relation between the phase differences, 2p{Dh’n~ v1
v2

(2p{Dhn) (see

Fig. 1a). This is the main correction on the model introduced in previous study in

which it has been assumed Dh’n~Dhn which is correct for v1^v2 (see Eqs 8–10

in [56]). Setting Dhnz1~Dhn in Eq. 10 and eliminating period T for case 1 gives

g12(1{
Dv

v1
)Z(v1t12{

v1

v2
(2p{Dh)){g21Z(v2t21{Dh)z

2p
v1

Dv~0: ð12Þ
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Given the functional form of phase sensitivity Z(h), this implicit equation gives

the phase lag in the locked state as a function of the parameters vi, gij and tij.

For the second case, succession of the spikes of the neurons and the incident

synaptic pulses is similar to what shown in Fig. 1b. In this case fixed points of the

map Eq. 10 can be found from

g12(1{ Dv
v1

)Z(v1t12zDh’){g21Z(v2t21{Dh)z2p Dv
v1

~0, ð13Þ

where Dh’~ v1
v2
½Dhzg21Z(v2t21{Dh)� and T~ Dh’

v1
z 2p{Dh

v2
which can be

deduced from Fig. 1b.

Linearizing Eq. 10 around the fixed points gives the stability condition for the

solutions

g12Z’(v1t12zDh’n)
dDh’n
dDhn

{g21Z’(v2t21{Dhn)v0: ð14Þ

where a prime denotes the derivative with respect to Dhn.

Fig. 2. Homogeneous and inhomogeneous system of directly coupled neurons. (a) Synchronized states of two directly coupled identical type-II
neurons. Depending on the delay time inphase or antiphase modes are stable with negative corresponding Lyapunov exponent which are shown for both the
states (left panel). Phase difference (2p tn

1 {tn
2

T ) of firing of two identical Hodgkin-Huxely neurons is plotted in the right panel. (b) Synchronized states of two
directly coupled neurons in presence of frequency mismatch. Numerical solutions (Cyan) affirm the validity of the analytical results obtained from linear
approximation (Dark Blue). Lyapunov exponent for each of the locked states are also shown. Shaded area show the regions where no 1:1 locking mode is
seen in numerical results, and the dashed gray lines are the boundary of stability of analytic solution with negative Lyapunov exponents. In the right panel
the phase difference is shown for two HH neurons with different firing rates.

doi:10.1371/journal.pone.0112688.g002
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It’s worth noting that in the symmetric homogeneous case when v1~v2,

g12~g21 and t12~t21, Eq. 10 reduces to Z(vtzDh)~Z(vt{Dh) which has two

solutions Dh~0 and Dh~p. Inphase (synchronous) mode is stable if Z’(vt)v0
and stability condition for antiphase firing is Z’(vtzp)v0. Note that the system

can show bistability if both the inphase and the antiphase solutions are (locally)

stable but with canonical forms of PRC (and phase sensitivity) for type-I

(Z(h)~1{ cos h) and type-II (Z(h)~{ sin h) neurons, only one of the solutions

are stable. Also, for some values of delay time all the phase lags are fixed points.

For example, for canonical type-II neurons this occurs for vt~p=2,3p=2. In this

case the left hand side of Eq. 14 is always zero and all the phase lags are neutrally

stable. In this case the initial conditions determine the phase lag in the locked state

(Fig. 2a).

Reciprocally Coupled Neurons in Presence of Inhomogeneity

Frequency mismatch

Inhomogeneity can be exerted into the system with the mismatch in the

parameters of neurons (namely their firing rate in the minimal model we used),

and/or with the difference in the connections parameters, i.e., delays or synaptic

strengths. In the presence of mismatch in intrinsic frequencies, with symmetric

connections, i.e., gij~g, tij~t and v1~v2zDv, the phase difference of the two

neurons in a 1:1 phase-locked mode can be calculated from Eq. 10. We take the

phase difference as Dh{Dh(0)~Dh(1), where Dh(0) is the phase difference of the

homogeneous system. For small mismatch we assume that the deviation from the

phase difference of the homogeneous system, Dh(1), is also small and its dynamics

can be described by a linearization of Eq. 12 or Eq. 13.

As an example we consider canonical type-II neurons with Z(h)~{ sin h. This

model can describe PRC for Stuart-Landau oscillator [57] and is widely used as

the canonical form of PRC near Hopf Bifurcation [58–61]. If the stable phase

difference for homogeneous system is Dh(0)~p (anti-phase mode), the phase

difference for the inhomogeneous system is

Dh~pz
a
b

, ð15Þ

a~2p
v1{v2

v1
{g

v2

v1
sin (v1t{p

v1

v2
zg sin (v2t{p)),

b~g cos (v1t{p
v1

v2
)zg cos (v2t{p):

For synchronous case, Dh(0)~0, the phase lag is:
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Dh~
a
b

, ð16Þ

a~2p{g
v1

v2
sin (v2t){2p

v1

v2
zg sin (g

v1

v2
sin (v2t)zv1t),

b~{g
v1

v2
cos (v2t){g

v1

v2
(1{g cos (v2t)) cos (g

v1

v2
sin (v2t)zv1t):

The solutions are stable if

Z’½(vzDv)t{
vzDv

v
Dh�zZ’(vtzDh)v0, ð17Þ

for the first case and

Fig. 3. Directly coupled neurons with unequal delays. (a) Phase lag of two directly coupled neurons for different transmission time delays. In (b) we have
shown the results for t~t’ (along diagonal in (a)) and with fixed t’ (along horizontal lines in (a)). Synchrony can only been seen for homogeneous system
t~t’. Figures in right column present the results for HH neurons. Even though the patterns are not the same, the main result still holds and synchrony can
not be seen with unequal delays. T in the bottom-right panel is the period of the firing of HH neurons in the locked state.

doi:10.1371/journal.pone.0112688.g003
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Z’½(vzDv)tz
vzDv

v
(DhzgQ(vt{Dh))�(1{gQ’(vt{Dh))

zZ’(vt{Dh)v0 ð18Þ

for the second case. The results for canonical type-II neurons, along with the

results of numerical integration of Eqs. 12 and 13 are demonstrated in Fig. 2b.

Excellent accordance is seen between numerical solution of phase model and the

analytical results of linear approximation. In the right panels of Fig. 2 numerical

results for HH neurons have been shown, showing agreement between the results

of pulse-coupled phase model with a more realistic conductance-based neuronal

model.

Inhomogious time delays and coupling constants

For unequal time delays without frequency mismatch, the phase lag can be found

from Eq. 10, Dh~kpz v(t’{t)
2 with k~0,1, and for each value of t and t’ one of

the two states is stable. When tzt’~ p
v, the system does not have isolated fixed

points and all values of v(t’{t)
2 vDhvpz v(t’{t)

2 are neutrally stable solutions

(Fig. 3).

For unequal synaptic constants Dh~kpzt{ arctan (
g’ sin (2t)

gzg’ cos (2t)
), and again in

presence of inhomogeneity g=g’ in-phase or anti-phase modes change to near

inphase and near antiphase modes, respectively, and the phase lag in no longer

independent of the delay time (Fig. 4).

Dynamical Relaying

When the two neurons communicate indirectly via a third relay neuron, the

symmetry of the system implies that both inphase and antiphase firing of directly

Fig. 4. Phase locked state of two directly coupled neurons in presence of inhomogeneity in the coupling strengths. The results are shown for two
different values of t in which homogeneous network shows different properties (inphase and antiphase) in the homogenous case. The right panel show the
similar result for HH neurons. Here T stands for oscillation period of HH neurons and c~0:1T.

doi:10.1371/journal.pone.0112688.g004
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connected neurons lead to synchrony of antiphase state neurons. Let

Dhouters~Dh1r{Dh2r, where subscript r denotes the relay neuron and i~1,2 labels

the outer neurons. As long as Dh1r~Dh2r, the outer neurons synchronize

regardless of the value of phase difference of the outer neurons and the relay

neuron.

At a steady 1:1 locked mode, between every two successive spikes of the relay

neuron, outer neurons spikes once. We construct the map by recording the phases

of the three neurons at the times of spiking of the relay neuron:

h1(tnz1
r )~h1(tn

r )zv1Tzg1rZ(v1t1rzDh(tn
r )),

hr(tnz1
r )~hr(tn

r )zvrTzgr1Z(vrtr1{Dh(tn
1 ))zgr2Z(vrtr2{Dh’(tn

2 )),

h2(tnz1
r )~h2(tn

r )zv2Tzg2rZ(v2t2rzDh’(tn
r )),

ð19Þ

where Dh~h1{hr, Dh’~h2{hr.

First we study the above equations in a homogeneous network, where gij~g,

tij~t and vi~v. It is easy to check that the synchronous state Dh~Dh’ (and

Dhouters~0) is a solution. To check the stability we note that for 1:1 phase locked

state Dhnz1~Dhn, and 2p{Dh(tr)~
v1
vr
½2p{Dh(t1)�. Then the equations reduce

to

Z(vtzDh)~2Z(vt{Dh), ð20Þ

and the linear stability analysis shows that the synchronous solution is stable if

Z’(vtzDh){2Z’(vt{Dh)v0. The interesting fact is that just like the two

neurons system, phase lag in a homogeneous relay system motif is independent of

the synaptic strength. For type-II neurons, for example, if the typical form of

phase sensitivity is assumed Z(h)~{ sin (h), Eq. 20 gives

Dh~vt{ arctan ( 2 sin (2vt)
1z2 cos (2vt)

). The analytic results for typical type-II neurons are

plotted in Fig. 5 along with the numerical results obtained from the integration of

the Eqs. 8. It can also be seen that the variation of time delay results three different

stable zero time lag synchronized states for outer neurons. For t about 0 or 2p
outer neurons fully synchronize, while they have small phase difference with the

relay node. For the delays around p outer neurons are still fully synchronized but

nearly in anti-phase mode with the relay one. The synchrony seen in the delay

range for which two neurons systems shows antiphase locking is expectable as

noted above, but for the three neurons system, there are intervals of time delay

over which 1:1 locked mode is not stable. These regions depicted by shaded area in

Fig. 5 have a considerable measure around the Z’(h)~0 where the two neuron

system have a set of neutrally stable solutions as discussed after Eq. 14. In the right

panel of Fig. 5 the results are shown for a system composed of three Hodgkin-

Huxley neurons. The results qualitatively conform but interestingly for HH

neurons the domain of the instability of the synchronized state is much smaller,

compared to the phase oscillators. Our results warrants that the domains of

synchrony in the parameter space of a relay system is dependent on the model

Study of Synchrony in an Inhomogeneous Relay System
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oscillators and small domain of asynchrony seen in other studies (see e.g. [43])

can be a consequence of the choice of the model oscillators (see also [40]). In the

following sections we show that the domains of synchrony can be extended in

some cases, by exploiting inhomogeneities which preserve the symmetry of the

relay system.

Inhomogeneity in dynamical relaying systems

Each of the three parameters, intrinsic frequency of neurons, synaptic strengths

and time delays can be varied to explore the effect of the inhomogeneity in the

relay system of neurons. The inhomogeneity can be exerted such that the

symmetry of the system is preserved or not. For example if the firing rate of the

relay neuron is different from the outer neurons, the system is inhomogeneous

but symmetric, and on the other hand, if the firing rate of one the outer neurons is

different from the two other neurons, the system is no longer symmetric. We

hypothesize that the system is less sensitive to the inhomogeneity as long as the

symmetry is not broken. [43] have shown that the synchronization of the outer

neurons in the dynamical relay system is almost insensitive to the firing rate of the

relay neuron. In the following we test the effect of inhomogeneity on the

synchrony of the outer neurons by changing the three parameters, firing rates,

transmission delays and synaptic strengths. For each of the noted parameters we

test two cases, when the system is heterogeneous but symmetric and when

imposed inhomogeneity breaks symmetry.

Symmetric frequency mismatch

As the first inhomogeneous case, we suppose that the intrinsic firing rate of the

relay neuron is different from the outer neurons. The set of the parameters used

Fig. 5. Homogeneous relay system. In a homogeneous relay system, synchronized state of outer neurons is not stable for all the values of the delay time.
Dark blue and cyan points show the phase difference of outer neurons in stable regions resulted from analytic calculations and direct numerical integration,
respectively. Dark pink (pink) points show analytical (numerical) results for the phase difference of the outer neurons with the relay neuron. Yellow and
orange lines show the characteristic exponent of the map which is negative in case of stability of synchrony. Vertical dashed lines show the boundary of
stability domains (characterized by negative exponents) and shaded area indicates the domain over which numerical integration shows no synchrony. In the
right panel numerical results are presented for the relay system with Hodgkin-Huxley neurons. It is notable that although the same pattern of synchronization
regions is seen, but the domain over which the synchrony is unstable is quite narrower for the relay system with HH neurons.

doi:10.1371/journal.pone.0112688.g005
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are such that gij~g, tij~t, v1~v2~v and vr~vzDv. Permutation symmetry

1<2 exerts that the synchronous state h1~h2 is a solution. Denoting the phase

difference of the outer neurons with the relay neuron by Dh, reduction of Eqs. 19

in the synchronous state h1~h2 gives

{g
vr

v
Z(vtzDh)z2gQ(vrt{

vr

v
Dh)~2p(1{

vr

v
): ð21Þ

Synchronized state is stable if Z’(vtzDh){2Q’(vrt{
vr
v Dh)v0. Note that the

stability is still independent of the synaptic strength. In Fig. 6 the numerical result

for the phase difference of the outer neuron is shown when the delay time and the

frequency mismatch (between the relay neuron and the outer neurons) are varied.

The analytical result for the borders of stable region shown by the solid lines

matches with the region of zero phase lag (coded by blue), resulted from

numerical integration. The figure shows that the tolerance of the synchrony to the

mismatch of the relay neuron depends on the delay time.

For comparison we have also presented the results for a similar system

composed of HH neurons in Fig. 6. It can be seen that the analytic results for

phase oscillators hold qualitatively in the more biologically inspired model. It’s

worth noting that for HH neurons, for very small value of Iext (of the relay

neuron), the relay neuron does not spike and effectively the connection between

two outer neurons is cut and consequently, no entrainment is expected.

Asymmetric frequency mismatch

When the frequency of the outer neurons does not match (symmetry broken),

h1~h2 is not anymore a solution of the Eq. 21 and the outers do not spike

simultaneously. This is evident from Fig. 7a which shows that phase lag of the

Fig. 6. Symmetric relay system with inhomogeneous firing rates. Synchronization of the outer neurons when the relay neuron has different firing rate. In
the right figure the analytic result for the borders of stable synchrony for phase oscillators is shown with blue thick lines and the numerical results for the
phase lag are presented by the color code. Vertical and horizontal axis show the relative difference of the firing rate of the relay neuron (with outer neurons)
and the delay time, respectively. Zero lag synchrony is coded by blue. In the right panel the numeric results are shown for HH neurons. In this case
inhomogeneity is applied by changing the input current (which controls the inter-spike-interval of the neuron).

doi:10.1371/journal.pone.0112688.g006
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outer neurons continuously changes with the mismatch and only for zero

mismatch zero lag synchrony can be observed. In this case instead of zero lag

solution, we look for a phase locked state in which v1<vr. Eqs. 19 then can be

written as

h1(tnz1
r )~h1(tn

r )zv1Tzg1rZ(v1t1rzDh(tn
r )),

hr(tnz1
r )~hr(tn

r )zvrTzgr1Z(a)zgr2Z(vrtr2{
vr
v2

Dh’(tn
r )),

h2(tnz1
r )~h2(tn

r )zv2Tzg2rZ(v2t2rzDh’(tn
r )),

ð22Þ

where azZ(a)~2p{(vrtr1{
vr
v1

Dh(tn
r )). In Fig. 7b the ratio of the firing rates of

the neurons is also plotted. Domain of stability of the phase-locked state

(characterized by T~Tr) is shown by solid lines which well matches again with

the numerical results. The results are supported by the numerical experiments on

the HH neurons shown in Fig. 7, where a qualitatively similar dependence on the

mismatch of the outer neurons can be observed.

Fig. 7. Asymmetric relay system with inhomogeneous firing rates. When frequency mismatch is applied to one of the outer neurons, no synchronized
state is seen, but for some range of mismatch 1:1 phase-locked states occur. (a) and (b) show the phase lag and ratio of the periods of outer neurons in the
steady state, respectively. Blue lines are borders of 1:1 modes from analytic stability test. In the right, same results are shown for HH neurons.

doi:10.1371/journal.pone.0112688.g007
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Different synaptic constants: Symmetric case

Suppose that the strength of incoming gin and outgoing gout synapses to the relay

neuron are different, but the counterparts on the two wings are equal. The system

is symmetric and the zero lag solution h1~h2 exists. Then from Eq. 19 the phase

difference of the relay neuron and the outer neurons can be extracted from

ginZ(vtzDh)~2goutZ(vt{Dh), and the state is stable when

ginZ’(vtzDh)z2goutZ’(vt{Dh)v0. Note that the ratio of the (incoming and

outgoing) synaptic constants determines both the phase difference and the

stability condition in this case of symmetric unequal synaptic strengths. It is quite

interesting that for gout~2gin (outgoing synapses are twice as strong as the

incomings), the results reduce to those of two identical oscillators, coupled by

symmetric connections (see Eq. 10). In this case the equations are again

independent of the connection strengths (while the ratio is preserved) and the

domain of stable synchronous solution extends to all values of time delay

(Fig. 8a). This can be proposed as the best configuration for zero lag synchrony of

the outer neurons, since the synchrony is stable for all the values of the delay time.

Enhancing effect of inhomogeneity on synchrony has been reported before for

Fig. 8. Symmetric variation of synaptic constants. (a) Synaptic constants of incoming links to the relay neuron are changed while outgoing ones are kept
constant (gout~1). Color code shows time lag of spiking of outer neurons, resulted from numerical experiments. Solid lines are drawn based on the analytic
results, showing the domain of stability of synchronous state. Note that for gout~2gin synchrony is seen for almost all the values of delay time. For
comparison the results for the homogeneous system are shown in (b) where all the synaptic constants are equal. In this case except for very small synaptic
constants, the results are insensitive to the changes of synaptic strengths and can not results a synchronous state. Right panel show the similar results for
HH neurons.

doi:10.1371/journal.pone.0112688.g008

Study of Synchrony in an Inhomogeneous Relay System

PLOS ONE | DOI:10.1371/journal.pone.0112688 December 8, 2014 15 / 22



systems composed of chaotic oscillators [62–64]. The results shown in Fig. 8 for

HH neurons indicate that this result holds for different types of neuronal models.

Different synaptic constants: Asymmetric case

If the connections in both sides are not of the same strengths, according to Eq. 19

synchronized state for outer neurons, h1~h2, is not in general a solution of the

defined map (Eqs. 19). In the simplest case when the synapses in one side are of

the same strength, but they are slightly different from the synapses in other side,

near synchronous states are possible. Numerical results shown in Fig. 9, are

presented for typical type-II oscillators. Near synchronous results are seen when

gleft<gright or vt<kp.

Fig. 9. Asymmetric variation of synaptic constants. The time lag of firing of the neurons is shown as a function of delay time and ratio of synaptic
constants in an asymmetrix case. Numerical results confirm outcome of analytic calculations for the phase lag of phase oscillators of type-II (left panel).
Right panel shows the results for HH neurons. Again zero-lag synchrony is seen for t^T=2 and t^T.

doi:10.1371/journal.pone.0112688.g009

Fig. 10. Symmetric variation of the delay times. In the left panel the phase lag of outer neurons in a relay system with canonical type-II oscillators.
Horizontal and vertical axes show the incoming and outgoing delay times, respectively. Solid lines show the boundary of stable synchrony. The similar
results are shown for HH neurons in the right.

doi:10.1371/journal.pone.0112688.g010
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Inhomogeneous delays: Symmetric case

In the case of unequal transmission delays, if the symmetry is conserved, i.e., the

incoming and outgoing delays (t and t’) are unequal but the corresponding links

in two sides have equal delays, zero-lag synchrony is still possible. Imposing

h1~h2 in Eqs. 19, fixed point of the map are determined by

Z(vt’zDh)~2Z(vt{Dh) and stability condition is

Z’(vt’zDh){2Z’(vt{Dh)v0. For typical type-II oscillators the phase lag of the

outer neurons with the relay neuron is Dh~{vt’z arctan ( 2 sin (v(tzt’))
1z2 cos (v(tzt’)) ).

In Fig. 10 we have shown the numerical results for canonical type-II oscillators.

The phase lag of the outer neurons for different values of incoming and outgoing

transmission delays is shown. Solid lines show the boundary of area over which

the stability criterion is met. In the right panel of Fig. 10, the results for HH

neurons are shown. The system behaves qualitatively the same as the type-II

oscillators but there are regions in which instead of zero phase lag, very small

phase lag is recorded and interestingly for small amount of outgoing synaptic time

delay, complete synchrony is seen for HH neurons, regardless of the value of the

incoming synaptic delays.

Asymmetric delays

We assume that the delays in two wings are unequal, i.e., t1r~tr1~t and

t2r~tr2~t’. Other parameters (firing rates and synaptic constants) are assumed

homogeneous. As the other asymmetric cases discussed above, zero-lag firing of

the outer neurons is not possible since h1~h2 is not a solution of the Eq. 22 and

in general the phase lag of the outer neurons will be a function of time delays as

follows. To explore the problem analytically we consider canonical type-II

oscillators. Eq. 22 results Dhouters~DhzDh’~v(t{t’) and Dh’~ sin (vt’{2vt)
2 cos (vt’) .

These solutions are stable when {cos(vtzDh){cos(vt’zDh{v(t{t’))v0
and 1{cos(vt’zDh’){cos(vt’{Dh’)v0, simultaneously. As depicted in Fig. 11

Fig. 11. Asymmetric variation of delays. The time lag of firing of the neurons is shown as a function of difference in delay times. Numerical results confirm
outcome of analytic calculations for the phase lag. Lyapunov exponents are also shown. They must be both negative for a stable phase-locked mode. In the
right figure similar results are shown for HH neurons.

doi:10.1371/journal.pone.0112688.g011
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no zero lag synchrony occurs in asymmetric relay networks and the phase lag of

outer neurons depends on difference of delays of the links in the two sides. These

results are in accordance with those previously reported in [43].

I passing it’s worth to ask if there are other range of parameters, other than

those preserve symmetry, which result in the inphase firing of the outer neurons.

We note that in the relay system (Eqs. 19), the dynamics of the relay neuron is

determined by the sum of the inputs from the two outer neurons, so it can be

deduced that the symmetry of the incoming links is not necessary for the

synchrony of outer neurons. So as a more general result, the inphase firing of the

outer neurons is possible when the outer neurons are identical and the outgoing

links are of the same parameters. An example of synchrony of outer neurons with

asymmetric delays of incoming connections has been reported recently [42].

Discussion

In this study we investigated the effect of inhomogeneity on the synchronization

of two neurons which communicate indirectly through a third relay neuron. This

structure has been proposed as a mechanism for the synchronization of distant

areas in the brain which show zero-lag synchrony despite the considerable delay in

their communication [39, 41].

There are several experimental evidence that the gamma oscillations in widely

separated brain areas show near zero-lag synchrony [10, 65–68]. Beyond the

functional relevance this result is remarkable since it is not clear how the neurons

can synchronize despite to the considerable delays due to axonal conduction and

synaptic transmission. Many theoretical and numerical studies have devoted to

the investigation of the condition for the synchronization of delayed coupled

oscillators [28, 29, 33, 59, 69]. It is now well-known that the synchronization of

directly coupled oscillators is dependent on their type of excitability and

depending on the phase response curve and synchrony is possible for some range

of delay time [33, 56, 70]. Interestingly, for a relay system the synchrony is feasible

for much broader range of delay time, independent of the type of excitability of

the neurons [39, 41].

The most important requirement for zero phase lag synchronization is that the

relay population of cells occupies a temporally equidistant location from the pools

of neurons to be synchronized [41]. This reasonable argument has been posed in

our present study as a more general question. How the inhomogeneity affects the

synchrony of the outer neurons in a relay system? In a minimal relay system, the

three neuronal oscillators with given PRCs are characterized by their firing rate,

and the connections by the synaptic strengths and the delay times. Variation of

each of these parameters can be a source of inhomogeneity. Regarding to the

criterion expressed above, for instance, the robustness of the system can be

checked against the difference between the delay times for the incoming and

outgoing synapses, when the counterparts of two wings are of equal delay. This is

an example in which the inhomogeneity does not break the structural symmetry
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of the system. We have shown that such symmetric inhomogeneities has minor

effect on the synchrony of the outer neurons and interestingly, in some cases, it

can even enhance synchrony. Specifically, when the incoming synapses are weaker

than the outgoings, synchrony is seen in a wider range of delays.

We have also shown that the relay system is not robust against asymmetric

inhomogeneity. For example if the outer neurons have different intrinsic firing

rates, their phase lag would have a finite value which is an increasing function of

the mismatch between the intrinsic firing rates. In a linear approximation we have

given the phase lags of the spiking of the outer neurons as a function of mismatch

between the parameters of two wings, i.e., firing rates, synaptic strengths and delay

times. Our results suggest that in a real relay system where neither the neuronal

nor the synaptic parameters are fine tuned, near zero-lag synchrony can be

expected instead of exact synchrony. In the nervous system, the firing rates are not

constant and synaptic efficacies change due to the short and long term plasticities.

Neuronal and synaptic changes in short time scales can lead to appearance of

transient synchrony reported in different experiments on sensory systems [71–73].

Long term changes in synaptic strengths can also affect the collective properties of

a neuronal networks [see e.g., [74–76] and further studies are needed to reveal the

role of synaptic plsticity in the dynamics of the relay system.
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