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Abstract

The present study examines the conformational transitions occurring among the

major structural motifs of Aurora kinase (AK) concomitant with the DFG-flip and

deciphers the role of non-covalent interactions in rendering specificity. Multiple

sequence alignment, docking and structural analysis of a repertoire of 56 crystal

structures of AK from Protein Data Bank (PDB) has been carried out. The crystal

structures were systematically categorized based on the conformational disposition

of the DFG-loop [in (DI) 42, out (DO) 5 and out-up (DOU) 9], G-loop [extended (GE)

53 and folded (GF) 3] and aC-helix [in (CI) 42 and out (CO) 14]. The overlapping

subsets on categorization show the inter-dependency among structural motifs.

Therefore, the four distinct possibilities a) 2W1C (DI, CI, GE) b) 3E5A (DI, CI, GF) c)

3DJ6 (DI, CO, GF) d) 3UNZ (DOU, CO, GF) along with their co-crystals and apo-forms

were subjected to molecular dynamics simulations of 40 ns each to evaluate the

variations of individual residues and their impact on forming interactions. The non-

covalent interactions formed by the 157 AK co-crystals with different regions of the

binding site were initially studied with the docked complexes and structure

interaction fingerprints. The frequency of the most prominent interactions was

gauged in the AK inhibitors from PDB and the four representative conformations

during 40 ns. Based on this study, seven major non-covalent interactions and their

complementary sites in AK capable of rendering specificity have been prioritized for

the design of different classes of inhibitors.
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Introduction

Aurora kinase (AK) is a serine-threonine protein kinase located in the nucleus and

is involved in the regulation of cell division [1, 2]. The three of its isoforms A, B

and C have different substrate specificities and function. The A and B isoforms are

expressed in proliferating cells whereas the C isoform is usually expressed in germ

cells. Aurora A and B isoforms are thus involved in mitosis and are associated with

cancer [3, 4]. This has resulted in a number of potent candidates such as VX680,

AT9283, ZM-447439, Hesperadin, and MLN8237 which are now in clinical trials

[5–9]. Majority of the aforementioned inhibitors target the conserved ATP site in

the DFG(Asp-Phe-Gly)-in conformation or explore the allosteric site exposed

through the classic DFG-flip [10–15]. However, there are some inhibitors which

target an unusual non DFG-out conformation called DFG-out (up) conformation

which is formed through ligand-induced conformational changes and results in

switching the character of the active site from polar to hydrophobic [16–19]. This

conformation is formed when the DFG-loop is ushered to a location parallel to

the aC-helix unlike the regular DFG-out wherein it swaps out of the active site

[20]. The type I inhibitors targeting the DFG-in conformation are less target

specific due to the conserved nature of the active site to which they bind. The type

II inhibitors binding to the DFG-out conformation are known to cause side-

effects and are prone to resistance [21]. These varied kinase conformations are

formed due to the transition of the DFG-loop [22, 23]. Therefore, targeting the

DFG-out conformation is advantageous to achieve specificity and overcome

resistance.

The DFG-flip is accompanied by a series of conformational changes which

alters the arrangement of the major structural motifs in a co-ordinated fashion

[24, 25]. Studies of kinase crystal structures and MD simulations have shown that

the structural motifs such as the DFG-loop, aC-helix, Glycine rich loop (G-loop)

and the activation loop (A-loop) form varied inactive conformations on transition

[26–28]. With each conformational variation, the interaction-networks formed by

the major residues of the structural motifs get disrupted and re-engineered [29].

The interaction-networks are made up of a closely knit circuit of non-covalent

interactions [30–33]. Several inhibitors have been designed which use a specific

non-covalent interaction in addition to hydrogen bond (H-bond) to achieve

specificity [34–36]. The AK inhibitor VX680 and the p38 MAP kinase inhibitor

SB203580 achieve specificity by forming p-p stacking interaction with the

aromatic residue (Tyr or Phe) in the G-loop signature sequence HGXGX(Y/

F)GXVH [19, 37, 38]. Similarly, to obtain specificity through interactions, Soliva

et al. added a sulfonyl phenyl moiety to the pyridinyl heterocycle core and Laufer

et al. designed 2-thioimidazole derivatives while Natarajan et al. introduced a

phthalimide group to the 3,4-dihydropyrido [4,3-d]pyrimidazin-2-one template

[39–41]. Dasatinib obtains specificity for Bruton’s tyrosine kinase through cation-

p interaction formed by its ortho-chloro methyl phenyl ring with the e-amino

group of the salt-bridge former Lys430 [42]. Whereas in 4-(phenylamino)-pyrrolo

[2,1-f] [1, 2, 4] triazine, the methyl hydroxamate begets specificity through a CH-
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p interaction with the DFG-loop Phe169 [43]. The set of non-covalent

interactions that can be formed by an inhibitor with different regions of the active

site varies with conformation [44–47]. Several of these binding site regions also

referred as ’hot-spots’ when targeted by an inhibitor are capable of rendering

specificity [48]. Hence, it would be useful to prioritize the non-covalent

interactions complementing these specific sites. The conformational transitions

have a profound effect on the binding site character and non-covalent

interactions. While the influence of transition on the topology of binding is well

studied, there is a very primitive understanding about its impact on the nature of

non-covalent interactions and their role in achieving specificity. We have

therefore identified distinct active and inactive conformations of the three

structural motifs namely the DFG-loop, aC-helix and G-loop. These conforma-

tions have been used to study the impact of conformational transitions on the

individual residues of these motifs and on the participation of various non-

covalent interactions. The insights obtained have been used to prioritize seven

non-covalent interactions which complement the binding of different inhibitors

and can prove useful in achieving specificity.

Materials and Methods

1. Structure- Sequence Analysis

56 crystal structures of AK from PDB and their respective sequences from

UNIPROT were downloaded and used as start-ups [49, 50]. Three organisms

namely Homo sapiens, Xenopus laevis and Mus musculus contribute to the 56

crystal structures (H: 43, X: 5, M: 8) and their 157 co-crystals (H: 113, X: 8, M:

36). The structures were individually analysed in detail in terms of quality and

sequence. The resolution of these crystal structures is in between 1.60 to 3.35 Å.

Among them, 22 structures have different types of modified residues. Herein, the

threonine was modified to phosphothreonine (TPO: 18); metheonine into

selenomethionine (MSE: 1), tyrosine into O-phosphotyrosine (PTR: 2) and

cysteine into S, S-(2-hydroxyethyl) thiocysteine (CME: 4) (Table S1 in File S2).

The structures are made of sequences differing in length and constituting both

homo- and hetero-chains of AK A and B isoforms (Table S2 in File S2). Majority

of the structures comprise of the O14965 (AURKA_HUMAN). A pairwise

sequence alignment was done using blast-p to identify kinases which are

sequentially similar to AK [51]. The AK sequence AURKA_HUMAN was used as

the reference sequence against the entire kinome present in kinbase v1.1. [52] The

kinases having a sequence identify of more than 30% were filtered in (Table S3 in

File S2). Since the focus was on identifying specificity determinants among human

kinome, the kinase domains of only Homo sapiens were retrieved from the filtered

sequences. A multiple sequence alignment was constructed (MSA) from these

sequences to observe the conservation pattern and to identify the unique residues

which can be targeted to obtain specificity through binding. The MSA with

ClustalW was constructed using a Gonnet matrix with a gap open and gap
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extension penalty of 10 and 0.1 for pairwise alignment [53]. In addition, a gap

distance of 5 was set to build the tree using Neighbour-Joining method. The MSA

was used to identify the possible sites for target specific inhibitor binding in AK

based on conservation. A kinase signature profile was generated to validate the

uniqueness of the residues identified through MSA [54].

2. Docking

The downloaded AK crystal structures and their co-crystals were subjected to

docking in order to evaluate the binding interactions of the inhibitors and to

prioritize the binding-site residues forming interactions. The breaks in the crystal

structures were modelled with Modeller 9v5 and side-chains were refined using

Prime module of Schrodinger 8.0 [55, 56]. In majority of the crystal structures, the

breaks are not in the core binding site. 3E5A/O14965 was used as template to

model the missing residues in the DFG-in conformation structures while 2J4Z/

O14965 was used for DFG-out structures. The quality of the modelled protein was

cross validated with Ramchandran plot (RAMPAGE), energy profiles with ProSA

and the secondary structure was determined with STRIDE [57–59]. The protein

preparation wizard was used to prepare the proteins after adding hydrogen.

Ligands were submitted to the LigPrep module to generate a range of ionization

states populated at a given pH range of 7.4¡2 followed by an exhaustive

conformational sampling with Confgen [60]. The rigid docking protocol Glide 4.5

has been employed. The two options of docking namely standard precision (SP)

and extra precision (XP) of ‘Glide’ module were used for docking the generated

conformers of the co-crystals to their respective receptors [61]. The grid was

generated by specifying the co-crystal as grid centre. The default SP docking

settings were used and the conformations obtained from SP were used as input for

XP. Hydrophobic and hydrophilic maps were generated to probe the solvent

accessible regions. Ten poses were retained for each of the docked co-crystal in

both the docking protocols. The docked-complexes were used to investigate the

binding of inhibitors to the two DFG-conformations.

3. Molecular Dynamics

Six distinct conformations of AK structural motifs bound to different inhibitors

were selected as representatives based on a cluster analysis and subjected to MD

simulations for 40 ns with Desmond along with two apo proteins (Table 1) [62].

Systems I, II, IV-VI comprise of the O14965 sequence while system III is made up

of P97477. The apo DFG-in form was generated from PDB: 1OL5 and apo DFG-

out from PDB: 3UO6 due to the absence of an apo crystal structure. The

phosphate groups of pThr287 and pThr288 were removed and simulated [24].

The ligand parameters were generated with the Schrodinger software. The MD

simulations were performed using the OPLS 2005 force field and TIP3P model

[63, 64]. All systems were solvated in an orthorhombic water-box with a 10 Å

buffer region between the solute structures and the simulation box boundary on
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each side. The systems were initially equilibrated using default protocol employed

in Desmond. This comprises of a series of restrained minimizations and MD

simulations which are designed to slowly relax the system without any substantial

deviation from the initial protein co-ordinates. All MD simulations were

conducted at constant pressure (1 bar) and temperature (300 K) maintained

using Berendsen barostat and thermostat algorithms respectively. The pressure

and temperature control used a relaxation time of 0.5 ps. RESPA integrator was

used for all simulations [65] with a 2.0 fs time step for bonded, van der Waals and

short-range Coulomb interactions and a 6.0 fs time step for long-range Coulomb

interactions. The production run was carried out for 40 ns using the isothermic-

isobaric ensemble (NPT) and frames were recorded at an interval of 1.2 ps. The

trajectories were sampled for conformational variants. The trajectories were used

to understand the conformational variations and their influence on the nature of

inhibitor binding interactions. The trajectories obtained on simulation of apo

proteins were used as reference to monitor the changes during simulation in other

four inhibitor bound conformations. An ensemble of 4000 snapshots was

extracted from systems II and IV and was used as a test-set to evaluate the

performance of the developed metric (S1 Figure in S1 File).

4. Development of metric to gauge kinase conformations

To understand the impact of conformational variations on the nature of

participating interactions it is essential to distinguish them. Therefore, a metric

based on the pairwise distances and angles of key residues of AK structural motifs

was developed to gauge the inter- and intra-motif variations in the studied DFG-

in and the DFG-out (up) conformations of AK. Four key residues identified

through the structural analysis and MD simulations were used to develop

parameters for the inter-motif metric. The conserved residue and salt-bridge

former Lys162, the gatekeeper (GK) Leu210 at the mouth of the hinge, the DFG-

loop Phe275 and the salt-bridge former Glu181 of aC-helix were used to develop

the parameters for the inter-motif metric. Different measures such as a-carbon,

volume, summation and centre of mass (COM) were considered to map the

variations among the selected set of amino acid residues [66–69] (S2 Figure in S1

File). Among them COM displayed highest precision in discriminating the kinase

conformations. Nine parameters, four distance parameters r2(GK…E181),

Table 1. Details of the systems subjected to MD simulations.

System Structure Inhibitor DFG-Loop aC-helix G-loop

I 2W1C LOC DFG-in (DI) aC-helix in (CI) Extended (GE)

II 3E5A VX6 DFG-in (DI) aC-helix in (CI) Folded (GF)

III 3DJ6 AK6 DFG-in (DI) aC-helix out (CO) Folded (GF)

IV 3UNZ OBZ DFG-out up (DOU) aC-helix out (CO) Extended (GE)

V Apo - DFG-in (DI) aC-helix in (CI) Extended (GE)

VI Apo - DFG-out up (DOU) aC-helix out (CO) Extended (GE)

doi:10.1371/journal.pone.0113773.t001
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r3(GK…F275), r4(K162…F275), r6(K162…E181) and three angle parameters

]K(GK+2)E, ]K(GK+2)F and ]E(GK)F were used in the inter-motif metric (S4

Table in S2 File, S3 Figure in S1 File). The contribution of each individual

parameter of the inter-motif metric showed that five parameters consisting of the

four distance (r2, r3, r4, r6) and one angle parameter ]E(GK)F clearly distinguish

the DFG-in and DFG-out (up) conformations (S4a Figure in S1 File). The

statistical analysis has been done using XLSTAT 2012 [70]. Different regression

models were generated with different variables taking into account the prediction

accuracy and % Error. The metric has been tested with a test set comprising of AK

crystal structures from PDB followed by an ensemble of 4000 structures extracted

from the MD trajectories (S5 Table, S6 Table in S2 File). The performance of the

test set reiterated the pattern observed during the development of parameters (S4b

Figure in S1 File). Six distance parameters r1(A273…D274), r2(D274…F275),

r3(F275…G276), r4(D274…G276), r5(F275…W277), r6(F275…T288) and three

angle parameters ]DFG, ]FWH, ]FWT were used to measure the spread of the

DFG-loop and the conjoin A-loop (S5 Figure in S1 File). Among them, four

parameters namely the two distance parameters (r5, r6) and the two angle

parameters ]DFG, ]FWH were precise in distinguishing the DFG-conforma-

tions (S7 Table in S2 File, S6a Figure in S1 File). The intra-motif metric was tested

with same test set as the inter-motif metric (S8 Table, S9 Table in S2 File). The

performance of the test set again reiterated the pattern observed during the

development of parameters (S6b Figure in S1 File). Both the metric discriminate

the three conformations among the reported crystals and ensembles obtained

from MD simulation advocating their precision in identifying the kinase

conformation.

5. Interaction analysis

The kinase inhibitor complexes were clustered into 40 bins on the basis of

similarity using maximum dissimilarity algorithm. Cluster centres representing

each cluster were identified and further segregated into the four different classes of

kinase inhibitors namely type I, type II, type I1/2 and type III. Pharmacophore

mapping was carried out using Phase module of Schrodinger 8.0 [71].

Pharmacophore features were identified through maximum common subgraph

from a set of 3D-molecular graphs of kinase inhibitors. The pharmacophore

generated for the four inhibitor classes were aligned with the active site to map the

drug-receptor interactions of each class of inhibitors. The pharmacophore

interactions were then correlated with the structural motifs. The interactions were

analysed with the docked complexes and MD trajectories using the criterion given

by Rognan et al. [72]. Structure interaction fingerprints encoding the presence or

absence of interactions of a certain feature of the inhibitor with the amino acid

residues of the AK binding site were generated from the docked complexes. The

H-bond, van der Waals, salt-bridge, cation-p and p-p analysis was done using in-

house scripts [73–75]. The interactions were keyed into a fourteen bit binary
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vector with each bit representing a specific interaction of the inhibitor with a

particular residue of the AK binding site.

Results and Discussion

1. Specificity determinants in AK sequence

The MSA shows high sequence similarity in the catalytic domains across the

species (Fig. 1). The three AK isoforms share a high sequence similarity of more

than 70% in their kinase domain. The major structural motifs such as G-loop, aC-

helix, hinge, DFG-loop and A-loop comprise of residues which are specifically

found in AK. The residues Glu175, His176, Gln177, Leu178, Ile182, Glu183,

Gln185 of aC-helix are unique. Of these Gln185 occupies the conserved

hydrophobic R-spine residue position in aC-helix and therefore its uniqueness

can be easily enhanced to beget specificity. In the DFG-out(up) structures Gln185

is at the centre of a network of polar interactions formed by Asp274, Arg255 and

Leu194. Dodson et al. have also shown that 53% of kinases have Leu at this

position and 25% have Met [20]. In the DFG-in structures, these residues interact

with side-chain of the DFG-loop Phe. The AK has a small sized Leu210 as the GK

while its sequentially close neighbours have a larger sized gatekeeper. The tail end

of the hinge residues Pro214 (GK+4), Leu215 (GK+5), Thr217 (GK+7) and the

aD-helix Arg220 (GK+10) are non-conserved. Thus, a H-bond at this position of

the ATP-pocket would not only contribute to tight binding resulting in improved

efficacy but will also contribute to specificity. Among these hinge residues,

Leu215, Thr217 and Arg220 are found only in Aurora A isoform and can thus also

be used to achieve isoform selectivity. While Leu is substituted with Arg in Aurora

B and C, Thr is substituted with Glu and Arg is substituted with Lys. In a recent

study, Bavetsias et al. have also identified the role of Thr217 in eliciting Aurora A

isoform specificity [76]. The A-loop contains three unique residues Trp277 (D+3),

Val279 (D+5) and His280 (D+6). Phe144 is the aromatic residue in the key

–GxGxFG- motif of the G-loop in AK and most of its neighbours. However,

Lys143, Glys145 and the preceding Gly136, Arg137, Pro138, Leu139 that form the

intra H-bonds between the two strands of b2 are specific to AK. This might be a

reason for the extra plasticity of the G-loop of AK which enables it to enter the

binding site and fold. The G-loop folding changes the position of the aromatic

residue Phe144 and facilitates its interaction with the inhibitor. The kinase

signature profile validates the uniqueness of the aforementioned residues

identified through sequence alignment (S7 Figure in S1 File).

2. Conformational space of AK crystal structures

The movement of the major structural motifs such as the DFG-flip, aC-helix

rotation and G-loop folding cause varied changes in the active and inactive

conformations of kinases (Fig. 2) [77–79]. The DFG-flip from the active DFG-in

to an inactive ’DFG-out’ or ’DFG-out (up)’ conformation unravels the non-
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conserved hydrophobic allosteric site [20]. The aC-helix rotation to the ’aC-helix

out’ conformation displaces the conserved Glu and causes a disruption of the

conserved Lys-Glu salt bridge [17]. Guimaraes et al. and Doerksen et al. have

demonstrated that even the usual extended G-loop in kinases displays a tendency

to form a caged or folded conformation [38, 80]. These conformational changes

are known to vary with the sequence composition of the target kinase and nature

of the bound inhibitor. Therefore, in order to study the variations of the motifs

and specificity determinants identified through the sequence analysis, we have

used a set of distance and angle measures between conserved motifs in these

segments to classify the 56 inhibitor bound conformations of AK. The AK crystal

structures were grouped into three bins namely DFG-in (42), DFG-out (up) (9)

Figure 1. MSA of the kinase domains of AK and other sequentially similar kinases obtained from kinbase. A pairwise sequence alignment of the AK
sequence (AURKA_HUMAN) against the annotated kinome present in Kinbase v1.1 was done using blast-p (Table S3 in File S2). The kinase domains of
the sequentially similar sequences were retrieved from Kinbase v1.1 and a MSA was constructed with ClustalW 2.1. Jalview 2.8.0 has been used to view the
alignment and the colour scheme is as per ClustalX. The red dots represent kinases which have been crystallized with different AK inhibitors (Table 2). The
labelled residues indicate the possible sites for target specific inhibitor binding in AK based on conservation.

doi:10.1371/journal.pone.0113773.g001
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and DFG-out (5) using the inter- and intra-motif metrics variables. The crystal

structures illustrate the presence of two major types of non DFG-in conformations

formed as a result of the DFG-flip (Fig. 3). In majority of the non DFG-in

conformations of AK structures, the DFG-loop is turned upward with Phe275

placed between the two salt-bridge formers. As compared to the DFG-in

Figure 2. Conformational variations in the major structural motifs of AK concomitant with DFG-flip. In the figure, the two conformations of AK, active
DFG-in (PDB: 3E5A, white) and the inactive DFG-out (up) conformation (PDB: 3UNZ, yellow) are superimposed. The major structural motifs of DFG-in are
multi-coloured while that of DFG-out (up) are depicted in yellow. The figure displays the key components of the AK kinase active site: G-loop, aC-helix,
gatekeeper (GK) hinge, DFG-loop, A-loop; and their critical residues: salt bridge formers Lys162, Glu181 (aC-helix) and Phe275 (DFG-loop). The arrows
depict the differences in the two conformations resulting due to the DFG- and A-loop flip, aC-helix rotation and G-loop folding. The G-loop is in the folded
conformation (GF), aC-helix is in the ’in’ conformation (CI) and A-loop in ’in’ conformation (AI) in the DFG-in structure shown in figure while in the DFG-out
(up) structure, the G-loop is in the extended form (GE), aC-helix is in the ’out’ conformation (CO) and A-loop in ’out (up)’ conformation (AOU). The co-crystals
have been removed for clarity.

doi:10.1371/journal.pone.0113773.g002

Figure 3. The three major DFG-loop conformations observed in AK. The figure displays the synergy between the salt-bridge and cation-p interactions in
different DFG-conformations of AK. The interacting partners are the conserved Lys162 (b3), Glu181 (aC-helix), Phe275 (DFG-loop) and Arg255 (HRD motif,
the conserved triad found in the catalytic loop of most kinases).

doi:10.1371/journal.pone.0113773.g003
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structures, in non DFG-in structures, the side-chain of Asp274 in the DFG-out

(up) is rotated around 180˚ and lies parallel to the aC-helix whereas the Phe275

lies above Glu181. A minor set however represents the regular DFG-out

conformation bound by type II inhibitors. In these structures, the DFG-loop is

observed to have moved from the N-lobe as seen in DFG-in structures to the C-

lobe with Asp274 placed downwards. In this case, the Asp274 and Phe275 lie on

opposite sides. Comparative analysis of the structures in the two conformations

shows that the positions of the residues Ala273, Asp274, Phe275, Gly276 and

Lys271 vary (S8a Figure in S1 File). As compared to the DFG-in conformation,

the residues Ala273, Asp274, Phe275, Trp277 and His280 are available for

inhibitor binding in the non DFG-in structures, especially in the DFG-out (up).

Among them, Trp277 and His280 are sequentially unique residues.

The aC-helix rotation and DFG-loop flip was found to be complementary in

the AK structures. Considering the nature of a standard right handed a-helix, the

‘I’, ‘i+4’ and ‘i-4’ distances and dihedral angles were studied to understand the

conformational differences in aC-helix. In addition, three distance variables

r4(K162…F275), r6(K162…E181), ]E(GK)F were also used. The two glutamines

(Gln177: E-4 and Gln185: E+4) positioned four residues away on either side of

Glu181 vary substantially in the active and inactive conformations (S8b Figure in

S1 File). Of these, Glu185 is an important residue of the R-spine and is

sequentially non-conserved. Although substantial conformational rearrangement

is observed in the DFG-loop and aC-helix of the inactive conformation structures

as compared to the DFG-in structures, the distance between Phe275 of DFG-loop

and Glu181 of aC-helix r5(E181…F275) does not show much difference. The

Phe275 lies below Glu181 in DFG-in conformation while in non DFG-in

structures, it lies adjacent to it. The distance of the peptide backbone dihedral

angles (w52140 ,̊ y5135 )̊ of the anti-parallel b1 and b2 sheet harbouring the G-

loop were used to gauge variations in the G-loop of the AK crystal structures. The

folded G-loop conformation was observed only in three of the AK structures

namely PDB: 3DJ5, 3DJ6, 3E5A. Comparative arrangement of the G-loop residues

showed positional variation of Leu139, Lys141, Gly142, Lys143, Gly145 and

Phe144 in the extended and folded conformations (S8c Figure in S1 File). Among

these, the hydrophobic residue Leu139 is known to render stability to the receptor

while Phe144 participates in ligand binding [27]. The structure analysis shows

variations in the positions of binding site residues in different conformations

which in turn affects their availability for inhibitor binding. It has also been

deciphered through sequence analysis that many of these residues are non-

conserved and can be used as specificity determinants. Therefore, to gain insights

on the participation of various residues and the nature of inhibitor binding

interactions in different AK conformations, six distinct conformations of AK

structural motifs were selected based on the structure analysis and subjected to

MD simulations (Table 1, S9 Figure in S1 File).
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3. Impact of conformational variations on the nature of non-

covalent interactions

The MD trajectories showed that each structural motif harbours key residues

which consistently participate in protein-ligand interactions. The four inhibitors

bound to the different AK conformations in systems I-IV accessed different sets of

residues of the binding-site through different non-covalent interactions during

MD simulations. Therefore, the docked receptor-inhibitor complexes from PDB

and the frames extracted from the MD simulation were used to map the

interactions and identify their complementary sites. The docked complexes were

used to study the binding modes of inhibitors. The scoring components of the

docked receptor-inhibitor complexes of AK showed major participation of H-

bond and van der Waal’s interactions (S10 Table in S3 File). Analysis of the

docked poses show that the inhibitors formed cation-p, CH-p, p-p, salt-bridge

and H-bond interactions with different binding site residues (Table 2). The major

interactions formed were keyed into a 14 bit vector wherein each bit represents a

non-covalent interaction (Table 3). The interaction-fingerprints thus obtained

were used to correlate different pharmacophore features of the docked inhibitor

complexes and non-covalent interactions. H-bond was found to be one of the

most important interactions between AK and its inhibitors (Fig. 4a, S11 Table in

S2 File). The conserved hinge H-bonds were the most prominent of all

interactions. The backbone amide nitrogen of Ala213 forms H-bond with the

acceptor atom of the inhibitor in over 80% of AK inhibitor docked complexes

with a median average distance of 2.5 Å. The backbone carbonyl oxygen atom of

Glu211formed a H-bond with the acceptor atom of the inhibitor with a median

distance of 2.6 Å in 40% of the docked complexes. In most of the docked

complexes, Leu210, Glu181 and His280 interacted with the donor atom of the

inhibitor while Gly276 and Lys162 interacted with the acceptor atom of the

inhibitor forming strong H-bonds like N-H…O, O-H…O and N-H…N. In

around 70% of the non DFG-in docked complexes, the acidic side-chain of

Asp274 formed H-bond with the donor atom of the inhibitor. The planar

conformations of the linked heterocyclic systems found in type I and type II AK

inhibitors of the docked complexes formed weak H-bonds like C-H…O, C-H…N.

Gly276 and Glu181 in most cases acted as well established H-bond donor and

acceptor respectively. The Glu181 in aC-helix out conformation forms H-bond

with the linker connecting the ATP and allosteric sites. On comparative analysis of

the docked complexes and MD trajectories, it was observed that the distance

between the gatekeeper (GK) and DFG-loop Phe275 (r3(GK…F275)) as well as

that between Lys162-Phe275 (r4(K162…F275)) is higher in non DFG-in

conformation as compared to the DFG-in conformation. This difference in

distance among key residues is observed to provide room for the binding of large

heterocyclic systems to the non DFG-in structures. As compared to the DFG-in

structures, the DFG-loop Phe275 in the DFG-out (up) is placed in a hydrophobic

milieu whereas the Asp274 is surrounded by polar residues. The type II inhibitors

were seen to bind to the DFG-loop Asp274 in the non DFG-in structures while the
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heterocyclic systems bind to Phe275 through p-p interactions. Analysis of the

docked complexes and the MD trajectories show that the cation-p and ion-pair

interactions co-exist among the key residues in different AK conformations. The

disruption of one interaction is observed to facilitate formation of other. For

example the ion-pair interaction among the conserved Lys162 and Glu181

observed in the DFG-in structures is not present in the non DFG-in structures. In

Table 2. Amino acid residues of AK which form important non-covalent interactions required for the conformational stability of the receptor and binding of
inhibitors.

S No Non-covalent interactions G-loop DFG-loop A-loop aC-helix Hinge

1. p-systems: F144G-loop F275DFG-loop W277A-loop Y246 Y212Hinge

Aromatic residues Y148G-loop F144G-loop F275DFG-loop F165 F144G-loop

(Phe, Tyr, Trp) F275DFG-loop W277A-loop Y246 Y199 Y197

Y246 Y207 Y246

F200

2. Cationic-systems: R195 K162 R255HRD K166 aC-helix R195

Positively charged R-groups R189 R180HRD R179 aC-helix R189

(Lys, Arg) R205 R137

R189

3. Salt-bridge: E211Hinge - E260 E181aC-helix E211Hinge

Anionic carboxylate (RCOO-) E260

Negatively charged R-groups

(Asp, Glu)

Cationic ammonium (RNH3
+) K143G-loop R285A-loop K162 K145G-loop

of Lys and guanidinium K141G-loop K309 R195 K141G-loop

(RNHC(NH2)2
+) of Arg K271

doi:10.1371/journal.pone.0113773.t002

Table 3. Features of the 14 bit-vector used to deduce the interaction fingerprints.

Bit No. Residue : Pharmacophore Interaction

1 GK, Leu210 : HD H-bond

2 GK+1, Glu211 : HD H-bond

3 GK+2, Tyr212 : HA H-bond

4 GK+3, Ala213 : HD H-bond

5 GK+6, Gly216 : HD H-bond

6 Ala273 : HD H-bond

7 aC-helix, Glu181 : HD H-bond

8 DFG-loop, Asp274: Hydrophobic H-bond

9 A-loop, His280 : HA H-bond

10 Lys162 : Ar Cation- p

11 DFG-loop, Phe169: Ar p- p

12 A-loop, Trp277 : Ar p- p

13 A-loop, His280 : Ar p- p

14 G-loop, Phe144 : Ar p- p

doi:10.1371/journal.pone.0113773.t003
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these structures, Glu181 points away from the conserved Lys162 since here aC-

helix is rotated out. However in these structures, Lys162 was seen to form cation-p

interactions with the aromatic motifs of both DFG-loop Phe275 and inhibitor.

Likewise the Glu181 engages in an ion-pair interaction with Arg255 of the HRD

motif of the catalytic loop in the DFG-out (up) conformation (Fig. 3). Thus, a

possible synergy is seen among the salt-bridge and cation-p interactions in

different DFG-conformations of AK. The relative effect of one interaction over the

other is an interesting phenomenon which has been studied by us in several

systems and its exploration might unravel the cooperativity in kinases [81, 82]. In

the DFG-out (up) conformation, docking analysis showed that the A-loop

residues such as Trp277 and His280 formed p-p interactions with the aromatic

rings of the type II inhibitors. The aromatic residue Phe144 of the G-loop operates

independent of the DFG-loop conformation. The inhibitors bind to the aromatic

motif of Phe144 through p-p or CH-p interaction. The frequency of these major

interactions observed in the docked complexes was also studied with the MD

trajectories to affirm their consistency over a period of time (Fig. 4b).

4. Chemotype selectivity of AK binding site pockets

The interactions formed by each individual AK inhibitor in the docked complex

with the different binding site residues when studied revealed repetitive

participation of select set of residues (S11 Table in S2 File). Therefore, the AK

Figure 4. Major interaction sites in AK. The graphs depict the frequency of the most prominent interactions with different regions of the binding site formed
by a) different classes of AK inhibitors from PDB and b) by the inhibitors bound to the four representative conformations during the 40 ns MD simulation. The
four classes of inhibitors depicted in fig. 4a are the type I inhibitors which bind to the conserved ATP site in the DFG-in conformation, the type I1/2 which
explore an additional back-pocket (BP) formed by the GK in addition to the ATP site in the DFG-in conformation, type III which bind to the allosteric pocket
(HPII) in the DFG-out conformation and the type II which explore both the ATP and allosteric pockets in the DFG-out conformation. The details of the
simulated systems and inhibitors in fig. 4b have been given in Table 1. The legend 4b describes the system, PDB id of the starting structure, its bound
inhibitor and conformation of the major structural motifs. The x-axis represents interactions formed by different pharmacophore and their complementary
sites in the binding pockets as given in Table 3.

doi:10.1371/journal.pone.0113773.g004
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binding site was partitioned into six sub-pockets namely adenine (AP), ribose

(RP), phosphate (PP), solvent (SP), back (HPI) and hydrophobic allosteric (HPII)

sub-pockets. Each sub-pocket comprises of specific hot-spots and can hold a

certain type of pharmacophore. The entire kinase active site provides room for the

formation of interactions. However, the pharmacophore features of the known

classes of kinase inhibitors allow them to explore only a certain part of the

interaction landscape. The comparison of the interacting fragments presents

specific chemotypes which show a tendency to bind to the same part of the AK

binding site sub-pockets through same set of interactions irrespective of the

scaffold it constitutes. The nature of chemotypes differed with the change in

conformation indicating the varied inhibitor preferences of different binding-site

topologies (Table 4).

Flat heterocycles such as quinazolines, dimethyl pyrimidine amine, carbox-

amino dimethyloxazole of the type I and type II inhibitors bind to the

hydrophobic adenine pocket (AP) by forming H-bonds with hinge and gatekeeper

(GK). The flat heterocycles comprise of one H-bond acceptor and one or two H-

bond donors (Table S11 in File S2). Despite being sequentially conserved, the

adenine pocket (AP) derives specificity from the small sized gatekeeper (GK)

Leu210 which controls its size. The naphthalene or fluorophenyl of type I 1/2

scaffolds form H-bond with the back pocket (BP). The adenine pocket (AP) and

back pocket (BP) of the sequentially similar kinases such as CDK or PKA differ

since they have Phe or Met as gatekeeper (GK). The solvent pocket (SP) of AK

consists of several unique residues such as Pro214 (GK+4), Leu215 (GK+5),

Thr217 (GK+7) and the aD-helix Arg220 (GK+10) which establish H-bond with

H-bond donor to obtain specificity. The ribose pocket (RP) is usually occupied

partially by the aromatic rings such as piperidine, nitriles, halogen substituted

phenyls and the polar linkers joining the head part of the inhibitor occupying ATP

site with the tail part occupying the HPII in type II inhibitors. The H-bond donors

of these moieties were seen to form H-bond with the DFG-loop Phe in the

inactive conformations. The type I scaffolds occupy the phosphate pocket (PP) to

minimum while the linkers such as the urea, methyl acetamide and hydroxyl

substituents of the type II scaffolds engage in H-bonds. The hydrophobic allosteric

pocket (HPII) is occupied by large chemical entities which constitute of a pair of

H-bond donor, acceptor and a hydrophobic moiety. The H-bond donors of the

hydrophobic allosteric pocket (HPII) in AK are usually trimethyl groups, nitrogen

substituted pyrans, methoxy benzene and aromatic rings with halogens in

majority of cases. Based on these analyses, the non-covalent interactions and the

complementary specificity rendering sites for the design of different classes of AK

inhibitors were prioritized (Fig. 5). The existing inhibitors can be reengineered

with sub-pocket specific chemotypes or fragments to achieve specificity [83, 84].

Although the basic framework of kinase inhibitors is identical, the nature of the

preferred chemotypes varies.
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5. Comparative analysis of AK sub-pockets with other kinases

The kinases share a high sequence and structural similarity. Therefore, to gauge

the propensity of the prioritized hot-spots in rendering specificity to AK, a

comparative analysis of AK sub-pockets with other kinases was carried out.

Among the kinases with more than 30% sequence identity with AK, the five

kinases namely CDK2, JAK2, PKA, ABL1 and ABL2 have been identified as potent

co-targets for AK inhibitors (Table 5, Fig. 1). VX-680(MK-0457), AT9283, JNJ-

7706621, PHA-739358, YL1-038-31, YL5-083 are the six AK inhibitors which have

been co-crystallized with the aforementioned kinases [5, 20, 85–88]. The

composition of the hinge region residues of AK and PKA vary at Met120

gatekeeper (GK), Gly124 (GK+4), Glu127 (GK+7) and Tyr164 of the HRD motif

(AK: Leu210 (GK), Thr215, Gly217, His254) (Fig. 6a). These substitutions

influence the topology of the adenine pocket (AP) and therefore the

methylpyrazine group of VX-680 protrudes into the SP in PKA unlike AK. The G-

loop in PKA is quite distal which makes it inaccessible to the inhibitor. Therefore,

VX-680 does not form a p-p interaction with the aromatic Phe54 of the G-loop.

Mutation studies by Pflug et al. also validate the role of T183A at D-1, V123A at

GK+3, M120L at gatekeeper (GK) in the binding of AK inhibitors VX-680 and

JNJ-7706621 to PKA [88]. Likewise they also report that the presence of Leu95

(E+4) in the aC-helix of PKA as against a polar Gln185 (E+4) at the same position

Table 4. Insights obtained for the design of AK inhibitors.

S. Inhibitor Class

No. Feature Type I Type I1/2 Type II Type III

1. Binding DFG-in, DFG-in, DFG-out, DFG-out,

Conformation aC-helix in, aC-helix in, aC-helix out, aC-helix out,

A-loop in A-loop in A-loop out A-loop out

2. Binding Pocket AP, SP BP, AP, RP, PP AP, RP, PP, HPII PP, HPII

3. Interacting Motifs Hinge Hinge, Hinge, DFG-loop,

DFG-loop DFG-loop, A-loop,

aC-helix, G-loop

A-loop,

G-loop

4. Interacting GK+1, GK+2, GK, GK+2, GK+2, GK+3, A, D, F, W, H, F

Residues GK+3, GK+4, GK+3, GK+4, A, GK+4, GK+6, K, E,

GK+6 D A, D, F, W, H, F

5. Interactions H-bond H-bond H-bond, cation-p, H-bond, cation-p,

p-p, CH-p p-p, CH-p

6. Hot-spots 2+3 1+2+6 2+3+4+5+6+7 5+6+7

7. Pharmacophore HD1, HA2, HD2, HA1, HD1, HA2, HD1, HA2, HD2, Ar1, HD4, HA3, Ar2

features HD3, Ar1 HD2, Ar1, L, HD4, L, HD4, HA3, Ar2

HA3

8. Set B-C AB BC C

doi:10.1371/journal.pone.0113773.t004
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in AK influences the H-bond formation with cyclopropane of VX-680 and in turn

on the selectivity of back pocket (BP). These factors influence the tight binding of

inhibitors and make the inhibitor more specific for AK than PKA. Like PKA, the

adenine pocket (AP) of ABL differs from AK due to the presence of a large size

residue Phe320 at GK+5 instead of Leu216 as in AK (Fig. 6b). This changes the

character of the adenine pocket (AP) and the adjoining solvent pocket (SP). The

back pocket (BP) in these two kinases also varies due to the different size of the

gatekeeper (GK). While AK has Leu210 as GK, ABL has a Thr315 in the wild-type

and Ile315 in mutant. Unlike AK, the G-loop of ABL is in an extended form even

after binding of PHA-739358 and the p-p interaction with G-loop is missing.

PHA-739358 binds to a DFG-out(up) conformation in AK while in ABL it binds

to the DFG-in state. This also highlights the point that a chemotype is capable of

inducing a conformational change such as the DFG-flip only if complementary

sites are available. This also changes the character of the binding-site sub-pockets.

After the T315I mutant of ABL, CDK has been a close attractant of the AK

inhibitors. CDK and AK differ in the nature of the adenine pocket (AP) (Fig. 6c).

The Gly216 insert in AK makes the adenine pocket (AP) more hydrophobic as

compared to CDK. The higher affinity of AT9283 for AK is due to this difference.

Figure 5. Non-covalent interactions based specificity rendering hot-spots for the design of Aurora kinase inhibitors. The AK binding site has been
partitioned into six sub-pockets namely back-pocket (BP), adenine-pocket (AP), sugar-pocket (RP), phosphate-pocket (PP), solvent-pocket (SP) and
hydrophobic allosteric-pocket (HPII). All possible pharmacophore features found in different classes of AK inhibitors have been mapped onto these six sub-
pockets. The pharmacophore features constitute the H-bond donor (HD), H-bond acceptor (HA), aromatic moiety (Ar), linker (L) and HPII binder
(hydrophobic). The Venn diagram shows intersections of the six sub-pockets and hot-spots. The colour of the ring represents the pharmacophore endeared
by different sub-pockets. The cartoon representation of the binding-site sub-pockets shows the key interacting residues occupying each sub-pocket. The
seven hot-spots highlight the possible non-covalent interactions formed by the key interacting residues of each sub-pocket with different pharmacophore
features to achieve specificity.

doi:10.1371/journal.pone.0113773.g005
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Table 5. Sequence identity of kinases bound by multi-targeted AK inhibitors with AK.

S.
No. Inhibitor PDB

UNIPROT
identifier Swiss-prot identifier

Classification (Group/Family/
Sub-family) % Identity*

1. AT9283 2W1G O14965 AURKA_HUMAN Other/Aur -

2W1H P24941 CDK2_HUMAN CMGC/CDK/CDK2 34

2W1I O60674 JAK2_HUMAN TK/JAK 26

2. VX-680/MK-
0457

3E5A, 4JBQ O14965 AURKA_HUMAN Other/Aur -

3AMB P17612 KAPCA_HUMAN AGC/PKA 33

2XYN P42684 ABL2_HUMAN TK/ABL 27

2F4J P00519 ABL1_HUMAN TK/ABL 27

4B8M Q6DE08 AUKBA_XENLA Other/Aur 70

4AF3 Q96GD4 AURKB_HUMAN Other/Aur 74

3. JNJ-7706621 3AMA P17612 KAPCA_HUMAN AGC/PKA 33

4. PHA-739358 2J50 O14965 AURKA_HUMAN Other/Aur -

2V7A P00519 ABL1_HUMAN TK/ABL 27

5. YL1-038-31 3UO5 O14965 AURKA_HUMAN Other/Aur -

3UNJ P24941 CDK2_HUMAN CMGC/CDK/CDK2 34

6. YL5-083 3UO6 O14965 AURKA_HUMAN Other/Aur -

3UNK P24941 CDK2_HUMAN CMGC/CDK/CDK2 34

*A pairwise sequence alignment of AURKA_HUMAN against the individual kinases was done with blast-p to calculate the sequence identity.

doi:10.1371/journal.pone.0113773.t005

Figure 6. Comparative analysis of the specificity hot-spots explored by AK inhibitor in other kinases. Three kinases a) PKA b) ABL and c) CDK
identified as potent co-targets for AK inhibitors have been modelled in the DFG-out (up) conformation. The six AK sub-pockets and its pharmacophore
features have been overlapped on the binding-sites of three kinases. The inset shows the influence of the key-residues of different kinases on the binding of
AK inhibitors as well as the likely sub-sets of AK specificity rendering sites and non-covalent interactions compatible to other kinases.

doi:10.1371/journal.pone.0113773.g006
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YL5-083 a bisanilinopyrimidine inhibitor induces the DFG-out(up) conformation

by binding to Ala273 (D-1) in AK. While both AK and CDK2 harbour the –

ADFG-sequence, the DFG-loop of CDK2 does not adopt the DFG-out(up)

conformation even in the presence of induced dipoles created by YL5-083. Despite

high structural similarity and considerable sequence similarity shared by AK and

CDK2, the N-terminal residues flanking the DFG-loop of CDK2 varies causing a

change in the character of the phosphate pocket (PP) and hydrophobic allosteric

pocket (HPII). This also suggests that despite the crucial role played by various

inhibitor binding mechanisms elucidated hitherto, the design of kinase inhibitors

in general and AK in particular depends to a great extent on the formation of

interactions with the right sites in target kinase.

Conclusions

The issue of specificity has been haunting the kinase drug design for decades. The

change in the DFG-loop conformation triggers a series of conformational changes

which occur in a coordinated fashion. These transitions influence the topology of

the active site which is formed by the kinase structural motifs and also the

interaction-networks. The major interacting motifs of kinase (aC-helix, G-, DFG-

and A-loop) constitute key residues which participate in non-covalent interac-

tions. Non-covalent interactions such as H-Bond, p-p, cation-p and salt-bridge

play a major role in stabilizing the kinase conformation through participation in

protein-protein and protein-ligand interactions. These interactions participating

in inhibitor binding are conformation specific. Thus, their interaction-sites can be

used as hot-spots (specificity rendering quotients) for the design of kinase

inhibitors.

Supporting Information

S1 File. S1 Figure, Test-set used for the evaluation of metric. S2 Figure, Metrics

for the identification of DFG-loop conformation of kinase based on a) volume of

the cone b) sum of four pairwise distances and c) angles. S3 Figure, Inter-motif

metric based on the centre of mass (COM) for identification of the DFG-loop

conformation. The key interacting residues of the major structural motifs

participating in conformational-coupling have been identified. The pairwise

distance and angles using the COM of their side-chains has been calculated and

nine parameters which can most likely be used to distinguish between the DFG-

conformations (a) DFG-in, b) DFG-out (up)) of AK have been identified. The

nine parameters consist of four distance-based and three angle-based parameters.

S4 Figure, Contribution and accuracy of the inter-motif metric parameters. a)

Contribution of each individual parameter of the inter-motif metric. The crystal

structures of AK bound to diverse scaffolds were used to test the performance.

Weights (w) have been given to each parameter based on its capacity to

distinguish the two DFG-conformations: DFG-in and DFG-out (up). In each
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graph, the more the distance between the two lines the better is the performance

of that parameter. b) Accuracy of the inter-motif parameters in predicting the

DFG-loop conformation of Aurora kinase. S5 Figure, Intra-motif metric based on

centre of mass (COM) for identification of the DFG-loop conformation. The

DFG-loop and A-loop residues undergoing maximum variations have been used

to identify the nine parameters. The nine parameters consist of four distance-

based and three angle-based parameters whose pairwise distance and angles have

been used as a measure to distinguish the DFG-conformation (a) DFG-in, b)

DFG-out (up)) of AK. S6 Figure, Contribution and accuracy of the intra-motif

metric parameters. a) Contribution of each individual parameter of the intra-

motif metric. The crystal structures of AK bound to diverse scaffolds were used to

test the performance. Weights (w) have been given to each parameter based on its

capacity to distinguish the two DFG-conformations: DFG-in and DFG-out (up).

In each graph, the more the distance between the two lines the better is the

performance of that parameter. b) Accuracy of the intra-motif parameters in

predicting the DFG-conformation of AK. S7 Figure, Kinase signature profile of

AK generated from Kinase Sequence Database. The profile shows points in the AK

sequence which contains unique (non-conserved) residues. The height of the bar

is proportional to the uniqueness of that residue. Red bars correspond to $95%

uniqueness which means that the residue at that particular position is found in

#5% of kinases. Orange bars correspond to residues found in 5-10% sequences

and yellow bars correspond to those between 10-15%. If at a given position there

are more than 50% insertions (-) then the corresponding bar is coloured grey. The

binding site contact residues are highlighted in green and the gatekeeper in red. S8

Figure, Impact of conformational transitions on the major structural motifs (a-c)

of the four studied conformations. S9 Figure, The conformational variations in

the DFG-loop, aC-helix and G-loop of AK in the 40 ns molecular dynamics

simulation. The differences have been measured by calculating the back-bone

RMSD of these major structural motifs.

doi:10.1371/journal.pone.0113773.s001 (DOCX)

S2 File. S1 Table, Analysis of the crystal structures of AK of all organisms from

Protein Data Bank (PDB). S2 Table, Sorting of AK structures and co-crystals from

Protein Data Bank (PDB) according to sequence type and position. S3 Table,

Identification of kinases sequentially similar to AK through pairwise sequence

alignment of AURKA_HUMAN against the entire kinome present in kinbase v1.1

using blast-p. S4 Table, Geometric parameters of the inter-residue metric for the

identification of DFG-loop conformation in kinase based on centre of mass

(COM). S5 Table, Performance of the inter-residue metric based on centre of

mass (COM) in identifying the DFG-loop conformation of AK. S6 Table,

Prioritizing the parameters of the inter-motif metric based on their performance

in distinguishing the DFG-conformation of AK. S7 Table, Geometric parameters

of the intra-motif DGF- and A-loop metric for the identification of DFG-loop

conformation in kinase based on centre of mass (COM). S8 Table, Performance

of the intra-residue DFG- and A-loop metric based on centre of mass (COM) in
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identifying the DFG-loop conformation of AK. S9 Table, Prioritizing the

parameters of the intra DFG- and A-loop motif metric based on their

performance in distinguishing the DFG conformation of AK. S11 Table,

Interacting chemotypes of AK co-crystals present in Protein Data Bank (PDB).

doi:10.1371/journal.pone.0113773.s002 (DOC)

S3 File. S10 Table, a) Scoring component of the lowest RMSD pose of Aurora

kinase co-crystal complexes obrained through Glide 4.5 docking. b) Score and

RMSD of the best scoring and lowest RMSD poses obtained on docking Aurora

kinase with it’s co-crystals’ using Glide 4.5.

doi:10.1371/journal.pone.0113773.s003 (XLSX)
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29. Rabiller M, Getlik M, Klüter S, Richters A, Tückmantel S, et al. (2010) Proteus in the world of proteins:
Conformational changes in protein kinases. Arch Pharm 343: 193–206.

30. Cancilla MT, He MM, Viswanathan N, Simmons RL, Taylor M, et al. (2008) Discovery of an Aurora
kinase inhibitor through site-specific dynamic combinatorial chemistry. Bioorg Med Chem Lett 18: 3978–
3981.

31. Oscar PJ, van Linden, Kooistra AJ, Leurs R, Iwan JP, et al. (2014) KLIFS: A knowledge-based
structural database to navigate kinase2ligand interaction space. J Med Chem 57: 249–277.

32. Fedorov O, Marsden B, Pogacic V, Rellos P, Müller S, et al. (2007) A systematic interaction map of
validated kinase inhibitors with Ser/Thr kinases. Proc Natl Acad Sci USA 104: 20523–20528.

Specificity Rendering ‘Hot-Spots’ for Aurora Kinase Inhibitor Design

PLOS ONE | DOI:10.1371/journal.pone.0113773 December 8, 2014 21 / 24



33. Badrinarayan P, Sastry GN (2011) Virtual high-throughput screening in new lead identification Comb
Chem High Throughput Screen 14: 840–860.

34. Bissantz C, Kuhn B, Stahl M (2010) A medicinal chemist’s guide to molecular interactions. J Med
Chem 53: 5061–5084.

35. Pellicena P, Kuriyan J (2006) Protein-protein interactions in the allosteric regulation of protein kinases.
Curr Opin Struct Biol 16: 702–709.

36. Zhou P, Huang J, Tian F (2012) Specific non-covalent interactions at protein-ligand interface:
implications for rational drug design. Curr Med Chem 19: 226–238.

37. Patel RY, Doerksen RJ (2010) Protein kinase-inhibitor database: structural variability of and inhibitor
interactions with the protein kinase P-loop. J Proteome Res 9: 4433–4442.

38. Shan Y, Markus AS, Michael PE, Flipp F, Huafeng X, et al. (2009) A conserved protonation-dependent
switch controls drug binding in the Abl kinase. Proc Natl Acad Sci USA 106: 139–144.

39. Johnson LN (2009) Protein kinase inhibitors: Contributions from structure to clinical compounds. Q Rev
Biophys 42: 1–40.

40. Pargellis C, Tong L, Churchill L, Cirillo PF, Gilmore T, et al. (2002) Inhibition of p38 MAP kinase by
utilizing a novel allosteric binding site. Nat Struct Biol 9: 268–272.

41. Telesco SE, Shih AJ, Jia F, Radhakrishnan R (2011) A multiscale modeling approach to investigate
molecular mechanisms of pseudokinase activation and drug resistance in the HER3/ErbB3 receptor
tyrosine kinase signaling network. Mol Biosyst 7: 2066–2080.

42. Marcotte DJ, Liu YT, Arduini RM, Hession CA, Miatkowski K, et al. (2010) Structures of human
Bruton’s tyrosine kinase in active and inactive conformations suggest a mechanism of activation for TEC
family kinases. Protein Sci 19: 429–39.

43. Hynes J Jr, Dyckman AJ, Lin S, Wrobleski ST, Wu H, et al. (2008) Design, synthesis, and anti-
inflammatory properties of orally active 4-(phenylamino)-pyrrolo [2,1-f] [1,2,4] triazine p38alpha mitogen-
activated protein kinase inhibitors. J Med Chem 51: 4–16.

44. Liao JJ (2007) Molecular recognition of protein kinase binding pockets for design of potent and selective
kinase inhibitors. J Med Chem 50: 409–424.

45. Ghose AK, Herbertz T, Pippin DA, Salvino JM, Mallamo JP (2008) Knowledge based prediction of
ligand binding modes and rational inhibitor design for kinase drug discovery. J Med Chem 5: 5149–5171.

46. Manfredi MG, Ecsedy JA, Meetze KA, Balani SK, Burenkova O, et al. (2007) Antitumor activity of
MLN8054, an orally active small-molecule inhibitor of Aurora A kinase. Proc Natl Acad Sci USA. 104
4106–4111

47. Andersen CB, Wan Y, Chang JW, Riggs B, Lee C, et al. (2008) Discovery of selective aminothiazole
Aurora kinase inhibitors. ACS Chem Biol 3: 180–192.

48. Badrinarayan P, Sastry GN (2013) Rational approaches towards lead optimization of kinase inhibitors:
The issue of specificity. Curr Pharm Des 19: 4714–4738.

49. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN, et al. (2000) The Protein Data Bank. Nucleic
Acids Res 28: 235–242.

50. Jain E, Bairoch A, Duvaud S, Phan I, Redaschi N, et al. (2009) Infrastructure for the life sciences:
Design and implementation of the UniProt website. BMC Bioinformatics 10: 136–154.
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