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In 2012, the US Food and Drug Administration’s (FDA) 
Advisory Committee for Pharmaceutical Science and Clinical 
Pharmacology unanimously voted to support the motion that 
modeling and simulation be considered for all pediatric drug 
development programs (14 March 2012, Gaylord National 
Resort & Convention Center, National Harbor, MD). During 
the same meeting, the committee also assessed whether 
the routine use of physiologically based pharmacokinetic 
(PBPK) modeling, when possible, be incorporated into the 
pediatric drug development process. Although the commit-
tee expressed concerns regarding limitations and knowledge 
gaps surrounding pediatric PBPK modeling (i.e., ontogeny 
of transporters), the motion passed with a slim majority by 
members who felt PBPK models offered an enhanced ability 
for predicting and understanding of age-related changes in 
pharmacokinetics (PK) among children.

Utilization of PBPK modeling among the pharmaceuti-
cal industry, as denoted by the annual publication rate, has 
increased steadily over the past two decades.1 Within the 
drug development process, PBPK modeling has been incor-
porated in a variety of applications. In preclinical stages, 
models serve to assess the viability of candidate compounds, 
combining data derived in vitro with in vivo preclinical spe-
cies (i.e., rat) data to provide estimates of human PK.2 During 
clinical drug development stages, PBPK modeling can per-
mit for efficient trial design, providing suitable starting doses 
and selection of optimal sampling times.3 In addition, models 
may be used to extend existing knowledge derived from pre-
liminary clinical investigations into unstudied subpopulations 
and clinical scenarios. For example, several recent investi-
gational new drug and new drug applications submitted to 
the US FDA have applied PBPK modeling techniques to esti-
mate the impact of hepatic disease, pharmacogenomics, and 
drug–drug interactions on drug disposition.4

Based on successes of estimating PK within adult popula-
tions5 and the inherent ability of models to facilitate extrapo-
lation toward different life stages, development of pediatric 
PBPK models appear to be a natural progression. In recent 
years, several publications from various research groups 
have demonstrated the capacity of PBPK models to deliver 
rational estimates of age-specific PK changes along the 

developmental age range.6–11 Additionally, use of pediatric 
PBPK models is increasing in frequency among sponsors, 
as demonstrated by the proportion of investigational new 
drug and new drug applications containing pediatric PBPK 
modeling techniques received by the US FDA between 2008 
and 2013 (ref. 12). Of the 84 applications which incorporated 
PBPK modeling into their submissions, 21% were utilized to 
investigate PK among children.

In order to increase efficiencies surrounding the pediat-
ric drug development process, the US FDA introduced the 
pediatric decision tree, which delineates required clinical 
investigations in pediatric populations in order to comply with 
current legislation. The framework provides a venue by which 
adult efficacy data can be extrapolated to pediatrics, subse-
quently reducing the number of children required to partici-
pate in clinical trials. In recognition that children may display 
developmentally unique differences in absorption, distribu-
tion, metabolism, and excretion (ADME) and resultantly 
exhibit variable patterns of drug sensitivity when compared 
to adults, the decision tree does not permit for extrapola-
tion of PK and safety data between adults and children. As 
a result, clinical assessments of pediatric PK and safety are 
required. Considering the integral role of PK in drug efficacy, 
use of pediatric PBPK models can serve to integrate multiple 
levels of information (i.e., in vitro, preclinical, clinical, etc.) to  
elucidate PK changes among children and function as a 
complement to pediatric clinical investigations. Estimates of 
age-specific PK can be utilized to support dose selection and 
assess for the potential for concentration-related toxicities 
within pediatrics. This tutorial will serve to provide the reader 
with a basic understanding of the procedural steps to devel-
oping a pediatric PBPK model and facilitate a discussion of 
the advantages and limitations of this modeling technique.

TRADITIONAL PEDIATRIC DOSING METHODS

Traditional methods for estimating pediatric dosages include 
dosing algorithms such as Clark’s rule (i.e., based on body 
weight (BW)), Young’s rule (i.e., based on age), body sur-
face area-based dosing (i.e., same mg/m2), and allometry 
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(i.e.,  based on BW). These algorithms attempt to convert 
adult doses to those of children for the purposes of achieving 
similar exposure as a standard dose in adults. Algorithms aim 
to account for the effect of growth on dose but do not address 
the impact early childhood maturation. As a result, Clark’s 
and Young’s rules are bounded for use between 2–12 and 
1–12 years of age, respectively. Allometry, the most widely 
evaluated and accepted dosing algorithm (Eq. 1),

Dose = Dose
BW
BW

 child adult
child

adult

⋅






3
4� (1)

uses dose as absolute (e.g., in milligrams) and the child to 
adult BW (in kilograms) ratio raised to a power of 3/4. Dose 
may be replaced with clearance (CL) in Eq. 1. The history and 
use of the ¾ power function has been discussed at length 
elsewhere.13,14 In a study assessing CL prediction in children 
over the age of 6 years using allometry, 100 and 80% of all 
predictions were within twofold and 30% of observed CLs as 
taken from FDA databases.15 Considering that allometry well 
accounts for size, this result is unsurprising. For younger chil-
dren, allometry still accounts for size; however, maturation 
remains unaccounted. As a result, allometry overpredicts 
CL below an age where the mechanisms of CL become 
immature.16 If, however, the purpose of the modeling exer-
cise is to predict PK in children whose metabolic or excretory 
capacities are fully mature, use of allometric equations, as 
depicted by Eq. 1, can be utilized to provide age-specific esti-
mates of dose and CL.

Integration of allometry with a maturation modifier on CL 
can be used to circumvent tendencies of conventional allo-
metric equations (i.e., Eq. 1) to overpredict CL in younger 
children. Using this approach, a typical CL (CLadult) for an 
adult weighing 70 kg is modified for size using allometry 
along with a maturation function (MF; between 0 and 1) to 
account for immaturity of CL processes and an organ func-
tion (OF; can be greater or less than 1) to account for disease 
modifications on CL.17

CL CLchild adult = 
BW

70
MF OFchild

3
4
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⋅ ⋅� (2)

To use Eq. 2, however, the MF and OF must be known or 
rationally predicted.

While the above scaling procedures have utility under pre-
defined boundaries, PBPK models inherently account for 
both growth and maturation in a mechanistic manner and 
thus allow for rational extrapolation across the age continuum.

PBPK MODEL DESCRIPTION

This section will provide a brief description of whole-body 
PBPK modeling. For a more in-depth description of essential 
structural elements and theoretical concepts of PBPK model-
ing, the reader is directed to a previously published tutorial.2

Whole-body PBPK models strive to provide a comprehen-
sive depiction of compound PK throughout the entire body. 
A general schematic depiction of the structure of such mod-
els has been illustrated in a previous tutorial.2 Unlike com-
partmental PK models, where compartments represent the 

sum of kinetically similar tissues, whole-body PBPK mod-
els segregate compartments based on anatomical consid-
erations. Models incorporate multiple compartments each 
representing a defined organ/tissue space. Drug movement 
is facilitated by assigning flow rates to each compartment 
reminiscent of a circulatory system. Flow is unidirectional, 
permitting movement of drug from the arterial pool, through 
the tissues, and into the venous pool. Typically, systems oper-
ate in a closed loop, permitting venous blood to be recycled 
back into the arterial pool via the lung. Within the model, CL 
(elimination or excretion) can be ascribed to any relevant tis-
sue compartment. Commonly, the body’s two main elimina-
tory organs, the liver and the kidneys, play predominant roles 
in modulating drug CL. To computationally account for CL as 
well as the rate of drug exchange between the blood and 
tissue compartments, models utilize a series of differential 
equations. Simulations should preserve mass balance at any 
given time point to ensure appropriate mathematical imple-
mentation of the model.

Distribution into tissue compartments may be defined as 
either perfusion-limited or permeability-limited. For smaller 
lipophilic compounds, distribution into compartments is typi-
cally a function of the rate of blood flow to the tissue (i.e., 
perfusion-limited). For larger hydrophilic molecules, distribu-
tion across tissue membranes may be restricted. In these 
cases, the rate of tissue diffusion can be surmised using 
permeability-limited kinetics.2

PBPK models provide an integrative platform for 
incorporating several levels of information: physicochemi-
cal, in vitro, preclinical, and clinical. These data may be used 
to parameterize the model and ultimately generate predic-
tions of compound-specific PK. Parameters within the model 
can be defined as either system or drug specific. System-
specific parameters pertain to the anatomy and physiology 
of the organism and include organ volume, composition, and 
blood flow; enzyme/transporter localization and abundance; 
and plasma protein concentrations. Drug-specific param-
eters pertain to drug physicochemical properties (i.e., 
lipophilicity, molecular weight, pKa, solubility, etc.) and their 
influence on biological binding affinity (i.e., plasma proteins, 
enzymes, transporters) and membrane permeability. Based 
on the interrelationship between system- and drug-specific 
parameters, tissue-to-plasma partition coefficients (Kp) and 
quantitative measures of specific CL pathways (i.e., intrin-
sic CL (CLint)) may be derived. Owing to its physiologically 
based structure and parameterization, PBPK models permit 
for extrapolation of PK estimates between developmentally 
unique age groups as well as different species. As models 
are mechanistic, extrapolations can be conducted by modify-
ing system-specific parameters toward the organism or age 
group of interest while maintaining an understanding that 
drug-specific parameters remain constant. Unlike empiric 
compartmental models, where compartments typically do not 
maintain a physiologic basis, PBPK models, if appropriately 
parameterized, can be used to derive rational predictions 
outside the range of data used in model development. The 
ability of PBPK models to extrapolate knowledge between 
systems is highly advantageous within the field of pediatric 
drug development where PK data from adults may be lever-
aged to provide estimates of PK alterations in children.
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PEDIATRIC PBPK MODEL DEVELOPMENT WORKFLOW

Pediatric model development begins with an examination 
of the relevant information available for model building and 
evaluation. This is greatly dependent on the timing of the 
pediatric clinical trial and any clinical investigation history.18 
Three scenarios exist: 1, drug approved for use in adults; 2, 
drug candidate in phase I or phase II of clinical development; 
and 3, drug candidate for pediatric use only. In all scenarios, 
there is data available from the preclinical realm. With regard 
to the clinical investigation history, the most data-rich envi-
ronment is the first scenario where the drug is approved 
for use in adults. In this case, PK information in adults is 
available and may be accompanied by PK data in children if 
investigated in an off-label manner. In the second scenario, 
the drug candidate has entered the clinical phase in adults, 
and there is limited PK data available from healthy individu-
als and/or an adult patient population. In the third scenario, 
the first clinical investigation of the drug candidate is the 
pediatric patient population. There is a decrease in the avail-
able information for model building and evaluation from sce-
narios 1 through 3.

Table 1 provides a list of drug-specific data that can be 
used for development of the adult PBPK model in scenarios 
1 and 2. The required data for PBPK model development 
depends on the model structure and the level of confidence 
that is required in the outputs of the model. Naïve predictions 
of drug PK in children based on drug physicochemistry and 
preclinical information alone (i.e., scenario 3) will yield out-
comes that have a lower confidence than if model develop-
ment incorporates adult clinical data.

This leads to the importance of a rigorous workflow in the 
development of pediatric PBPK models. All published work-
flows6,19 have a similar structure such that an adult model is 

first developed using system- and drug-specific inputs along 
with an iterative process of evaluation and refinement with 
observed adult PK data (Figure 1). Following finalization of 
the adult model under the relevant conditions (e.g., i.v. or 
oral administration), system-specific inputs are modified to 
children, while drug-specific inputs remain unaltered. In the 
absence of any pediatric PK data, models function exclusively 
in simulation mode, providing users with prospective estimates 
of age-specific PK. To maximize the probability of appropri-
ately depicting PK among children, system-specific param-
eters should be defined based on the best available biological 
information within the literature. Since simulations require all 
parameters to be explicitly defined a priori, parameter selec-
tion necessitates appropriate justification. In the presence of 

Table 1 Typical drug-specific data needs for pediatric PBPK model development of a drug candidate in the adult clinical phase

Data Reason for data use

Drug physicochemical 
properties

Lipophilicity Input for tissue: plasma partition coefficient algorithms, intestinal permeability  
algorithms, and cell membrane permeability algorithms

Molecular size Input for intestinal permeability algorithms, cell membrane permeability algorithms

Acid–base status and related pKa, if appli-
cable

Input for most tissue: plasma partition coefficient algorithms, intestinal permeability 
algorithms, cell membrane permeability algorithms

Solubility and/or dissolution profile of drug 
product in water or biorelevant media

Used in assessment of intestinal availability

Preclinical Intestinal permeability estimate  
(e.g., PAMPA, Caco-2)

Used in predictions of intestinal absorption

Fraction unbound in plasma Partitioning between plasma and interstitial space if organ structure permits, unbound 
concentrations used for concentration gradients, and interaction with proteins

Blood:plasma concentration ratio (B:P) Partitioning in vascular space when model structure partitions plasma and red blood 
cells

In vitro microsomal, hepatocyte, recombinant 
enzyme assays, in vivo metabolism studies

Used for assessing pathways of clearance and kinetic constants (e.g., Km and/or Vmax)

In vitro transporter assays, in vivo studies with 
knockout mice

Used for assessing transporter affinity

In vivo tissue distribution study In vivo tissue:plasma partition coefficienta

Clinical PK following i.v. administration in adults Provides the most accurate assessment of clearance and distribution volume

PK following oral administration under varying 
conditions

Nonlinearity assessed with dose-escalation study, food effect, single- vs. multiple-dose 
studies

PAMPA, parallel artificial membrane permeability assay; PBPK, physiologically based pharmacokinetic; PK, pharmacokinetics.
aPredictive algorithms are usually used to estimate tissue:plasma partition coefficients. However, in addition to in vivo values, the importance of transporters and 
metabolism processes can be assessed, if relevant.

Figure 1  Pediatric PBPK model development workflow.19 PBPK, 
physiologically based pharmacokinetic.
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some pediatric PK data (e.g., data in older children or sparse 
samples in the relevant age group from off-label use), simula-
tion results can be evaluated against observed data. Since 
models are physiologically based, system-specific variables 
within children associated with high degrees of uncertainty 
may be modified, within biological plausibility, to establish 
appropriate fits with observed data. Using this approach, 
comparisons between observed data and simulated outputs 
can provide a platform for clarifying anatomical/physiologi-
cal variables within age-specific cohorts that have not been 
extensively defined. The described methodology exemplifies 
an alternative use of PBPK models to function as a learning 
tool with regard to system-specific parameters.

Within the workflow, the importance of appropriate adult 
model development cannot be understated. Poor predictive 
capacity of the adult PBPK model will ensure the same in the 
pediatric PBPK model. This has been demonstrated using 
lorazepam where overprediction of the first 20 min following 
i.v. administration in the adult model translated to the same 
overprediction in the pediatric model.6 The importance of this 
mismatch is dependent on the question being addressed and 
may or may not be a consideration; however, low confidence 
in the adult model leads to low confidence in any pediatric 
PBPK model developed from it.

The workflow will be illustrated in the following sections 
with the use of an example. Despite recent interest in the 
utilization of PBPK models toward pharmaceutical biologics, 
the majority of literature regarding this modeling technique 
pertains to small molecules. Models for biologic compounds 
require additional physiologic information regarding tissue-
specific lymph flows and receptor-mediated disposition. 
Unfortunately, such parameters lack appropriate charac-
terization within the literature, even among adult subjects.20 
Consequently, development of pediatric PBPK models 
for biologic compounds is an area which requires ongoing 
investigation. The example presented within this tutorial will 
highlight key aspects for the development of pediatric PBPK 
models for small molecules. All models and simulations were 
completed in PK-Sim (ver 5.2; Bayer Technology Services, 
Leverkusen, Germany). A hypothetical small molecule will 
be used, and relevant information for model building is pre-
sented in Table 2. The question being addressed is: What 
is the pediatric equivalent dose (the dose that provides the 
same exposure as a standard adult dose in an adult) for a 
group of children aged 0–17 years?

DEVELOPMENT OF ADULT i.v. MODEL

In order to establish a quantitative understanding of the in 
vivo processes of distribution and CL within adults, PK data 
depicting i.v. drug administration is typically required. By cir-
cumventing the complexities surrounding the oral absorption 
process, data derived from these investigations permit for 
clean assessments of CL and the rate and extent of distri-
bution. Correspondingly, the development and assessment 
of i.v. disposition models provide a suitable basis to ensure 
simulations appropriately describe the processes of distribu-
tion, metabolism, and excretion within adults prior to predict-
ing the contribution of such processes in pediatrics.

In its simplest form, the adult i.v. PBPK model may be 
parameterized using exclusively perfusion-limited kinetics. 
Based on this approximation, organs are defined as well-
stirred compartments and require, at minimum, volume, blood 
flow, blood:plasma concentration ratio (B:P), and tissue-
specific K

p values for parameterization.2 Organ volume and 
perfusion rates are system-specific parameters pertaining to 
adult humans, whereas B:P and Kp values are contingent on 
the relationship between system- and drug-specific param-
eters and may be determined experimentally (i.e., in vivo) 
or computationally using in vitro data. Compared to experi-
mental determination of Kp values, the use of in silico–based 
algorithms such as tissue composition–based models (e.g., 
Rodgers and Rowland21) or correlation models (e.g., Yun and 
Edginton22) have decreased the time and cost associated 
in the development of whole-body PBPK models. Common 
input parameters incorporated into these algorithms include 
aspects of drug physicochemistry such as lipophilicity and 
pKa. In addition, tissue composition–based models require 
information pertaining to plasma protein binding (i.e., fu) and 
organ-specific composition in terms of proportional content 
of lipids, protein, and tissue water.23 It is the common practice 
of the authors to use the best predicting tissue composition–
based model,23 Rodgers and Rowland,21 as the default for 
new molecules. In order to define CL mechanistically, mass 
balance studies quantifying the fraction of drug excreted 
renally unchanged (fe), metabolized (fm), excreted via the 
biliary system (fb), and/or removed by other less-common 
pathways of CL are required.

Within the model, organ-specific CLs may be described 
using either first-order intrinsic CLs (CLint) or, if nonlinearities 
are present, using Vmax and Km values to denote capacity-
limited kinetics (i.e., Michaelis–Menten). CLint, defined as the 
tissue-specific drug removal capacity (per gram of tissue) in 
absence of binding and flow limitations, can be approximated 
using a constant value (i.e., CLint ≈ Vmax/Km) at concentrations 
well below the saturation capacity. Estimation of hepatic CLint 
within the adult model can be conducted using two tech-
niques. In vitro to in vivo correlations provides estimates of 
CLint based on in vitro assays using human liver microsomes, 
human hepatocytes, or recombinantly expressed enzymes.24 
Estimates of in vivo CLint using recombinantly expressed 
enzyme systems can be tabulated based on the following 
equation24:

CL = ISEF rhCL CYP  MPPGL int int, abundance=1 i ii i  n� (3)

where, ISEFi is the intersystem extrapolation factor, rhCLint,i 
is the isozyme-specific CLint determined within recombinant-
based systems, CYPabundence is the isozyme abundance, and 
MPPGL is the milligrams of microsomal protein per gram of 
liver. Using the above equation, in vitro determinations of 
isozyme-specific CLint can be combined with system-spe-
cific information pertaining to CYP-specific abundance and 
MPPGL to provide estimates of hepatic CLint in adults. An 
alternate approach for estimating hepatic CLint, which can 
also be applied to any eliminatory tissue, utilizes the mech-
anistic framework of PBPK models along with PK data from 
mass balance studies. Using this approach, tissue-specific 
CLint values are initially parameterized within the adult 
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PBPK model using a default value. Simulations are sub-
sequently conducted and outputs in terms of CL devoted 
to specific pathways (i.e., CLrenal, CLhepatic) are compared to 
data from in vivo mass balance investigations. Based on 
the discrepancy between simulated results and in vivo val-
ues, tissue-specific CLint values within the model are modi-
fied until simulated outputs reflect observed PK data. One 
area of contention with regard to this approach is its lack 

of specificity for quantifying CLint for tissues which exhibit 
high drug-specific extraction ratios. CL values for tissues 
with highly efficient drug removal capacities approximate 
a maximum value, the tissue perfusion rate. Consequently, 
use of the latter approach would not provide definitive esti-
mates for such tissues, since CLint values ranging from a 
predefined lower limit to infinity would simulate CLs that 
approximate tissue blood flow.

Table 2 Inputs and clinical scenarios for the tutorial example

Model Structure Comments

Standard small molecule Sixteen organs or tissues; four-compartments per  
organ (blood cell, plasma, interstitial, and intracellular)

Inputs

  LogP 2.0 Rodgers and Rowland42 algorithm used to calcu-
late tissue:plasma partition coefficients (Kp) � fu (albumin) 0.3

 � pKa, base 8.5

  Molecular weight 328 g/mol

  Water solubility 1 mg/ml

  �Tablet and suspension dissolution 
half-time

20 min (modeled as a Weibull function)

  Adult clearance 0.9 l/h/kg; 3% renal (GFR only), 97% UGT2B7 (hepatic)

  Albumin ontogeny

Post natal age (years)
0.001 0.01 0.1 1 10
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or
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lb

um
in

0.86

0.88

0.90

0.92

0.94

0.96

0.98

1.00
Symbols are individuals from the simulated  
pediatric population

  GFR ontogeny/variability

Post menstrual age (years)

0.001 0.01 0.1 1 10

G
F

R
 (

m
l/m

in
/1

00
 g

 k
id

ne
y)

0

10

20

30

40

50

60 Based on Rhodin et al.39 (symbols are  
individuals from the simulated pediatric  
population)

  UGT2B7 ontogeny/variability
1.6

1.4

1.2

1

0.8

O
nt

og
en

y 
fo

r 
U

G
T

2B
7

0.6

0.4

0.2

0
1 2

Post menstrual age (year(s))

3 4

From PK-Sim (shaded area is the geometric SD)

Clinical scenarios

  Adult i.v. infusion 2 mg over 30 min

  Adult tablet 50 mg

  Pediatric formulation: suspension 0.1 mg/ml

  Adult population (n = 100) 18–55 years (uniform distribution)

  Pediatric population (n = 10,000) 0–17 years (uniform distribution)

Variability

  Gastrointestinal parameters As described in Willmann et al.27

  Organ volumes and blood flows As described in Willmann et al.30

GFR, glomerular filtration rate.
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Parameterization of CLint for tissues employing nonen-
zymatic processes utilize in vivo PK data, as previously 
described. For renal excretion, drug elimination may transpire 
as a result to three competing processes: glomerular filtra-
tion, tubular reabsorption (TR), and tubular secretion (TS). 
As an approximation, drugs exhibiting renal CLs less than 
(or equal to) the product of glomerular filtration rate (GFR) 
and fraction unbound in adults (i.e., CLR ≤ GFR(adult) × fu(adult)) 
are denoted to be excreted through the combined effects of 
glomerular filtration and TR. In contrast, when CLR > GFR(adult) 
× fu(adult), drug elimination is a composite of both glomerular 
filtration and TS. For drugs excreted via glomerular filtra-
tion and TR, quantitation of intrinsic CL due to glomerular 
filtration (CLint,GF) and fractional tubular reabsorption (fTR) is 
required. CLint,GF can be estimated as GFRadult/Kidney Mas-
sadult where GFRadult represents the GFR denoted in vivo (i.e., 
120 ml/min). Estimation of fTR is conducted by comparing 
model-based simulations to observed data from mass bal-
ance studies. Simulations are parameterized using a default 
value for fTR along with other adjunctive tissue-specific CLint 
values, including the aforementioned CLint,GF. Model outputs 
are then compared to in vivo PK data sets, and fTR is modi-
fied until simulated results align with observed renal excre-
tion values (i.e., fe). For drugs excreted via a combination of 
glomerular filtration and TS, estimation of both CLint,GF and 
CLint,TS is required. CLint,GF can be estimated as depicted 
above. Estimation of Clint,TS also follows a simulation-based 
methodology as described previously. In such cases, simu-
lations are initially parameterized using a default value for 
CLint,TS along with other tissue-specific CLint values including 
CLint,GF. Unless in vivo information capable of quantifying the 
contribution of TR is available (i.e., mass balance studies 
conducted in conjunction with TS inhibition), fTR is assigned 
a value of 0, indicating that drug does not undergo TR. Sim-
ulations are utilized to refine CLint,TS estimates until model 
outputs reflect observed renal excretion values (i.e., fe).  
Although different modalities for CL determination have been 
described, regardless of what method is applied, simulated 
results should approximate the contribution of each CL path-
way noted within in vivo mass balance studies.

To provide initial estimates of i.v. drug disposition, a naïve 
adult PBPK model is constructed based on the above- 
mentioned parameters including drug-specific inputs,  
quantitative measures of CL, and fraction protein binding (fu) 
(Table 2). Preliminary comparisons between observed data 
sets, depicting mean concentration–time estimates from sev-
eral subjects, and PBPK simulations can be approximated 
by parameterizing the model toward the demographics of the 
average subject within the specific in vivo study. Using this 
approach, models are additionally parameterized using logis-
tic parameters such as dose, duration of infusion, and length 
of sampling interval from the in vivo investigation.

Evaluation of model performance is discussed in a forth-
coming section but can, in part, be ascertained by super-
imposing mean observed data onto the simulation results 
(i.e., plasma- or tissue-specific concentration time data). 
To ensure that the model encapsulates intricacies depicted 
in vivo, assessment of the simulations’ ability to replicate 
the general trends within the observed concentration–time 
curves (i.e., bumps, valleys, peaks, etc.) is conducted. At this 

point, visual predictive inspections of curve shape provide 
the most important determinant of the model’s capacity to 
describe the rate and extent of distribution in vivo.

MODEL EVALUATION

Evaluation of the predictive performance of PBPK model-
ing techniques is an area that lacks consistency within the 
literature. Most assessments of PBPK model-predictive per-
formance primarily focus on the discrepancy between model-
derived outputs and independent observed PK data sets.5,9,11 
For estimating PK measures such as AUC, Cmax, tmax, and 
ke, a variety of metrics including absolute average fold error 
(AAFE), root mean squared error (RMSE), mean ratio(obs/pred), 
and proportion of estimates falling within a specified fold-
error (i.e. 2-fold, 3-fold etc.), have been utilized.5,9,11 Metrics 
used to assess the predictive performance of model esti-
mated concentration-time values also vary considerably and 
include the use of qualitative visual predictive checks (VPC)11 
and quantitative discrepancy indexes such as mean relative 
deviation25 and median absolute percentage error.9 Though 
frequently utilized to assess the validity of model structure 
and parameterization, comparisons between model predic-
tions and external PK data sets should represent only one 
facet of PBPK model evaluation. A more holistic approach for 
model evaluation has been proposed.26 The method estab-
lishes a level of confidence in PBPK models directed toward 
their end use (i.e., fit for purpose) and assesses three funda-
mental aspects: biological basis, reliability in terms of uncer-
tainty/sensitivity analyses, and comparison of simulations 
with observed data.

Evaluation of the biological basis of the model assesses 
fidelity of model structure and parameters. In order to 
establish confidence in model outputs, PBPK model struc-
ture and parameterization should demonstrate biologically 
plausibility. For example, in whole-body PBPK models, 
organ perfusion rates should sum to a biologically rational 
estimate of cardiac output within the organism. Evaluations 
of model reliability are based on appropriate uncertainty 
and sensitivity analyses. Uncertainty analyses focus on 
the spread or distribution of simulated outputs due to the 
ambiguity surrounding input parameters and model struc-
ture. For sensitivity analyses, the emphasis is shifted toward 
quantitatively describing the influence of model parameters 
on simulated outputs. Uncertainty analysis can be con-
ducted in an iterative manner by incorporating the potential 
range of ambiguous parameter values into simulations. The 
level of uncertainty is then determined based on the ratio 
of the 95th percentile to the median value for the selected 
dose metric (i.e., AUC, C

max, etc). Quantitative measures 
of sensitivity can be attained by varying individual model 
parameters by 1% and evaluating the impact on simulated 
outputs.27 Based on the relationship between uncertainty 
and sensitivity, inferences regarding model reliability can 
be attained. For example, models possessing parameters 
with high uncertainty and high sensitivity can be defined 
as having low reliability. In contrast, models possessing 
parameters with either low uncertainty or low sensitivity 
are considered to have a high reliability. The final aspect 
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of evaluating model-predictive performance is the compari-
son of model simulations with observed data. As described 
previously, a variety of approaches have been utilized for 
this purpose including visual predictive checks and quan-
titative discrepancy indexes. Although qualitative in nature, 
visual predictive checks can be utilized to instill confidence 
in the model by ensuring that simulations replicate the 
general trends (i.e., peaks, bumps, and valleys) present 
within the data. In addition, inspection of diagnostic plots 
of residuals can be useful for detection of systematic model 
errors. Summative discrepancy indexes provide quantita-
tive measures of the average difference between simulated 
and observed data and can provide a basis for parameter 
optimization or selection of one model over another. The 
ability of models to reproduce independent observed data 
sets, not used in the model-building process, is typically 
considered the standard comparative measure of model fit, 
though consideration of in vivo variability associated with 
observed data is also imperative. Due to intra- and interindi-
vidual variation along with small sample sizes, data derived 
experimentally tends to encompass innate variability. In 
acknowledgment of this, a common practice is to empiri-
cally denote models exhibiting mean estimates falling within 
twofold error from observed PK data as acceptable.26 An 
alternative approach which utilizes the mechanistic nature 
of PBPK models is the incorporation of population-based 
simulations (Pop-PBPK).10,24,27 Pop-PBPK simulations pro-
vide a rational framework to account for biological variables 
known to impart PK variation among a population. As such, 
simulations permit for a priori estimates of the magnitude 
of in vivo PK variability to be generated. Assessments of 
model performance using Pop-PBPK techniques may be 
achieved by examining the proportion of observed data fall-
ing within a 90% prediction interval of simulated results.10

Benchmark values addressing questions such as “What 
fold error between observed and model-predicted values is 
appropriate?” or “What proportion of observed data should 
fall within a specified interval using Pop-PBPK models?” 
have not yet been defined within the context of pediatrics. 
One approach is to transpose the frequently utilized twofold 
error metric from adults into pediatric-based simulations.28 
Since this approach is empiric in nature, its use within vulner-
able populations such as pediatrics should be contemplated 
on a case-specific basis and should include consideration 
the model’s end use and the pharmacologic moiety. For 
example, models designed to inform optimal first dosages 
within pediatrics or models devoted to compounds known 
to exhibit narrow therapeutic indexes in adults may require 
more restrictive benchmark values compared to the empiri-
cally based approach.

WORKFLOW FOR MODEL REFINEMENT

Model refinement is necessary when simulated profiles fail 
to follow observed profile trends. All inputs are available for 
refinement; however, only those with high uncertainty should 
be modified and then, only within a reasonable range of bio-
logical plausibility.

Reasons for a lack of fit with regard to profile shape include, 
but are not limited to:

1.	 Undefined or poorly defined transporter activity
2.	� Tissue: plasma partition coefficients ill defined due to 

uncertainty in algorithm inputs (e.g., lipophilicity, fu) or 
algorithms not applicable to drug–organ interaction 
(e.g., specific unaccounted binding within an organ as 
algorithms assume reversible binding)

3.	 Presence of enterohepatic recirculation that was not 
incorporated

4.	 CL modeled as first-order process(es) but enzyme satu-
ration affects profile shape

5.	 Structural deficiencies such as compartments modeled 
as well stirred where organ uptake is actually perme-
ability rate limited. Other structural deficiencies include 
the assumption of well-stirred organs for highly bound 
compounds where plasma and interstitial space must 
be separately defined within the model.

Prior knowledge is used to inform the choice of inputs that 
are available for refinement. An investigators brochure, pub-
lished literature, and/or grey literature may be used for this 
selection. A hypothesis testing process ensues which can 
yield valuable information about the importance of structural 
(e.g., separation of organ compartments) components and/
or can be used to determine the value of uncertain inputs if 
outcomes are sensitive (e.g., gastric emptying time in a fed 
state). Some common refinements include lipophilicity (i.e., 
for K

p and/or permeability refinement), addition of permeabil-
ity surface area products for defining organs as permeability 
rate limited, and the addition of transporter activity. Regard-
less of the refinement made, biological plausibility should be 
maintained, justification should be provided, and assump-
tions should be stated. Model refinement may be completed 
throughout the adult PBPK model development process, and 
the final adult PBPK structure and drug-specific inputs are 
held constant in pediatric PBPK model creation.

DEVELOPMENT OF ADULT i.v. POPULATION MODEL

In addition to providing mean estimates of drug disposition, 
PBPK modeling techniques can be extended to provide 
estimates of PK variability within a population. Character-
ization of the breadth of interindividual PK variability along 
with relevant covariates within the population is essential to 
multiple disciplines including clinicians, drug developers, and 
regulatory organizations. Depending on the magnitude of PK 
variations induced by the presence of particular covariates, 
altered dosages or drug avoidance may be suggested.29 
Population-based assessments provide a platform for identi-
fying influential covariates and may be conducted in either a 
top-down or bottom-up approach.

Top-down approaches, such as population PK (Pop-PK) 
models, are data driven requiring PK data from large groups 
of diverse subjects. In contrast, bottom-up approaches 
such as Pop-PBPK models permit for a priori identification 
of potential covariates in the absence of in vivo data. Such 
models leverage existing knowledge pertaining to the rela-
tionship between patient-specific physiology and anatomy 
with drug ADME, thereby allowing for estimation of inter-
subject variability.24 To facilitate this assessment, Pop-PBPK 
models incorporate virtual populations into their framework. 
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Virtual populations attempt to encompass the biological 
diversity present among in vivo subjects.30,31 For example, 
the algorithm proposed by Willmann et al.30 incorporates 
demographic databases, such as the National Health and 
Nutrition Examination Survey III study, to create virtual sub-
jects based on predefined parameters such as race, age, and 
gender. Virtual subjects are developed based on correlations 
between the aforementioned parameters and demographic 
data such as height and weight.

To facilitate PK assessments using whole-body PBPK 
models, virtual subjects require implicit descriptions of physi-
ology and anatomy (i.e., system-specific parameters) includ-
ing organ weights, relative blood flows, and in the case of 
absorption models, gastrointestinal transit rates. Algorithms 
used in virtual population creation introduce stochastic 
variation into the parameter selection process, providing a 
basis of interindividual variability among the population. As 
a result, each virtual subject is defined by a complete set 
of unique system-specific parameters. Stochastic variation 
may be introduced to several parameters including, but not 
limited to, organ volumes and blood flows, plasma protein 
concentrations, glomerular filtration, and enzyme/transporter 
concentrations. Stochastic parameter selection is typically 
facilitated by a Monte Carlo process incorporating known 
distributions (i.e., uniform, log-normal, and normal) of vari-
ability surrounding each parameter. Generated subjects can 
be further restricted by specifying anthropometric (i.e. weight, 
height, and BMI) ranges of interest, permitting for assessment 
of PK variability within specific subgroups.30 This information 
can serve to identify potentially vulnerable segments of the 
population or those who may exhibit poor responsiveness.

In the context of facilitating prospective development of 
pediatric PBPK models, creation and assessment of adult 
population i.v. models allow investigators to establish confi-
dence based on an understanding of PK variability in adults. 
Unlike the mean adult i.v. model, where assessments focus 
on comparisons to averaged PK data sets, assessments 
of Pop-PBPK models require PK data that reflect the extent 
of in vivo variability (i.e., individual data or mean ± SD). 
Models are developed using logistic parameters (i.e., dose, 
infusion rate, etc.) from observed i.v. studies. Drug-specific 
parameters from the finalized mean adult i.v. model are 
maintained. Virtual populations based on the demograph-
ics (i.e., race, age, and gender) of subjects examined within 
in vivo investigations describe system-specific parameters. 
Model evaluation is conducted using a similar approach as 
discussed previously but with an increased emphasis on 
variability. Based on simulations from the virtual population, 
a 90% prediction interval can be constructed. Favorable 
assessments are based on 90% of data points from individ-
ual subjects being within the 90% prediction interval. It is the 
authors’ standard practice to accept 80–90% since residual 
variability is not implicitly input into the model. Depending on 
PK data available for model evaluation, alternative assess-
ments of model performance may be applied. For example, 
assessment of the extent to which observed data expressed 
as mean ± SD corresponds with simulated results. If simu-
lations fail to appropriately reflect observed data, model 
refinement may be considered. In the context of Pop-PBPK 
models, refinement focuses on distribution type and variance 

of parameters. Model refinement with regard to i.v. Pop-PBPK 
models offer an opportunity to examine the effects of CL and 
distribution variability in the absence of absorption, a notori-
ously variable process. An additional point for consideration 
is the use of individual simulations based on an average sub-
ject to refine central estimates of model parameters. Once 
population influences are incorporated, it is not unusual to 
see mean curves deviate from the finalized i.v. simulation 
pertaining to the average subject as log-normally distributed 
inputs within the population tend to pull means either way.

Figure 2 presents the geometric mean plasma concentra-
tion vs. time profile along with the SD of a simulation of 100 
virtual adults administered 2 mg of a hypothetical drug over a 
30-min i.v. infusion. “Observed data” has been overlaid onto 
the simulated data. The mean and SD are acceptably simu-
lated by the model which allows for continuation to the oral 
model.

DEVELOPMENT OF THE ORAL ADULT PBPK MODEL

Integration of mechanistic oral absorption models into the 
aforementioned modeling framework has increased the 
applicability of PBPK simulations toward a wider variety of 
pharmaceutical formulations. Simulation of oral absorption 
requires a quantitative understanding of not only the pro-
cesses governing absorption but also the processes of distri-
bution, metabolism, and excretion. Based on the previously 
developed i.v. disposition model, the latter three processes 
were addressed, subsequently providing a suitable venue to 
assess the process of absorption in isolation. In this regard, 
PBPK simulations of adult oral absorption can be conducted 
by maintaining previously established drug- and systemic-
specific parameters from the finalized i.v. model.

To facilitate a priori predictions of oral absorption, most 
commercially available modeling platforms (i.e., Gastroplus, 
PK-Sim, and SimCyp) utilize a multicompartmental 
approach, as originally described by Yu et al.32 These mod-
els depict the gastrointestinal lumen as a series of compart-
ments, each representing a defined physiologic segment and 

Figure 2  Simulated (lines) and observed (symbols) plasma 
concentrations of a hypothetical drug administered as a 30-min i.v. 
infusion of 2 mg to an adult population.
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include the stomach, duodenum, jejunum, ileum, cecum, 
and colon. Drug movement between compartments is facili-
tated via linear transfer kinetics. Compartmental pH values, 
fluid volumes, transit rates, and surface areas are ascribed 
based on regional specific (i.e., jejunum vs. ileum) anatomic/
physiologic values. Within each compartment, drug may 
persist in several forms including unreleased, undissolved, 
dissolved, degraded, metabolized, and absorbed.33 With the 
inclusion of empiric as well as mechanistic dissolution func-
tions, models are able to simulate a variety of drug release 
profiles. Unless contrary evidence suggests otherwise, 
absorption of dissolved drug is typically assumed to tran-
spire via passive absorption.2 Estimates of effective intestinal 
permeability can be attained using a variety of approaches 
including in vivo–based perfusion systems (i.e., Loc-I-Gut), 
in vitro–based assays (i.e., PAMPA, Caco-2), or in silico algo-
rithms which provide estimates based on compound physi-
cochemistry.34 Models can also include phenomena such as 
luminal degradation by including compartment-specific deg-
radation rate constants.33 Lastly, with the addition of entero-
cytic compartments adjacent to the aforementioned luminal 
compartments, models can incorporate processes such as 
gut metabolism and active transport (influx/efflux) provided 
data regarding regional distribution of intestinal enzymes and 
transporters are available.

Simulation of oral drug disposition for an average study 
subject may be generated by integrating a mechanistic 
oral absorption model into the PBPK modeling framework. 
Parameters obtained from the finalized i.v. disposition model 
should be maintained within the simulation, while parameters 
pertaining the oral absorption model should be modified to 
reflect the gastrointestinal anatomy/physiology of an average 
adult subject. Oral simulation results (i.e., plasma concentra-
tion–time profiles) can then be compared to in vivo data sets 
depicting mean absorption profiles using the previously sug-
gested evaluation criteria. Due to the inherent biological com-
plexity of the oral absorption process, mismatches between 
model-predicted and observed data may occur for several 
reasons. These deviations can be attributed, but not limited 
to, inadequate parameterization of active transport, gut wall 
metabolism, luminal degradation, and gastrointestinal tran-
sit; complexation of drug with nutrient components such as 
calcium and iron; inaccurate predictions of solubility and 
intestinal permeability; and mismatches between in vitro and 
in vivo disintegration/dissolution rates. In order to address 
the discrepancy between model-generated estimates and 
observed data, parameters pertaining to the oral absorption 
model may be modified based on compelling evidence. Using 
this approach, observed data is utilized to optimize the model 
provided a rational basis for parameter refinement can be 
justified and parameters are maintained within the realm of 
biological plausibility. Following model refinement, if required, 
the finalized adult oral absorption model is attained.

In order to provide an assessment of intersubject PK 
variability associated with oral drug delivery, Pop-PBPK 
oral simulations can be conducted. In addition to the previ-
ously discussed variability incorporated within the whole-
body PBPK model, these simulations impart additional 
variation around oral absorption parameters. These param-
eters include luminal pH; gastrointestinal transit (i.e., small 

intestinal transit time, gastric emptying time); intestinal radius, 
length, and effective surface area; and expression levels of 
intestinal enzymes and transporters. Evaluation of the Pop-
PBPK oral absorption model may be conducted using a simi-
lar approach as described in previous sections. Simulations 
which accurately depict observed data under a variety of dos-
ing scenarios including different dietary states (fed, fasted), 
formulations, and doses (nonlinearities) increase confidence 
in the model structure and parameterization.

Figure 3 presents the geometric mean and 90th percentile 
of plasma concentrations following administration of a 50 mg 
tablet in the same virtual individuals as were used in the 
i.v. simulations. Eighty-six percent of the individual plasma 
concentrations are within the simulated 90th percentile and 
curve shape was well described. As a result, this constituted 
the final adult PBPK model and was deemed sufficient for the 
purposes of scaling to pediatrics.

DEVELOPMENT OF PEDIATRIC PBPK MODELS

As depicted within the presented workflow, formation of pedi-
atric PBPK models follows adult model development and 
evaluation. This retrograde approach ensures investigators 
establish a firm understanding of ADME in adults, a relatively 
homogenous cohort, before extrapolating findings toward 
developmentally diverse pediatric age groups. In cases 
where the developed PBPK model does not display appropri-
ate agreement with adult PK data, subsequent development 
of pediatric models is cautioned as misconceptions depicted 
within the adult model are likely to be mirrored in pediatrics. 
By ensuring adult models adequately reflect observed PK 
data, the workflow provides an appropriate framework by 
which preexisting PK data from adults can be leveraged for 
the purposes of pediatric model development.

Development of pediatric PBPK models following appropri-
ate adult model characterization entails several assumptions 
which should be stated. First, pathways of CL between adults 
and children are similar. For example, if drug metabolism is 

Figure 3  Simulated (lines) and observed (symbols) plasma 
concentrations of a hypothetical drug administered orally as a 50 mg 
tablet to an adult population. Eighty-six percent of all individual (n = 6) 
observed data points are within the simulated 90th percentile.
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modulated exclusively by CYP3A4 and CYP2D6 in adults, 
both isozymes will be exclusively responsible for drug metab-
olism in children. Second, PBPK model structure is similar to 
adults. Preterm neonates displaying significant arterial shunt-
ing due to the presence of a patent ductus arteriosus may 
preclude this assumption. Third, ontogeny factors are based 
on healthy subjects and do not incorporate any disease-
specific changes. Disease modifiers can be included if known. 
Finally, unless knowledge indicating that variability is a func-
tion of age, variability in terms of anatomy, physiology, and 
biochemistry are considered to be similar between adults 
and children.

To facilitate predictions of pediatric drug disposition, the 
workflow exploits the mechanistic nature of PBPK models to 
establish a rational basis for scaling developed adult simula-
tions toward children. Scaled pediatric models are developed 
based on an understanding that drug-specific parameters 
remain constant, whereas system-specific parameters, 
defining age-dependent anatomy, physiology, and biochem-
istry, change. Pediatric anatomic values (i.e., organ weights) 
are derived from databases published by organizations such 
as the International Committee on Radiological Protection.35 
Physiological values such as organ blood flows are typically 
ascribed assuming a similar proportion of cardiac output as 
denoted in adults though parameterization could also be 
informed using in vivo pediatric data.7,25 Tissue composition 
(i.e., % interstitial, % intracellular, and % vascular) is com-
monly considered similar between adults and children for 
most organs with the exception of adipose and muscle tis-
sue, where neonates and infants are denoted to have higher 
proportions of interstitial space.7,25 Tissue composition–
based algorithms can account for altered tissue compositions 
and are typically utilized to estimate pediatric-specific Kp val-
ues. In order to effectively parameterize the oral absorption 
model, information characterizing age-dependent changes in 
gastrointestinal anatomy and physiology including pH, lumi-
nal fluid composition, intestinal fluid volume, gut surface area 
and length, transit times, and enzyme/transporter localiza-
tion and abundance is required. Unfortunately, many of these 
parameters have yet to be fully elucidated within pediatrics. 
Where information gaps lie, assumptions regarding the oral 
absorption process within children are required. Assumptions 
characterizing similarities between pediatric and adult oral 
absorption parameters may be utilized, where appropriate, 
but should be explicitly stated within the model description. 
Estimates of the proportion of drug-plasma protein binding 
in children can be derived from adult values based on knowl-
edge of age-specific changes in plasma protein concentra-
tions. Plasma proteins responsible for the majority of drug 
binding in humans, albumin and α-1-acid glycoprotein, are 
present in lower concentrations at birth relative to adult val-
ues. Quantitative equations characterizing age-dependent 
concentrations of binding protein have been reported by 
McNamara and Alcorn36 and can be incorporated to com-
pute fraction unbound within the pediatric PBPK model. 
Information regarding transporter-mediated drug disposi-
tion in terms of tissue-specific transporter abundance and 
ontogeny of specific transporter systems is currently limited. 
Correspondingly, scaling of adult models utilizing transporter-
mediated processes toward pediatrics should be conducted 

using up-to-date literature resources with assumptions being 
implicitly stated. Provided sufficient information is available, 
relative transporter activity expressed in the form of CLint may 
be scaled from adults toward pediatrics using age-dependent 
protein concentration or activity levels.

CL is chiefly responsible for modulating in vivo drug expo-
sure (i.e., AUC) and, as such, requires careful consideration 
in terms of scaling toward children. For parameterization 
of pediatric PBPK models, a variety of CL scaling methods 
have been purported. Allometry has been widely utilized for 
this purpose but, as previously discussed, fails to account 
for maturational processes. As such, use of allometry should 
be restricted for scaling toward pediatric age groups where 
the eliminatory processes responsible for drug removal have 
reached full maturation.15 Within the pediatric PBPK model 
development process, allometric principles are innately 
incorporated since PBPK models define organ size/volume 
using age-dependent relationships. Assuming adult CLint 
values, defined as the tissue-specific drug removal capacity 
(per gram of tissue) in absence of binding and flow limita-
tions, remain constant within children is conceptually similar 
to allometric CL scaling, as presented in Eq. 1. As such, this 
approach assumes alterations in CL between adults and chil-
dren are solely attributed to differences in organ size (i.e., 
growth).

Physiology-based CL scaling techniques account for dif-
ferences between adults and children in terms of biochemis-
try, anatomy, and physiology. As a result, these approaches 
account for both changes in growth and maturation of CL 
mechanisms and may be utilized to estimate CL in neonates 
and infants, where eliminatory pathways are typically imma-
ture. Compared to allometry, physiology-based CL scaling is 
computationally complex, requiring predefined knowledge of 
the contribution of each specific CL pathway in adults as well 
as quantitative information regarding the pathway ontogeny. 
For compounds where hepatic metabolism plays a significant 
role, pediatric CL

int (per gram of tissue) can be estimated 
from adult values using the following equation37:

CL = OSF CL int,child int,=1 i ii  ,adult
n� (4)

where OSFI is the isozyme-specific ontogeny scaling factor 
and CLint,i,adult is the isoenzyme-specific intrinsic CL (per gram 
of tissue) as denoted in adults. OSF(s) quantitatively describe 
age-dependent maturational changes, relative to adult values, 
in enzyme expression or activity per unit of hepatic tissue. 
Scaling factors are a function of both age and the specific 
enzyme system responsible for metabolism.37,38 As denoted 
in the previous equation, incorporation of maturational func-
tions such as OSF(s) inherently require quantitative CL infor-
mation regarding the contribution of each specific isozyme 
in adults. Such data, as derived from in vivo mass balance 
studies or in vitro metabolic assays, provides a rational basis 
for proportioning hepatic CLint into isozyme-specific CLint val-
ues. This process is essential for scaling of adult hepatic CLint 
toward children as isozyme ontogeny typically differ from one 
another with regard to time to reach adult functional levels.

For compounds where renal processes (i.e., glomerular 
filtration or secretion) play a significant role in total elimina-
tion, maturation of renal function must be considered in order 
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to adequately estimate CL in children. When the combined 
effects of glomerular filtration and TR represent the prin-
ciple mechanisms of renal elimination in adults (i.e., CLR ≤ 
GFR(adult) × fu(adult)), pediatric CLint due to glomerular filtration 
(i.e., CLint,GF(child)) can be estimated based on developmental 
changes in GFR as depicted below38:

CL = 
GFR
GFR

CL int,GF(child)
child

adult
int,GF adult× ×( ) ((1 f )TR−� (5)

where GFRchild and GFRadult are age-specific GFRs in the chil-
dren and adults, respectively, CLint,GF(adult) is the intrinsic CL 
attributable to glomerular filtration in adults, and fTR is the frac-
tional tubular reabsorption. Quantitative equations describ-
ing age-dependent alterations in GFR have been previously 
published 39,40 and can incorporated into the above equation. 
Rhodin et al.39 is the most comprehensive and is suggested 
by the authors. Since information pertaining to the ontogeny 
of tubular reabsorption has not been explicitly explored, fTR 
values, as determined in adults, are assumed to remain simi-
lar in children. If tubular secretion contributes to renal elimi-
nation within adults (i.e., CLR > GFR(adult) × fu(adult)), estimation 
of pediatric renal CL will require scaling of both glomerular 
filtration and tubular secretion. Scaling of CLint attributable to 
tubular secretion toward pediatrics can be conducted using 
the following equation38:

CL = 
TS
TS

CL int,TS(child)
child

adult
int,TS(adult)×� (6)

where TSchild and TSadult are age-specific tubular secretions 
rates in the children and adults, respectively, and Clint,TS(adult) 
is the intrinsic CL attributable to tubular secretion in adults. 
Age-dependent estimates of functional tubular secretion (i.e., 
TSchild and TSadult) using, for example, the equations published 
by Hayton40 can be incorporated within the above equation to 
derive pediatric-specific CLint,TS values. If, however, quantita-
tive information denoting the CLint (or Vmax and Km) and ontog-
eny of the specific transporter systems responsible for TS 
are available, age-dependent effects of transporter-mediated 
drug disposition can be determined using the equations pre-
viously described for scaling of hepatic processes.

By considering the aforementioned ontological changes to 
anatomy, physiology, and biochemistry, pediatric PBPK mod-
els capable of assessing the impact of growth and maturation 
on drug PK can be developed. For compounds where sys-
temic exposure serves as a surrogate marker of drug effect, 
assessment of PK alterations within the plasma may suffice. 
However, for compounds whose effects are mediated via tis-
sue-specific exposure or complex drug–receptor interactions, 
pharmacodynamic (PD) models can be integrated within 
whole-body PBPK simulations. Use of integrated PBPK-PD 
models provides investigators with a system to explore the 
impact of maturational changes in both PK and PD on the 
efficacy of drug treatment. For the purpose of this tutorial, it is 
assumed both adults and children exhibit a similar exposure–
response relationship. As such, estimates of plasma expo-
sure (i.e., AUC) were deemed as appropriate measures of 
drug efficacy for all age groups.

Using a similar procedure as described for adults, virtual 
populations of various pediatric age ranges can be created 
to provide assessments of age-specific drug disposition 

(i.e., Pop-PBPK). Additionally, simulations can be utilized 
to explore age dependencies of key PK indices such as 
C

max, Tmax, or AUC. If PK data depicting drug administration 
to children exists, evaluation of model performance may be 
conducted as described in previous sections pertaining to 
adult models. Since the pediatric age range encompasses 
several developmentally distinct age groups (i.e., neonate, 
infant, toddler, preschool child, school-aged child, and ado-
lescent), evaluation of model performance is typically seg-
mented accordingly. If simulations do not display appropriate 
agreement with observed PK data, model refinement using a 
similar modality as described for adult models may be con-
sidered. In addition, advanced techniques such as Markov 
chain Monte Carlo simulations can be employed to refine 
input parameter distributions using experimental data from 
pediatric subjects.41 Due to the prominence of functional 
immaturities concerning several eliminatory pathways, mem-
bers of the youngest cohorts (i.e., neonates and infants) 
commonly display unique age-specific alterations in drug PK 
when compared to older children. As such, models which 
establish appropriate fits within older children do not nec-
essarily provide insight into said model’s ability to facilitate 
depictions of PK in progressively younger age groups.

PRESENTATION OF RESULTS

The choice of how to present the simulation data is greatly 
dependent on the question being addressed. Leong et al.19 
presents the application of pediatric PBPK models that were 
submitted to FDA between 2008 and 2011. Dose predictions, 
clinical trial design optimization, facilitation of covariate anal-
ysis (e.g., What patient-specific data should be collected dur-
ing the clinical investigation?), and quantification of enzyme 
ontogeny for a benchmark drug are examples of pediatric 
PBPK model applications.19 As a consequence of these 
diverse applications, the presentation of results is greatly 
varied, and only a handful will be presented here.

Figure 4  A box whisker plot of the maximum concentration (Cmax) 
vs. age class for a hypothetical drug administered orally as a 1 mg/
kg dose formulated as a suspension (0.1 mg/ml) to a pediatric 
population (n = 10,000; ages 0–17 years). The boundaries of the 
box indicate the 25th and 75th percentile with the line representing 
the median. Error bars indicate the 90th and 10th percentiles, and 
the symbols indicate outliers.
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Figure 4 displays box plots of age vs. Cmax as derived 
from 10,000 virtual children administered a 1 mg/kg dose 
of a hypothetical drug formulated as a pediatric suspension 
(0.1 mg/ml; Table 2). Other informative plots include body 
weight vs. exposure as a continuous function (Figure 5) or 

box plots for assessing dosing cohorts (e.g., by BMI, weight, 
age, sex, genotype, or any combination of these; Figure 6). 
The R-code and example data sets used for building Figure 6 
can be found in the Supplementary Material.

The aim of the stratification process is again dependent on 
the question being addressed and is limited to those patient-
specific inputs that were included in the pediatric PBPK model. 
Covariates should be chosen based on their clinical applicabil-
ity and ease of clinical assessment. A common model applica-
tion is to derive starting doses for a first-in-pediatric trial with 
doses aimed at achieving the same exposure as a standard 
adult dose in an adult. In this case, the dose determination may 
be dependent on body weight or age with an aim to bin these to 
achieve a median AUC similar to that in adults with a variability 
to match (Figure 6). Variability will drive the number of cohorts 
in the final dosing table. For example, in Figure 6, the variability 
in the first three age cohorts is greater than that in adults which 
is a result of the smaller sample size in these age groups and 
the high rate of change in the ontogeny of processes respon-
sible for ADME. These issues could be addressed through 
incorporating more virtual children in these age groups and/
or having higher resolution in the age bins. Simulations for out-
comes should be discussed with the responsible clinicians as 
they will have restraints not necessarily shared by the mod-
eler. Usually, the end game in dose determination is to derive 
pediatric equivalent doses. This assumes that the exposure–
response relationship is similar to that in adults. In the event 
that the exposure–response relationship changes as a function 
of age or disease and this is known a priori, pediatric doses 
can be determined through Pop-PBPK/PD modeling. In the 
event that this is not known, the model may help in planning 
an adaptive trial where children are followed and the exposure 
response evaluation is completed with the potential for subse-
quent dose modification.

Presentation of results may also include the testing of 
assumptions. When significant assumptions have been 
made—for example, the ontogeny of a transporter is unknown 
and its activity is assumed to be independent of age—a sen-
sitivity analysis should be included to demonstrate the impor-
tance of said assumption. This can be achieved by rerunning 
the pediatric model for the young age cohorts assuming no 
transporter activity and assessing the difference in predicted 
outcomes. By testing at the limits, it is possible to address the 
consequences of the assumption being incorrect.

SUMMARY

In summary, PBPK models can serve to integrate multiple 
levels of information (i.e., in vitro, preclinical, clinical, etc.) to 
elucidate PK changes among children. This tutorial aimed to 
provide the reader with a basic understanding of the work-
flow for developing a pediatric PBPK model and to provide 
examples of PBPK model outputs that may be used to guide 
pediatric clinical investigations.
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Figure 5  Simulation of area under the plasma concentration–time 
curve (AUC) vs. body weight for rivaroxaban administered at 0.143 mg/
kg body weight and formulated as an oral suspension as compared 
with the adult reference population. Simulated data of the pediatric 
population are represented as a geometric mean (blue line) and 90% 
prediction interval (gray shaded area). Simulated data of the adult 
reference population are represented as a geometric mean (thick red 
line) and 90% confidence interval (red shaded area in the background 
of the graph). Expected weight ranges for infants, preschool children, 
children, and adolescents are indicated. Taken from Willmann et al.10

0

500

1,000

1,500

2,000

2,500

3,000

A
U

C
 (

m
g·

h/
l) 

2 20 40

Body weight (kg)

60 80

Preschool children
Children

Adolescents
Infants

Figure 6  A box whisker plot of AUCinf (y-axis) values as a function 
of age class for a given dose (in mg/kg) of hypothetical drug 
administered orally as a suspension to a pediatric population (n 
= 10,000; ages 0–17 years) that would reach equivalent AUCinf as 
a 50 mg tablet in adults. The box is the interquartile range (IQR) 
representing the 25th to 75th percentile. The whiskers represent the 
last point within 1.5 times the IQR of the 25th and 75th percentile. 
Circles represent all points above or below the whiskers. The blue 
dotted line is the geometric mean AUCinf, and the shaded area is the 
90th percentile of adult values. Red dots are the adult individuals.
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