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Stress exposure during early-life development can programme individual brain and physiology.

The hypothalamic-pituitary-adrenal (HPA) axis is one of the primary targets of this program-

ming, which is generally associated with a hyperactive HPA axis, indicative of a reduced nega-

tive-feedback. This reduced feedback efficiency usually results from a reduced level of the

glucocorticoid receptor (GR) and/or the mineralocorticoid receptor (MR) within the HPA axis.

However, a few studies have shown that early-life stress exposure results in an attenuated

physiological stress response, suggesting an enhance feedback efficiency. In the present study,

we aimed to determine whether early-life stress had long-term consequences on GR and MR

levels in quail and whether the effects on the physiological response to acute stress observed in

prenatally stressed individuals were underpinned by changes in GR and/or MR levels in one or

more HPA axis components. We determined GR and MR mRNA expression in the hippocampus,

hypothalamus and pituitary gland in quail exposed to elevated corticosterone during prenatal

development, postnatal development, or both, and in control individuals exposed to none of the

stressors. We showed that prenatal stress increased the GR:MR ratio in the hippocampus, GR

and MR expression in the hypothalamus and GR expression in the pituitary gland. Postnatal

stress resulted in a reduced MR expression in the hippocampus. Both early-life treatments per-

manently affected the expression of both receptor types in HPA axis regions. The effects of pre-

natal stress are in accordance with a more efficient negative-feedback within the HPA axis and

thus can explain the attenuated stress response observed in these birds. Therefore, these

changes in receptor density or number as a consequence of early-life stress exposure might be

the mechanism that allows an adaptive response to later-life stressful conditions.
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Stress exposure during early life has long lasting impacts on both the

structure and function of several tissues associated with a higher risk

of developing health pathologies and behavioural disorders (1–4). The

concept of developmental programming (i.e. permanent changes in

physiology and neural systems following early-life experiences) has

been suggested to explain the negative consequences of environmen-

tal stress exposure during early development. During this program-

ming, environmental adversity experienced by the mother initiates

maternal responses, which in turn affect the development of her

offspring, including the organisation and functioning of specific tis-

sues, especially the brain (2–4). The main focus of research on these

organisational effects has been their role in facilitating higher risk to

later diseases or syndromes (e.g. cardiovascular disease, depression).

However, the environmental matching hypothesis proposes that

developmental programming may prime the offspring to cope better

with stressful conditions and thus may be adaptive when environ-

mental conditions in later life match those experienced during early

stages. The negative consequences of early-life adversity may there-

fore simply result from a mismatch between conditions between

environmental conditions at different life stages (5–7).

One fundamental physiological system that links an individual to

changes in its environment is the hypothalamic-pituitary-adrenal



(HPA) or stress axis (1,7,8). This axis is activated during in both

development and adulthood when a stressor is perceived in the

brain ultimately resulting in the release of glucocorticoid hormones

from the adrenal cortex. The increase in glucocorticoid levels facili-

tates a switch of physiological processes and behaviours from

non-essential activities to those that promote short-term survival,

such as increased locomotion and mobilisation of energy stores.

This response is tightly regulated by a negative-feedback loop at

the level of the hippocampus, hypothalamus and anterior pituitary

to shut the HPA axis down and to return to a homeostatic point,

avoiding the negative consequences of chronically elevated gluco-

corticoids (3,9). The effects of glucocorticoids in the brain, as well

as the tight regulation of the axis, are mediated by two intracellu-

lar receptors: the mineralocorticoid receptor (MR) and the gluco-

corticoid receptor (GR) (10–12). In both mammals and birds, GR

occur everywhere in the brain but are most abundant in the hip-

pocampus and hypothalamus and are also found in the pituitary

gland. MR are mostly found in the hippocampus, and also in the

hypothalamus, and bind glucocorticoids with a five- to ten-fold

higher affinity than GR (11–15). Consequently, MR remain acti-

vated during periods of basal secretion and are involved in the

maintenance of integrity and stability of the HPA axis, primarily

determining stress sensitivity of this axis. MR can also boost the

initial acute stress response and promote behavioural adaptation

to stress during novel situations (11,12,16,17). GR are additionally

recruited when the glucocorticoid levels rise further, preventing the

initial reaction from overshooting by bringing back cells to baseline

levels via inhibition of the HPA axis. They also facilitate the recov-

ery from stress and are involved in the mediation of memory con-

solidation by glucocorticoids (10–12,16). Because both MR and GR

are involved in the regulation of the stress response and in the

negative-feedback loop, it has been proposed that the GR:MR bal-

ance is crucial to maintain homeostasis and its disruption may

compromise stress resilience and affect behaviour (11–13,15–17).

The HPA axis is one of the primary targets of early-life stress

programming in the brain (1,2,4,8,18). High glucocorticoid levels

during early development can permanently alter HPA axis function-

ing via alteration of baseline or stress-induced glucocorticoid levels

and/or negative-feedback during stress recovery. It has been gener-

ally shown that an increase in pre- or postnatal stress programmes

a hyperactive HPA axis, indicative of a reduced negative-feedback

(1–4,8,19–22). However, a few studies have shown that early-life

stress exposure can result in an attenuated physiological stress

response later in life, suggesting enhanced negative-feedback effi-

ciency (23–26). This programming of the HPA axis has been

ascribed to modifications of GR and/or MR expression in the hippo-

campus and other feedback sites (1–3,18). It has been recently

shown in the Japanese quail (Coturnix japonica) that exposure to

early-life stress can permanently program physiology and behaviour

in a potentially adaptive way (26). At the physiological level, prena-

tal stress altered the HPA axis functioning in a way that attenuated

the acute stress response suggesting an increased negative-feed-

back efficiency within the HPA axis (26).

In the present study, we aimed to determine whether early-life

stress had long-term effects on GR and MR levels and whether the

effects on the physiological response to acute stress observed in

prenatally stressed individuals were underpinned by permanent

modifications of the level of both glucocorticoids receptors (MR

and GR) in feedback sites within the HPA axis. In the same quail,

as used previously (26), we measured the relative mRNA expression

of MR and GR in the hippocampus, hypothalamus and pituitary

gland using a quantitative real-time polymerase chain reaction

(PCR). Because prenatal stress resulted in an attenuated stress

response, we predicted that GR expression should be enhanced in

the hippocampus, hypothalamus and pituitary gland, resulting in a

more efficient negative-feedback in prenatally stressed quail. In the

hippocampus, the balance between GR and MR is crucial for resil-

ience from a stressor and an increase in GR level or a decrease in

MR level in the hippocampus could lead to more pronounced

effects of GR, facilitating the recovery from stress (10–12,17). We

consequently hypothesised that the GR:MR ratio should be reduced

in the hippocampus of quail exposed to prenatal stress.

Materials and methods

Experimental manipulations

Prenatal stress was manipulated by injecting eggs with 10 ll of corticoste-
rone (CORT) (concentration: 850 ng/ml; Sigma Aldrich, Poole, UK) dissolved

in sterile peanut oil at the egg apex under sterile conditions on day 5 of

incubation (B). This increased the endogenous CORT concentration in the

yolk within 1.8 SD above control yolks, which was determined by radioim-

munoassay and liquid chromatography-mass spectroscopy and is similar to

previous studies that have increased CORT levels within physiologically rele-

vant ranges (24,27). Control eggs (C) were injected with peanut oil alone.

Chicks of each prenatal treatment were subsequently randomly allocated to

one of two postnatal food treatments: either food removal for 25% of day-

light hours (3.5 h) on a random daily schedule for 15 days from post-

hatching day 4 (F�) or ad lib. food at all times (C). Random removal of

food has been shown to increase stress hormones in birds, without causing

food restriction (28,29). After this postnatal treatment, all birds had access

to ad lib. food (Standard Layer Pellet, BOCM, Wherstead, UK) (26,30). The

present study was part of a large experiment looking at the long-term and

trans-generational effects of pre- and/or postnatal stress exposure in the

Japanese quail. For GR and MR expression in this F1 generation, we

focused on females because one of the aims of the project was to look

how the maternal developmental environment affects offspring phenotype.

We thus had four treatment groups: prenatal control/postnatal control (CC;

n = 6); prenatal control/postnatal food- (CF�; n = 6), prenatal CORT/post-

natal control (BC; n = 12); and prenatal CORT/postnatal food- (BF�;

n = 6). All experimental procedures were carried out under Home Office

Animals (Scientific) Procedures Act project licence 60/4068 and personal

licence 70/1364 and 60/13261.

Tissue collection and quantitative real-time PCR

At the end of the experiment, when females were 246.5 � 1.4 (SEM) days

old, they were sacrificed by injection of an overdose of Dolethal (Vetoqui-

nol, Buckingham, UK). Brains were quickly removed (within 1 min) then

pituitary glands that lie on the underside of the brain in the centre of the

floor of the cranium were also removed using forceps (within 1 min after

brain removal) and placed on dry ice until frozen, then stored at �80 °C.
To perform the dissections, the brains were placed ventral side up into a

brain matrix (Roboz Surgical Instrument Co., Gaithersburg, MD, USA) with a
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1-mm graduated scale placed on a mixture of dry and wet ice to keep the

brain frozen and a 2-mm thick coronal section was cut using two razor

blades positioned approximately 4 mm from the rostral pole and 2 mm

from the cerebellum. The plane of cutting was adjusted to match as closely

as possible the plane of the chicken brain atlas (31). Then, when still frozen,

two equivalent bilateral punches (1 mm in diameter each) were obtained

from the hippocampus and a single punch was obtained from the medial

hypothalamus that spanned the third ventricle. Each sample was stored

separately at �80 °C.
Total RNA was extracted and purified using Absolutely RNA Miniprep

kits (Agilent Technologies, Santa Clara, CA, USA) in accordance with the

manufacturer’s instructions. The quantity and integrity of RNA were

assessed with a RNA 6000 Pico assay kit for hippocampus and hypothala-

mus and a RNA 6000 Nano kit for pituitary gland using the Agilent 2100

Bioanalyzer (Agilent Technologies) in accordance with the manufacturer’s

instructions. The mean RIN number of these samples is 8.2 � 0.1 (range

5.2–10). First-strand cDNA was synthesised using Affinity Script Multiple

Temperature cDNA Synthesis kits (Agilent Technologies) and diluted to

obtain a final concentration of 25 pg/ll. This resulting cDNA was used to

perform quantitative real-time PCR (qPCR) for the genes of interest [GR

and MR and the house-keeping gene b-actin (BA)] for the different brain

regions using gene-specific primers. BA was determined as the best candi-

date house-keeping gene for our samples (M = 0.30, other candidates

M ≥ 0.34) using a chicken (Gallus gallus) GeNorm kit (Primerdesign, South-

ampton, UK). Specific PerfectProbeTM primers (Primerdesign) were designed

based on published chicken nucleotide gene sequences and were validated

using quail cDNA by Primerdesign. These primers amplified single products

with no dimer pairs. GR sense primer: TAATGACCGTGGTGACCTTTTA, anti-

sense primer: TTTCTTGCTTTATGCCAGGAGTA (GenBank accession number

NM_001037826). MR sense primer: GTAGAATAGAGGACAGATGAACTTTT,

anti-sense primer: ACCCAGAGAGAACACTACAGAT (GenBank accession num-

ber NM_001159345). All qPCR reactions were run in duplicate and were

performed in 20-ll reactions containing 10 ll of 2 9 Brilliant III Ultra-

Fast QPCR Master Mix (Agilent technologies), 1 ll of specific PerfectP-

robeTM primer (Primerdesign) at a working concentration of 300 nM, 0.3 ll
of reference dye, 3.7 ll of RNAse/DNAase-free water and 5 ll of appropri-
ate cDNA along with no-template controls and blanks. Reactions were car-

ried out on a Stratagene MX 3005P (Agilent Technologies) at 95 °C for

3 min, then 50 cycles of 95 °C for 20 s and 60 °C for 20 s. From stan-

dard curves generated with known concentration of cDNA, we determined

that the amplification efficiency [Eff = 10(�1/slope)�1] was higher than

95% for GR, MR and BA. Therefore, we used the delta Ct method (DCt) to
quantify the relative expression of GR and MR relative to BA: 2�(Ct GR/MR

– Ct BA) (32).

Statistical analysis

To compare the relative expression of both receptors in the different

regions of the HPA axis, we used a generalised linear model (GLM) fitted

with a gamma law because the residuals of linear models were not nor-

mally distributed, using the GENMOD procedure in SAS, version 9.4 (SAS Insti-

tute Inc., Cary, NC, USA). Receptor type (GR or MR), tissues (hippocampus,

hypothalamus and pituitary gland) and their interaction were used as

fixed factors. To determine the consequences of exposure to early-life

stress on the GR:MR ratio, MR and GR relative expression, we also used

GLMs fitted with a gamma law because the residuals of linear models

were not normally distributed. Pre- and postnatal treatments and their

interactions were specified as fixed factors. For multiple comparisons,

Tukey–Kramer adjustment was applied to obtain a corrected value.

P < 0.05 was considered statistically significant. Data are presented as the

mean � SEM.

Results

GR and MR mRNA expression in the different HPA axis
regions

The expression of both receptors (MR and GR) was different

between the three HPA axis regions (v² = 15.80, d.f. = 1,189,

P = 0.0004) (Fig. 1), with higher expression in the pituitary gland

compared to both other tissues (Z> 3.39, P < 0.002). The expression

of both receptors was different within each tissue (receptor 9 tis-

sue: v² = 11.71, , d.f. = 1,189, P = 0.003) (Fig. 1). In the hippocam-

pus, MR was more highly expressed than GR (Z = 2.58, P = 0.01).

In the hypothalamus, GR was highly expressed compared to MR

(Z = 2.01, P = 0.04). Finally, in the pituitary gland, MR and GR rel-

ative expression did not differ (Z = 1.04, P = 0.30).

Effects of early-life stresses on receptor mRNA expression

Hippocampus

Mineralocorticoid receptor relative mRNA expression in the hippo-

campus was significantly reduced in postnatally stressed compared

to postnatal control quail (v² = 6.11, d.f. = 1,23, P = 0.013). More-

over, MR relative expression was significantly influenced by the

interaction between both early-life treatments (prenatal treat-

ment 9 postnatal treatment: v2 = 4.10 d.f. = 1,23, P = 0.0428).

Post-hoc comparisons were not significant; however, it appears that

MR expression was the highest in control individuals exposed to

none of the stresses (CC) compared to individuals exposed to one

or both early stresses (Fig. 2). GR mRNA relative expression in the

hippocampus was not affected by any of early-life stresses

(Table 1). The GR:MR ratio was significantly affected by early-life

stress, with a lower ratio in prenatal control quail compared to
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Fig. 1. Mean � SEM relative gene expression of the mineralocorticoid

receptor (white) and glucocorticoid receptor (black) in the hippocampus,

hypothalamus and pituitary gland in all females. Different lowercase letters

indicate a significant difference between tissues. *Statistically significant dif-

ference within tissues.
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prenatally stressed individuals (v² = 9.60, d.f. = 1,27, P = 0.002)

(Fig. 3).

Hypothalamus

In the hypothalamus, relative MR mRNA expression was increased

following exposure to prenatal stress (v² = 4.53, d.f. = 1,30,

P = 0.033) (Fig. 4), although there were no effects of postnatal

treatments or any interaction between the two stages (Table 1).

There were no main effects of either early-life treatment on GR

expression, although there was an effect of the interactions

between both treatments (v² = 5.02, d.f. = 1,31, P = 0.025). GR

expression was higher in individuals only exposed to prenatal stress

(BC) than in individuals exposed to none (CC) or both stresses

(BF�) (Z > 2.05, P < 0.041) (Fig. 5).

Pituitary gland

In the pituitary gland, GR relative expression was significantly

higher in quail prenatally exposed to CORT (B: 0.014 � 0.0022)

compared to prenatal controls (C: 0.0093 � 0.0012) (v² = 6.16,

d.f. = 1,24, P = 0.013). There were no effects of postnatal treat-

ment or of the interaction between both treatments (Table 1). There

were also no effects of either of our treatments on MR expression

(Table 1).

Discussion

In the present study, we showed that developmental stress had

long-term effects on GR and MR receptor mRNA expression in the

HPA axis in birds. These permanent modifications of MR and GR

expression in the HPA axis are in agreement with a more efficient

Table 1. Statistical Results for the Effects of Prenatal Stress, Postnatal

Stress Treatments and Their Interaction of the Generalised Linear Models for

Mineralocorticoid Receptor (MR) and Glucocorticoid Receptor (GR) Relative

Gene Expression in the Hippocampus, Hypothalamus and Pituitary Gland.

Bold values are significant effects.

Treatment

MR GR

v² d.f. P-value v² d.f. P-value

Hippocampus Prenatal 0.01 1,23 0.925 0.78 1,32 0.378

Postnatal 6.11 1,23 0.013 0.14 1,32 0.711

Interaction 4.10 1,23 0.043 0.51 1,32 0.477

Hypothalamus Prenatal 4.53 1,30 0.033 0.08 1,31 0.781

Postnatal 0.00 1,30 0.976 1.65 1,31 0.198

Interaction 2.89 1,30 0.089 5.02 1,31 0.025

Pituitary gland Prenatal 0.09 1,31 0.770 6.16 1,24 0.013

Postnatal 0.04 1,31 0.838 0.19 1,24 0.660

Interaction 0.35 1,31 0.553 0.60 1,24 0.437

Bold values are significant effects.
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Fig. 2. Mean � SEM relative expression of the mineralocorticoid receptor

(MR) in the hippocampus of quail in the four treatment groups: pre-hatch-

ing and post-hatching control (CC), pre-hatching control and post-hatching

unpredictable food availability (CF�), pre-hatching corticosterone-treated

and post-hatching control (BC) and both treatments (BF�). *Statistically sig-

nificant difference.
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Fig. 3. Mean � SEM glucocorticoid receptor (GR):mineralocorticoid receptor

(MR) ratio in the hippocampus of prenatal control (C) and prenatally

stressed (B) quail. *Statistically significant difference.
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Fig. 4. Mean � SEM relative expression of the mineralocorticoid receptor

(MR) in the hypothalamus of prenatal control (C) and prenatally stressed (B)

quail. *Statistically significant difference.
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negative-feedback and could explain the attenuated physiological

stress response observed in prenatally stressed quail (26).

Both receptor types were found in the hippocampus, hypothala-

mus and pituitary gland, as expected from previous work in birds

(13–15,19,33). In the hippocampus, MR was highly expressed com-

pared to GR, whereas it was the opposite in the hypothalamus. In

the pituitary gland, both receptors were expressed at the same

level. This pattern of relative expression of both MR and GR is in

agreement with the expression pattern usually observed in birds

and mammals (10–15,19,33).

Our early-life treatments had long-term consequences on both

receptors expression levels, although these effects were region spe-

cific. In addition, prenatal stress had the strongest long-term pro-

gramming effects on the HPA axis. In the hippocampus, prenatal

stress exposure was associated with a higher GR:MR ratio and MR

expression was reduced in postnatally stressed quail compared to

controls. By contrast to our hypothesis, GR expression was not

modified in the hippocampus. Consequently, it appears that the

change in the GR:MR ratio in prenatally stressed quail resulted

from the effects of early-life stress on MR expression. In the hypo-

thalamus, both MR and GR were affected by prenatal exposure to

CORT; however, in the pituitary, prenatal stress only affected GR.

Previous work has suggested that the prenatal period is a time of

significant sensitivity to stress (2,12,18). However, the effects of

early-life stress on GR and MR mRNA levels have produced mixed

results. In mammals, prenatal stress usually results in an increased

basal or stress-induced glucocorticoid levels associated with a

reduced GR and/or MR expression. By contrast, prenatal stress can

also be associated with a reduced HPA axis activity as a result of a

higher GR expression (1,18,34). For example, in the guinea pig

(Cavia porcellus), female offspring from mothers exposed to stress

on gestational day 60 showed a reduced adrenal reactivity to an

acute stressor compare to controls, which was related to the higher

GR mRNA level in the hypothalamus measured in these females

(35). It has been proposed that the variability of the results of pre-

natal stress in mammals could be a result of the difference in the

timing of stress exposure relative to birth and the nature of the

prenatal stress (35). In the chicken, it has been shown that prenatal

stress via CORT injection in the eggs resulted in a decrease in GR

protein in the hypothalamus in adulthood but GR mRNA levels

were not affected (36). In the Japanese quail, stress associated with

food restriction between days 4 and 6 after hatching had no

effects on GR mRNA expression in the hippocampus but MR

expression was not determined (37). In the zebra finch (Taeniopygia

guttata), the removal of the mother during postnatal development

decreased GR and MR mRNA levels in the hypothalamus and MR

mRNA levels in the hippocampus and cerebellum (19). However, our

chosen model species is precocial, whereas the zebra finch is an

altricial species. In precocial species, the HPA axis is functional from

at least mid-incubation stage and precocial hatchlings show maxi-

mal HPA responsiveness at hatching (38,39). Chicken and mallard

duck (Anas platyrhynchos) embryos have detectable endogenous

CORT levels and can exhibit a stress response from the second half

of incubation onwards (38,40,41). Conversely, in altricial species, it

is assumed that there is very little prenatal functional development

of the HPA axis and, indeed, several altricial species across a range

of taxa exhibit a hyporesponsive HPA axis during early postnatal

development (42–44). Consequently, it appears to be intuitive that

the findings of the present study suggest that prenatal stress is the

main developmental stage impacting on HPA axis regulation via

modification of GR and MR receptor expression. One potential

caveat of the present study is that we determined GR and MR

mRNA levels but did not determine GR and MR protein expression

in the studied regions. It has been suggested that mRNA and pro-

tein expression measures do not always correlate, as has been

shown in the chicken (36); however, most studies that report both

mRNA and protein expression do suggest good agreement between

GR and MR mRNA and protein levels (45–51). For example, expo-

sure to a single prolonged stress in the rat reduced GR and MR

expression in terms of both protein and mRNA in the amygdala to

the same extent (46). Moreover, the observed changes in GR and

MR expression in the present study are in accordance with the

mediation of the physiological acute stress response (see below).

Therefore, we could expect to find the same modification at the

post-transcriptional level because GR and MR mRNA and protein

levels are usually coupled. However, it would be interesting to

directly investigate whether GR and MR mRNA and protein levels

are coupled in the Japanese quail.

Within the HPA axis, GR and MR play a crucial role in the regu-

lation of baseline and stress-induced glucocorticoids and in the

negative-feedback efficiency (10–12). Stress exposure during early

life has been shown to affect these receptors expression in the

brain. In mammals, both prenatal and postnatal stress exposures

have been shown to decrease hippocampal MR and GR expression,

as well as GR expression in the hypothalamus and in the pituitary

gland. The decrease in both GR and MR mRNA in these different

brain regions results in an altered HPA axis function through alter-

ation of baseline or stress-induced glucocorticoid levels and/or neg-

ative-feedback during stress recovery (2,8,20,34,52,53). By contrast,
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Fig. 5. Mean � SEM relative expression of the glucocorticoid receptor (GR)

in the hypothalamus of quail in the four treatment group: pre-hatching and

post-hatching control (CC), pre-hatching control and post-hatching unpre-

dictable food availability (CF�), pre-hatching corticosterone (CORT)-treated

and post-hatching control (BC) and both treatments (BF�). Different lower-

case letters indicate significant differences.
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some studies have shown that early-life stress exposure can result

in an attenuated physiological stress response associated with an

increased GR and/or MR expression within the HPA axis suggesting

enhanced negative-feedback efficiency (25,35,54). In birds, studies

investigating the consequences of early-life stress on GR and MR

expression in the brain are limited and did not show consistent

effects (see above). In the Japanese quail, we showed that prenatal

stress increased the GR:MR ratio in the hippocampus, GR and MR

expression in the hypothalamus, and GR expression in the pituitary

gland. It has been suggested that an increase in the GR:MR ratio in

the hippocampus should allow an increase in the effects of GR,

resulting in a more efficient feedback and facilitating recovery from

stress (11,17,55). Moreover, an increase in MR and GR expression in

the hypothalamus, as well as in GR expression the anterior pitui-

tary, should enhance HPA axis negative-feedback (4,8,10,11,13,16).

Hence, prenatally stressed quail should exhibit a more efficient neg-

ative-feedback and, consequently, a more attenuated stress

response to an acute stress. Indeed, it has been previously shown

in these quail that prenatal stress exposure resulted in an attenu-

ated acute stress response, with these birds showing a larger

decrease in CORT level between 10 and 30 min after capture com-

pared to control individuals (26). Therefore, modifications of both

GR and MR expression within the HPA axis that we measured after

exposure to prenatal stress can explain the attenuated physiological

stress response observed in these quail via a more efficient nega-

tive-feedback loop.

We showed that MR expression in the hippocampus was decreased

following postnatal stress in the form of unpredictable food availabil-

ity and there was also a tendency for this decrease to occur after any

of our experimental treatments. In the face of a stressful situation,

hippocampal MR mediate the levels of circulating glucocorticoids,

causing heightened evaluation of environmental information and the

selection of the appropriate behavioural response (10,11,16,17).

Reductions in MR mRNA expression in the hippocampus may be

associated with a reduction of the HPA axis sensitivity (11,12,14,16).

In agreement, in rats, the use of an MR antagonist reduced anxiety-

like behaviours and increased exploration behaviour independent of

GR expression levels (56,57). This suggests that a decreased expres-

sion of MR in the hippocampus may reduce the perception of a novel

situation as stressful. In a previous study using the same quail, indi-

viduals exposed to only one early-life stress or to both stressors

showed higher exploration and risk-taking behaviour in a novel envi-

ronment (26). Individuals exposed to prenatal stress took less time to

enter the novel environment and spent more time active in the novel

environment. Individuals exposed to postnatal stress showed a lower

latency to feed from unfamiliar and stressful enclosure. Finally, expo-

sure to both early-life stresses had cumulative effects resulting in a

lower latency to feed in the novel environment, an increased time

spent away from the home cage and next to the stressful feeder, a

higher probability of entering this stressful feeder and an increased

access to food resources (26). Therefore, it is possible that the

decrease in MR expression in the hippocampus may decrease the per-

ception of the new environment as stressful and thus might partly

mediate the increase in exploration and risk taking in these quail.

However, because hippocampal MR expression reduction in two of

these groups did not modify the physiological stress response, these

behavioural changes were not directly mediated by a modification of

glucocorticoid levels and another physiological mechanism should be

involved. Further work is necessary to identify this physiological

mechanism.

In the present study, we showed that exposure to pre- and post-

natal stress resulted in long-term persistent changes in the expres-

sion of GR and MR receptors in different brain regions of the HPA

axis in birds. These modifications of MR and GR expression within

the HPA axis can explain the permanent programming of the HPA

axis in prenatally stressed quail. They may also, at least partly,

explain the programming of behaviour in quail exposed to prenatal

and/or postnatal stress. Therefore, changes of gene expression in

both receptors as a consequence of early-life stress exposure might

comprise the mechanism that facilitates an adaptive response to

later-life environmental conditions.
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