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Abstract
Photodynamic therapy is a minimally invasive and 
clinically approved procedure for eliminating selected 
malignant cells with specific light activation of a photo-
sensitizer agent. Whereas interstitial and intra-operative 
approaches have been investigated for the ablation of a 
broad range of superficial or bulky solid tumors such as 
breast cancer, the majority of approved photodynamic 
therapy protocols are for the treatment of superficial le-
sions of skin and luminal organs. This review article will 
discuss recent progress in research focused mainly on 
assessing the efficacies of various photosensitizers used 
in photodynamic therapy, as well as the combinatory 
strategies of various therapeutic modalities for improv-
ing treatments of parenchymal and/or stromal tissues of 
breast cancer solid tumors. Cytotoxic agents are used in 
cancer treatments for their effect on rapidly proliferat-
ing cancer cells. However, such therapeutics often lack 
specificity, which can lead to toxicity and undesirable 
side effects. Many approaches are designed to target 

tumors. Selective therapies can be established by fo-
cusing on distinctive intracellular (receptors, apoptotic 
pathways, multidrug resistance system, nitric oxide-
mediated stress) and environmental (glucose, pH) dif-
ferences between tumor and healthy tissue. A rational 
design of effective combination regimens for breast 
cancer treatment involves a better understanding of 
the mechanisms and molecular interactions of cytotoxic 
agents that underlie drug resistance and sensitivity.
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Core tip: Breast cancer is the most common cancer in 
women worldwide. However, effective therapies that 
reduce the high mortality rate and improve patient 
quality of life are still unavailable. In recent years, the 
use of photodynamic therapy has been examined for 
use in breast cancer treatment. Photodynamic therapy 
provides a new and promising antitumor strategy that 
could be implemented, alone or in combination with 
other approved or experimental therapeutic approach-
es, to a wide range of applications.
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PHOTODYNAMIC THERAPY ON SOLID 
TUMORS: FOCUS ON BREAST CANCER
Photodynamic therapy (PDT) is one of  the clinically 
approved and minimally invasive alternate methods for 

TOPIC HIGHLIGHT

Breast cancer as photodynamic therapy target: Enhanced 
therapeutic efficiency by overview of tumor complexity

WJCO 5th Anniversary Special Issues (2): Breast cancer

Submit a Manuscript: http://www.wjgnet.com/esps/
Help Desk: http://www.wjgnet.com/esps/helpdesk.aspx
DOI: 10.5306/wjco.v5.i5.901

World J Clin Oncol 2014 December 10; 5(5): 901-907
ISSN 2218-4333 (online)

© 2014 Baishideng Publishing Group Inc. All rights reserved.

World Journal of
Clinical OncologyW J C O

901 December 10, 2014|Volume 5|Issue 5|WJCO|www.wjgnet.com



treatment of  various cancers, such as bladder, esophagus, 
respiratory tract and gynecologic cancers. PDT elimi-
nates tumor cells by the combined use of  of  nontoxic 
photosensitizers (PS) and light[1]. Light activation of  a PS 
results in energy transfer cascades that ultimately yield 
cytotoxic reactive oxygen species, which can then render 
cell death[2]. Antitumor effects of  PDT derive from three 
interrelated mechanisms: direct cytotoxic effects on tu-
mor cells, indirect damage to the tumor vasculature, and 
induction of  an inflammatory response that can activate 
systemic immunity[3].

The photosensitizer is considered to be a critical ele-
ment. In general, for solid tumor PDT, an ideal PS should 
meet at least some of  the following criteria: a commer-
cially available pure chemical, low dark toxicity but strong 
photocytotoxicity, good selectivity towards tumor cells, 
longer wavelength allowing deeper light penetration, 
rapid removal from the body, and multiple administration 
routes (oral, intravenous, intratumoral or inhalational). 
Although some PSs satisfy all or some of  these criteria, 
there are currently only a few PDT photosensitizers that 
have received official approval around the world. Pho-
tofrin (630 nm; Axcan Pharma, Inc.), Levulan (prodrug 
of  protoporphyrin IX, 630 nm; DUSA Pharmaceuticals, 
Inc.), Metvix (prodrug of  protoporphyrin IX, 630 nm; 
PhotoCure ASA), Foscan (652 nm; Biolitec AG), Laser-
phyrin (664 nm; Meiji Seika Kaisha, Ltd.), and Visudyne 
(693 nm; Novartis Pharmaceuticals). Several second gen-
eration PSs (e.g., HPPH, 665 nm; SnEt2, 665 nm; LuTex, 
732 nm) have been investigated in many preclinical and 
clinical trials for various solid tumors, and in particular 
SnEt2[4,5] and LuTex[5] are clinically applied in the United 
States for breast cancer[3]. These photosensitizers show 
the selectivity towards tumor cells and are ideal for cel-
lular- and vascular-targeted PDT, and interference with 
cytoprotective molecular responses is of  growing inter-
est. Any interactions between PDT and PDT-sensitizing 
agents is confined to the illuminated area, thus, eliminat-
ing any potential systemic toxicity.

The majority of  approved PDT protocols are for 
the treatment of  superficial lesions of  skin and luminal 
organs, such as actinic keratosis and Barrett’s esophagus, 
whereas interstitial and intra-operative approaches have 
been investigated for the ablation of  a broad range of  
superficial or bulky solid tumors located in the head and 
neck, brain, breast, lung, gastrointestinal, and genitouri-
nary regions[2]. Although breast cancer is the most com-
mon cancer in women’s cancer in the worldwide. The 
effective therapies that would not only effective in both 
reduce reducing the high mortality rate and associated 
with the disease, but also improve improving patient the 
quality of  life patients with breast cancer are still search-
ing for have not yet been achieved. 

In recent years possibilities of  PDT has recently been 
examined for using in breast cancer treatment, though 
are analyzed, and theits full-potential range of  potential 
applications alone or in combination with other approved 
or experimental therapeutic approaches needed to be has 

yet to be explored  defined. 
This article reviews article will discuss recent prog-

ress in researches focused mainly on concerning the ef-
ficaciesy’s assessing of  different various photosensitizers 
used in photodynamic therapyPDT, as well as the com-
binatorialy strategies of  various therapeutic modalities 
with non-overlapping toxicities, in order to improve the 
therapeutic index of  treatments of  parenchymal and/or 
stromal tissues of  in breast cancer solid tumors. Any in-
teractions between PDT and PDT-sensitizing agents will 
be confined to the illuminated area. Therefore, the poten-
tiated toxicity of  the combinations is not systemic

PDT COMBINED WITH CONVENTIONAL 
BREAST CANCER THERAPIES
Most women with breast cancer undergo some type of  
surgery as the main strategy for tumor removal, includ-
ing breast-conserving surgery or mastectomy (removal 
of  breast). The breast can be reconstructed at the same 
time as the surgery or later on. Radiotherapy or systemic 
therapy is commonly given as adjuvant treatment after 
surgery[6]. Radiotherapy involves the external (sometimes 
internal) application of  high-energy rays (ionizing rays) 
to destroy cancer cells, which is typically accompanied by 
short-term side effects such as swelling and heaviness in 
the breast, sunburn-like skin changes in the treated area, 
and fatigue[6]. In addition, synergistic treatments offer 
favorable outcomes, such as increasing the efficacy, de-
creasing the dosage, avoiding toxicity, and minimizing the 
development of  drug resistance[7].

In recent years, researchers have become increasingly 
interested in combining antitumor therapies in order 
to improve the patient outcome and to avoid, at least 
in part, unwanted side effects. In this context, there are 
reports indicating that some PSs can act as radiosensitiz-
ers[8,9]. With regard to breast cancer, several in vitro stud-
ies have shown a synergism between PDT and ionizing 
radiation in killing cells. The combined application of  
nontoxic doses of  indocyanine green[10], rhodamine 123 
and its platinum complex[11], zinc phthalocyanine and 
meso-tetrahydroxyphenylchlorine[12] with light proved to 
be very effective and resulted in a nearly complete reduc-
tion of  survival. These reports suggest that treatment of  
tumors with a combination of  PS-mediated PDT and 
ionizing radiation could be superior to their individual 
use. The interaction of  PDT and ionizing radiation could 
enhance the therapeutic effect, thus reducing the dose of  
radiation dose and potential side effects.

Systemic therapy, better known as chemotherapy, is a 
treatment with cancer-killing drugs that are given intrave-
nously or by mouth. The drugs travel through the blood-
stream to reach cancer cells in most parts of  the body. 
There are several situations in which chemotherapy may 
be recommended in breast cancer patients: after surgery 
(adjuvant chemotherapy), before surgery (neoadjuvant 
chemotherapy) or for advanced breast cancer. In most 
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cases (especially adjuvant and neoadjuvant treatment), 
chemotherapy is most effective when combinations of  
more than one drug are used. Although many combina-
tions are currently being used, there is no clear indication 
that any particular combination is more effective. The 
most common chemotherapeutics used for early breast 
cancer include the taxanes (such as docetaxel and pacli-
taxel) and the anthracyclines (epirubicin and doxorubi-
cin). These may be used in combination with other drugs, 
such as cyclophosphamide and fluorouracil. Platinum 
agents (cisplatin, carboplatin) have also been useful for 
treating women with breast cancer. The type and amount 
of  drug(s), as well as the length of  chemotherapy treat-
ment, determine the extent of  side effects, which include 
nausea and vomiting, mouth sores, easy bruising, hair 
loss, change in appetite, increased chance of  infections, 
low blood cell counts, bleeding and fatigue[6].

Recently, the effect of  PDT combined with tradition-
al chemotherapy for the treatment of  breast cancer has 
been studied. Low doses of  cisplatin in vitro, which are 
unlikely to cause severe side effects, are more effective 
when appropriately combined with indocyanine green-
based PDT[13]. Additionally, another in vitro study showed 
that the combination of  meso-tetrahydroxyphenylchlo-
rine-mediated PDT and the chemotherapeutic 5-fluoro-2-
deoxyuridine resulted in a lower cell survival than single-
mode treatment[14]. Benzoporphyrin derivative monoacid 
ring A-based PDT enhanced the antitumor effects of  
doxorubicin on breast cancer in vivo, which was associated 
with the cooperative regulation of  extrinsic apoptotic 
pathways and the inhibition of  tumor angiogenesis[15]. 
However, the mechanisms involving the interactions be-
tween chemotherapeutic drugs and PSs, as well how they 
can be combined to increase cell killing while reducing 
side effects, needs to be examined in more detail.

We recently reported that the pre-clinical chemo-
therapeutic drug β-lapachone interacts with methyl ami-
nolevulinic acid-PDT in breast cancer in vitro. However, 
we also demonstrated that the application scheme of  
both therapies have relevance on the outcome. Synergism 
was observed when chemotherapy was applied 24 h after 
PDT, due to the photodynamic induction of  NQO1, the 
principal determinant of  β-lapachone cytotoxicity. The 
combination of  PDT followed by β-lapachone treatment 
is a potentially promising modality for the treatment of  
cancer[16].

When treating cancer, cytotoxic agents are intended 
to exert their effect on rapidly proliferating cancer cells. 
However, cancer therapeutics often lack specificity, which 
can lead to toxicity and undesirable side effects. Many ap-
proaches have been designed to target tumors. Selective 
therapies can be established by focusing on distinctive 
intracellular and environmental differences between the 
tumor and healthy tissue. Additionally, a strategy to treat 
breast cancer involves the combination of  drugs. The 
molecular interactions with cytotoxic agents, combined 
with increasing knowledge of  the mechanisms underlying 
drug resistance and sensitivity, allow for the rational de-

sign of  effective combination regimens for the treatment 
of  patients[17]. In this sense, combinations of  PDT and 
tumor-targeted strategies will be reviewed.

PDT AND BREAST CANCER RECEPTOR-
TARGETED AGENTS
The overexpression of  many receptors in breast cancer 
cells, such as estradiol receptors, the human epidermal 
growth factor receptor 2, gonadotropin-releasing hor-
mon receptors, and tisular factor Ⅶ receptors, is strongly 
associated with increased disease recurrence and a poor 
prognosis[18]. Thus, therapies have been developed to 
target removal of  ligands or inhibit their activation[6]. As 
these receptors represent a potential site for directing re-
ceptor-mediated cellular uptake, photodynamic research-
ers utilized them as vehicles to selectively deliver photo-
sensitizing agents. Thus, the overexpression of  receptors 
in breast cancer was harnessed synergistically with the 
tumor-migrating effect of  several PSs to selectively de-
liver target molecule-PS conjugates into breast tumor 
cells, and preferentially kill the tumor cells upon exposure 
to red light[19-32] (Table 1). Developments in these specific 
types of  receptor-targeting approaches highlight their 
potential advantages in the discovery of  more effective 
cancer photochemotherapy agents.

PDT COMBINED WITH ANTI-APOPTOTIC 
STRATEGIES
PDT leads to the generation of  cytotoxic oxygen species 
that appear to stimulate several different signaling path-
ways, some of  which lead to cell death, and some that 
mediate cell survival. In this context, we observed that 
methyl-5-aminolevulinic acid-mediated PDT resulted in 
overexpression of  survivin[33], a member of  the inhibitor 
of  apoptosis family that inversely correlates with patient 
prognosis and whose role in resistance to anti-cancer 
therapies is a subject of  intensive investigation. We dem-
onstrated a specific role for survivin in modulating the 
PDT-mediated apoptotic response. Silencing survivin ex-
pression increased apoptotic indices and cytotoxicity ex-
hibited by PDT on metastatic breast human cancer cells. 
In contrast, the overexpression of  survivin increased cell 
viability and reduced cell death. Expression of  another 
antiapoptotic protein, Bcl-2, was suppressed by genistein, 
and PDT with hypericin may represent a mutual thera-
peutic combination favoring apoptosis[34]. The combina-
tion of  genistein and PDT may therefore achieve a higher 
therapeutic outcome in human breast adenocarcinoma 
cell lines previously identified as PDT-resistant.

PDT AND MULTIDRUG-RESISTANCE 
INHIBITORS 
One of  the principal requirements of  successful PDT is 
sufficient intracellular accumulation of  the photosensi-
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PDT AND NITRIC OXIDE (NO) 
SCAVENGERS 
Photodynamic intervention generates reactive oxygen 
species that can destroy tumor cells. NO produced by 
photosensitized cells could be pro-carcinogenic by in-
hibiting apoptosis. It was shown that NO from chemical 
donor or activated macrophages made breast tumor cells 
sensitized by 5-aminolevulinic acid-generated protopor-
phyrin IX more resistant to photo killing by providing 
substantial protection against apoptosis[39,40]. Additionally, 
it was demonstrated that PDT-treated breast cancer cells 
acquired the ability to upregulate inducible-nitric oxide 
synthase (iNOS) expression[41]. In this sense, apoptotic 
cell killing was strongly enhanced by iNOS inhibition 
or knockdown and a NO scavenger[42]. These findings 
strongly indicate that stress-elicited NO in PDT-treated 
breast tumors could compromise therapeutic efficacy and 
suggest that NOS-based pharmacologic interventions 
could prevent this.

PDT AND (BREAST) TUMOR 
MICROENVIRONMENT (TME) 
INTERVENTION
The TME is a well-defined ecosystem comprised of  pa-
renchymal (tumor) and stromal (non-tumor) populations 
that coexist and establish interspecific interactions, which 
contribute to malignancy[43]. The TME of  solid neopla-
sias is very different from those of  normal tissues. The 
implementation of  interstitial and estimation of  PDT 
dosimetry relies on the complexity of  the solid tumor. 
Moreover, the TME should be studied if  stromal cells 
affected by photodynamic regimes extinguish the tumor 
ecosystem by destroying their network within tumor 
cells. In this sense, we have recently reviewed the term 
“Ecological Photodynamic Therapy” to emphasize the 
need to modulate PDT application regimens to exploit 
their effect on interspecific relationships and thus achieve 
complete tumor eradication[43].

tizer drug. Mechanisms of  anticancer drug elimination [or 
multidrug-resistance (MDR)] by tumor cells are mostly 
linked to the elevated expression and activity of  drug ef-
flux transporters that constitute a dominant impediment 
to curative cancer chemotherapy. Hence, novel strategies 
that overcome MDR modalities are considered a major 
goal of  cancer research. The ATP-binding cassette pro-
tein ABCG2 (breast cancer resistance protein) effluxes 
some of  the PSs used in PDT, and thus, has been associ-
ated with photodynamic resistance. It was reported from 
in vitro and in vivo experiments, that the tyrosine kinase 
inhibitor imatinib mesylate blocked ABCG2 function and 
enhanced the efficacy of  PDT by increasing intracellular 
PS levels, and may therefore enhance the efficacy and se-
lectivity of  clinical PDT on breast cancer[35]. 

ABCG2 is a putative cancer stem cell marker. Can-
cer stem cells, also known as tumor-initiating cells, are a 
small group of  cancer cells involved in drug resistance, 
metastasis, and relapse of  cancers and tumor-drug resis-
tance[36]. Hence, it is of  importance to develop PSs that 
are not substrates of  ABCG2, or design strategies to 
avoid ABCG2-mediated antitumor therapy resistance[37]. 
Recently, ABCG2 was implicated in a mechanism that 
targets and kills cancer cells with an MDR phenotype. 
The MDR mediates extracellular vesicles (EVs) rich in 
ABCG2 in attached breast cancer cells that highly con-
centrate chemotherapeutics, thereby sequestering them 
away from their intracellular targets. The authors showed 
that the accumulation of  photosensitive cytotoxic drugs, 
such as imidazoacridinones (IAs) and topotecan, dam-
aged EV membranes and resulted in tumor cell lysis. Fur-
thermore, the accumulation of  IAs in lysosomes killed 
MDR cells by organeller rupture upon photosensitization. 
Therefore, a synergistic and cytotoxic effect resulting in 
MDR reversal is elicited by combining targeted lysis of  
IA-loaded EVs and lysosomes. In contrast, a selective 
photocytotoxic effect exerted by topotecan is achieved 
by accumulation in EVs of  MDR cells. Thus, MDR mo-
dalities can be converted into a pharmacological, lethal 
Trojan horse to selectively eradicate MDR cancer cells by 
ABCG2-dependent drug sequestration within EVs[38].
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Table 1  Receptor-targeted photodynamic therapy on breast cancer cells

Targeted receptor Photosensitizer Result Ref.

Estradiol receptor Tetraphenylporphyrin High-affinity conjugate protein binding James et al[19]

Estradiol receptor Tetraphenylporphyrin High-affinity conjugate cell binding Swamy et al[20]

Estradiol receptor Pyropheophorbide a Conjugate-selective cell death Fernandez Gacio et al[21]

Estradiol receptor Pyropheophorbide a Conjugate-selective cell death El-Akra et al[22]

Estradiol receptor Pyropheophorbide a High conjugate internalization Sadler et al[23]

Estradiol receptor Chlorin e6-dimethyl ester Conjugate-selective cell death Swamy et al[24]

Human epidermal growth factor receptor Verteporfin and pyropheophorbide a Conjugate-selective but less phototoxic Savellano et al[25]

Human epidermal growth factor receptor Verteporfin and pyropheophorbide a Conjugate-selective cell death Bhatti et al[26]

Human epidermal growth factor receptor Zinc phthalocyanine (plus nanoparticules) Conjugate-selective cell death Stuchinskaya et al[27]

Human epidermal growth factor receptor Sn-(IV) chlorin e6 monoethylenediamine Conjugate-selective cell death Gijsens et al[32]

Tisular factor (factor VII receptor) Verteporfin Conjugate-selective cell death Hu et al[28]

Tisular factor (factor VII receptor) Chlorin e6 Conjugate-selective cell death Duanmu et al[29]

Gonadotropin-releasing hormone receptor Zinc phthalocyanine Conjugate-selective cell death Xu et al[30]

Gonadotropin-releasing hormone receptor Protoporphyrin IX Conjugate-selective cell death Rahimipour et al[31]
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Endothelial cells (ECs) are the stromal population 
whose principal function is to supply the TME with 
oxygen, hormones, nutrients, circulating cells and other 
fluids. A mutualistic interaction has been observed be-
tween ECs and tumor cells within TME: ECs provide 
nutrients and tumors cells develop a paracrine stimulation 
to finally sustain the angiogenic endothelial process[43]; 
angiogenesis refers to the growth of  blood vessels from 
pre-existing ones[44]. Therefore, researchers have devel-
oped strategies to target the vasculature surrounding 
breast tumor cells. A novel and effective ligand-targeted 
PDT for breast cancer was synthesized by conjugating 
factor VII (fVII), a natural ligand with high affinity and 
specificity for tisular factor, with the PSs veterporfin[28] or 
chlorin e6[29] (Figure 1). The rationale for targeting tisular 
factor is based on its overexpression in breast cancer and 
its selective expression in pathologic neovascular ECs 
in cancer. fVII-targeted PDT improves the selectivity 
and efficacy of  PDT for the treatment of  breast cancer 
and induces apoptosis and necrosis as the underlining 
mechanisms of  action. Moreover, fVII-targeted PDT was 
effective and safe for treatment of  chemoresistant breast 
tumors in vivo, presumably by simultaneously targeting 
both the tumour neovasculature and chemoresistant 
cancer cells[28,29]. Strategies to favor the vascular effect of  
PDT by targeting tumor vasculature are constantly evalu-
ated. Recently, PSs conjugated to a peptidase-resistent 
peptide that targets neuropilins overexpressed in tumor 
angiogenic vessels were developed. Intravenously injected 
peptidase-conjugated PSs selectively accumulate in vascu-
lar cells with no degradation in plasma[45] (Figure 1). This 
finding provides useful information for the future design 
of  stable, targeted molecules to improve the outcome of  
PDT-treatment.

Treatment with PDT alone is often non-curative due 

to tumor-induced immune cell dysfunction and immune 
suppression. This phenomenon has motivated a new 
approach of  combining immunostimulants with PDT 
to enhance anti-tumor immunity. Thus, verteporfin-
mediated PDT was combined with an immunomodula-
tion approach using CpG oligodeoxynucleotide for the 
treatment of  metastatic breast cancer in vivo. CpG primes 
immature dendritic cells via toll-like receptor 9 to phago-
cytose PDT-killed tumor cells, leading to dendritic cell 
maturation and activation. Peritumoral injection of  CpG 
after PDT in mice gave improved local tumor control 
and a survival advantage compared to either treatment 
alone (Figure 1). In conclusion, CpG may be a valuable 
dendritic cell-targeted immunoadjuvant to combine with 
PDT[46]. 

With regard to the TME, in addition to the cellular or 
biotic factors that modulate the photodynamic response, 
abiotic components also have a strong influence on PDT 
outcome. In this sense, the effect of  chronic hypoglyce-
mia on sensitivity to aminolaevulinic acid-induced PDT 
in vitro was studied in human breast cancer cells. It was 
shown that photodynamic therapy sensitivity was re-
duced in glucose-deprived cells[47] (Figure 1). Additionally, 
tumors, due to their abnormal vasculature, are character-
ized by a more acidic environment compared to their 
surrounding normal tissues. The low pH can enhance 
the lipophilicity of  several PSs, such as hematoporphyrin 
IX[48]. It has been shown that increasing the lipophilicity 
of  a drug leads to increased tumor uptake[48] (Figure 1). 
As a result, it is possible to find a concentration gradient 
of  the drug within the breast TME between the tumor 
tissue and the normal surrounding tissue. By injecting 
glucose, it is possible to further selectively reduce the 
extracellular pH value of  tumors[49], and to make tumor 
cells more sensitive to PDT treatment[47]. This will, in 
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Figure 1  Photodynamic therapy (PDT) combined with 
tumor microenvironment intervention on breast cancer. 
PDT is one of the alternative methods for breast cancer treat-
ment and involves: (1) administration of a photosensitizer (PS), 
which is internalized into either tumor cells or surrounding 
vasculature; (2) local irradiation at a wavelength corresponding 
to the absorbance peak of the PS; and (3) light activation of the 
PS, which promotes cell death mainly by apoptosis. Because 
of the benefits of improving PDT outcome, researchers have 
developed strategies to target the vasculature surrounding 
breast tumor cells by conjugating the PS with endothelial cell 
(EC)-specific ligands. Immunoactivation of dendritic cells us-
ing CpG increases phagocytosis of PDT-killed tumor cells and 
leads to their maturation and activation, thereby promoting an 
antitumor immune response. Regarding abiotic environmental 
factors, it was shown that photodynamic therapy sensitivity is 
reduced in glucose-deprived cells, and that a lower extracellular 
pH leads to increased PS uptake, reinforcing the photodynamic 
response.
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turn, increase the pH gradient between tumor and nor-
mal tissue and finally result in an increased concentration 
gradient for drugs that becomes more lipophilic at low 
pH values. If  the low tumor pH explains the selective 
localization of  such drugs, the clinical outcome of  PDT 
can be improved by combining it with glucose injections. 
It is therefore neccesary to characterize the interactions 
and biotic and abiotic components of  the TME in order 
to achieve the disruption of  ecological networks which 
finally can lead to the destruction of  the ecosystem.

CONCLUSION
Despite major advances in the knowledge and treatment, 
breast cancer remains an enormous problem in terms of  
morbidity and mortality. It is expected the pharmaceutical 
industry and research institutes will continue to launch 
numerous clinical trials to evaluate applications of  PDT 
in conjunction with, or as a replacement for, traditional 
methods for treating solid tumors. 
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