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Metastases to bone occur in about 70% of patients with metastatic prostate and breast cancers. Unfortunately, bone

metastases result in significant morbidity and mortality and treatment options are limited. Thus, significant effort has

focused on understanding the mechanisms that drive tumor dissemination to bone. Bone metastases are typically

characterized by a self-perpetuating ‘vicious’ cycle wherein tumor cells and bone-resorbing cells (osteoclasts) are

locked in a cycle that leads to osteoclast-driven bone destruction and the release of bone-stored factors that in turn

stimulate tumor cell proliferation and survival. To break this ‘vicious’ cycle, potent antiresorptive agents such as

zoledronic acid (ZOL) have been used. However, in the clinical setting, ZOL failed to improve the overall survival of cancer

patients even though it inhibited osteoclast resorptive activity. Thus, other cells in addition to osteoclasts are likely

involved in modulating tumor growth in the bone. The immune system has the ability to eliminate tumor cells.

Nevertheless, tumor cells can acquire the ability to escape immune control. Our recent observations indicated that a

decline in the ability of the immune cells to recognize and kill the tumor drives tumor dissemination to bone even when

osteoclasts are inhibited by potent antiresorptive agents. This review focuses on the antitumor and protumor effects of

various immune cell populations involved in the bone metastatic process. We also discuss strategies to enhance

antitumor immune responses and bypass cancer immune resistance.
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Introduction

Cancer immunosurveillance occurs when the immune system
identifies danger signals such as tumor-specific antigens or
stress ligands on transformed cells that have escaped cell-
intrinsic tumor suppressor mechanisms and eliminates them
before they can establish malignancy.1 Unfortunately, antitumor
immune responses are not always efficient in eliminating
incipient tumors, thus allowing the transformed cells to escape
immune control. Many mechanisms are involved in the escape
phase including intrinsic cancer cell alterations and tumor-
induced immunosuppression.1 The result of the escape phase
is the tumor outgrowth and dissemination to distant sites.

The skeleton is the predominant metastatic site for many
cancers, including breast, prostate and lung cancers.2–5 Tumor
invasion into bone is associated with marked skeletal-related
events (SREs) such as fractures, bone pain, hypercalcemia and
spinal cord compression.6 The current model for the patho-
physiology of bone metastasis centers on the interaction
between tumor cells and osteoclasts (OCs) and is known as the
‘bone tumor vicious cycle’. Tumor cells secrete a plethora of
factors and cytokines that can directly activate the OC or
increase their maturation by stimulating osteoblast-mediated
production of receptor activator of nuclear factor-kB ligand

(RANKL). Once mature OCs start to resorb the bone, they
release bone-stored factors such as tumor growth factor-b
(TGF-b) that further stimulate tumor cell recruitment and
proliferation.7 Thus, potent antiresorptive agents such as
zoledronic acid (ZOL) and the anti-RANKL monoclonal antibody
(Ab) such as Denosumab have become common treatments to
minimize the risk of fractures in patients with bone metas-
tasis.4,8,9 Despite the central role that the OC has in creating a
hospitable niche for tumor colonization and growth in the bone
microenvironment, the antitumor effects of ZOL are con-
troversial. The AZURE trial did not support the use of ZOL as
adjuvant therapy in breast cancer.10 Further analysis indicated
that ZOL adjuvant therapy improved the disease-free survival in
postmenopausal breast cancer patients but not in pre-
menopausal women. These findings were in contrast to another
study, the ABCSG-12 trial, showing improved disease-free
survival in premenopausal early-stage breast cancer patients
receiving ZOL adjuvant therapy.11 Thus, there are likely other
cells/factors modulating the ZOL antitumor effects in addition to
targeting the OCs. Emerging evidence suggests that immune
populations have a critical role in controlling local tumor growth
within the bone microenvironment.12–14 This review aims to
discuss the recent findings showing the antitumor and protumor

Correspondence: Dr R Faccio, Department of Orthopedics, Washington University School of Medicine, Campus Box 8233, 425 South Euclid Avenue, BJCIH 11th Floor,
St Louis, MO 63110, USA.
E-mail: faccior@wustl.edu

Received 25 July 2014; accepted 18 September 2014; published online 3 December 2014

Citation: BoneKEy Reports 3, Article number: 600 (2014) | doi:10.1038/bonekey.2014.95

& 2014 International Bone & Mineral Society All rights reserved 2047-6396/14
www.nature.com/bonekey

BoneKEy Reports | DECEMBER 2014 1

http://dx.doi.org/10.1038/bonekey.2014.95
mailto:faccior@wustl.edu
http://www.nature.com/bonekey


effects of immune cells in skeletal metastases and their
interplay with ZOL.

CD4þ and CD8þ T Cells

During the antitumor immune response, the capture of tumor
antigens by dendritic cells (DCs) induces their maturation and
migration to tumor-draining lymph nodes where DCs cross-
present these antigens to T cells leading to their activation.
Tumor-specific cytotoxic CD8þ Tcells (CTLs) participate in the
killing of antigen-positive tumor cells,15,16 and activated CD4þ

T cells are shown to further facilitate the development of CTLs.
Thus, the presence of activated T cells at tumor sites or in
circulation generally has a good prognostic value. Although the
percentage of T cells in the bone marrow is usually very low,
activated CD4þ and CD8þ T cells have been observed in the
bone marrow of untreated patients with breast cancer,17 thus
suggesting that they may have a protective role in the bone
metastatic dissemination. However, the authors also observed
increased memory T cells in breast cancer patients with dis-
seminated tumor cells (DTCs) in the bone marrow compared
with those without detectable DTCs. As the presence of DTCs is
associated with an increased risk of bone metastasis,18,19

clinical data correlating patient immune profiles with pro-
gression of tumors in the bone need to be further evaluated.

In recent years, a few laboratories have started investigating
the role of T cells in tumor growth in the bone using various
animal models of bone metastases. Our laboratory demon-
strated that both CD4þ and CD8þ T-cell populations exert
antitumor effects in the context of bone metastases.13

Depletion of either cell type, alone or in combination, sig-
nificantly increases the growth and metastatic dissemination of
melanoma tumors in bone. Upon activation, T cells produce
interferon-g (IFNg), a cytokine that has a critical role in antitumor
immune responses. Human T-cell leukemia virus type 1 (HTLV-
1) Tax transgenic mice develop spontaneous bone tumors.
In this tumor model, genetic deletion of IFNg increases
the number of bone tumors.20 This result indicates that IFNg,
mainly produced by HTLV-1-specific T cells (and possibly
natural killer cells), has protective effects on Tax(þ ) tumor cell
growth in the bone.

Activation of T-cell responses via injection of ipilimumab, an
Ab that blocks the inhibitory signal CTLA4 expressed on Tcells,
suppresses tumor growth in the bone following intracardiac
injection of B16 melanoma cells.13 Ipilimumab injection was
approved by the Food and Drug Administration (FDA) in 2011 for
the treatment of unresectable or metastatic melanoma.
However, its protective effects in patients with bone metastases
have only been indirectly evaluated in a recent phase III clinical
trial. This trial included 799 metastatic castration-resistant
prostate cancer (mCRPC) patients with progressive disease
and at least one bone metastasis at the time of inclusion.
Unfortunately, no significant differences between the ipilimu-
mab group and the placebo group were found in terms of overall
survival.21 Nevertheless, an improved 3-month progression-
free survival and a marked reduction in the prostate-specific
antigen were observed in the ipilimumab group.21 Even though
a-CTLA4 Ab has been shown to stimulate T-cell responses in
preclinical or early clinical studies in metastatic prostate or
breast cancers,22–25 the immune activation in this trial needs to
be evaluated to understand why it was not fully successful.

Nevertheless, this first finding suggests that patients with bone
metastases might benefit from T-cell-activating therapies.

Another small study examined the tumor-protective effects of
a T-cell adoptive transfer in breast carcinoma patients, some of
which presented skeletal metastases at the time of inclusion.26

In this pilot study, memory Tcells isolated from the patient bone
marrow were reactivated ex vivo with autologous DC pulsed
with lysate from the MCF-7 breast cancer cells as a source of
tumor antigens and adoptively transferred back into the
patients. Regrettably, patients with bone metastases at the time
of inclusion were not responsive to the treatment. As a high
proportion of immunosuppressive regulatory Tcells (Tregs) was
found in the T-cell cultures of the non-responding patients,
depletion of Tregs before the adoptive transfer should be
considered.

Bisphosphonates, such as ZOL, are commonly used in
patients with skeletal metastases to protect from SREs because
of their OC inhibitory actions. Interestingly, bisphosphonates
have also shown the ability to activate gd T cells. gd T cells,
similar to CD4þ and CD8þ Tcells, can exert antitumor effects.
This T-cell population is found at tumor sites in vivo and can
induce tumor cell cytolysis in vitro.27 Thus, a phase I clinical trial
in mCRPC patients with bone metastases has recently tested
the immunomodulatory effects of ZOL via stimulation of gd T
cells. Patients were divided into two groups, one receiving ZOL
plus interleukin-2 (IL-2) (to further activate T-cell proliferation)
and another receiving ZOL alone.28 A favorable clinical
response, or at least disease stabilization, was observed in six
out of nine patients treated with the combined therapy, and the
results correlated with increased peripheral gd T cells. As
patients treated with ZOL alone did not show gd T-cell
expansion, this study supports the need for IL-2 to maintain gd
T-cell activation in vivo.

The efficacy of ZOL in reducing the incidence of bone
metastases in early-stage breast cancer patients has been
controversial. Meta-analysis studies by Valachis et al.29 did not
show significant differences for the disease-free survival
outcome or incidence of bone metastases. He et al.,30 found
improved bone metastasis-free survival in the ZOL adjuvant
therapy group compared with placebo or delayed ZOL
administration. The reasons for these differential effects are
unknown, and the immune status of these patients has not been
evaluated. We have recently shown that, in animals with bone
metastases, T-cell deficiency reduces the antitumor effects of
ZOL compared with immunocompetent mice.13 Interestingly,
the antiresorptive therapy is still able to suppress tumor-
induced bone loss, but ZOL loses its efficacy in constraining
tumor growth in the bone. This observation has important
clinical implications, as it suggests that reduced T-cell numbers
or impaired T-cell activation might be the cause for the failure of
ZOL to reduce tumor burden and increase survival in breast
cancer patients. More studies to evaluate the role of T cells in
bone metastatic dissemination using clinically relevant models
of bone metastases, such as prostate and breast cancers, need
to be performed.

Regulatory T Cells and T Helper Type 17

Among CD4þ T cells, Tregs are known to be potent immune
suppressors that protect tissues from autoimmune reactions by
suppressing self-reactive cells. Unfortunately, activated Tregs
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have been observed in cancer patients, including with invasive
breast carcinoma, and their presence predicts worse relapse-
free survival and decreased overall survival.31,32 The
mechanisms underlying immunosuppression include produc-
tion of TGF-b, IL-35 and IL-10, and also direct T-cell cytolytic
effects through the release of perforin and granzyme (reviewed
in Linehan and Goedegebuure33). Tregs are also responsible for
impaired gd T-cell proliferation.34 Several studies in animal
models of myeloma, leukemia, sarcoma and lung metastases
have shown the antitumor effects of Treg depletion using anti-
CD25 Ab.35,36 However, opposite results in which Treg
depletion showed no beneficial effects were also reported.37–39

As suggested by the authors, different animal models and/or
cell lines may explain the controversial effects of targeting Tregs
in cancer.

In addition to their immunosuppressive capabilities, infil-
trating Tregs have also been recently shown to be a major
source of RANKL,40 the critical cytokine required for OC dif-
ferentiation. As RANKL has been reported to regulate cancer
cell mobility and bone metastasis,41 it is possible that RANKLþ

Tregs could favor skeletal tumor dissemination.
Clinical studies have correlated the beneficial effects of

antitumor approaches with a reduction in the Treg population.
Low doses of cyclophosphamide, a DNA alkylating agent, have
been shown to selectively deplete Tregs and restore T- and
natural killer cell effector functions in end-stage cancer
patients.42 In another study conducted in metastatic breast
cancer, including in patients with skeletal metastases, the low-
dose regimen of the alkylating agent induced a 40% reduction in
circulating Tregs.43 Despite having only transitory effects on
Treg depletion, patients receiving cyclophosphamide showed
increased tumor-reactive Tcells in blood, and increased overall
survival by B3 months.43 Despite these exciting results,
cyclophosphamide administration has been associated with
increased circulating myeloid-derived suppressor cells
(MDSCs) in animal models and cancer patients44 that might
counterbalance the positive effects of Treg depletion. Thus,
further studies are required to fully characterize the antitumor
effects of this agent and in particular of Treg depletion.

T helper type 17 (Th17) cells are another subset of CD4þ T
cells that might be more harmful than beneficial in the context of
bone metastases. These IL-17 producing T lymphocytes were
shown to induce osteoclastogenesis and bone damage through
RANKL production in the context of inflammatory arthritis.45 To
study the link between arthritis-mediated inflammation and
secondary metastases from breast cancer, Roy et al.46 injected
arthritis-inducing type II collagen in MMTV-PyVMT mice that
develop spontaneous metastases to the lung and bone.
Interestingly, the treatment with anti-IL-17 Ab in those arthritic
mice reduced the percentage of secondary metastases
compared with controls.46 Monteiro et al.47 further investigated
the role of tumor-specific Th17 cells on OC activation in the
context of bone metastases. Tumor-specific Th17 cells pro-
mote OC activation and induce osteolytic bone disease via the
production of RANKL, and the effects in the bone micro-
environment are observed before arrival of tumor cells. Fur-
thermore, tumor-specific RANKLþ Th17 cell adoptive transfer
into mice orthotopically injected with 4T1 breast cancer cells
increases tumor colonization to bone. Surprisingly, the growth
of the tumor at the primary and metastatic sites was not affected
by Th17 adoptive transfer.47 Interestingly, although high IL-17

levels are observed in vivo, its blockade does not abolish the
pro-osteoclastogenic activity of tumor-specific RANKLþ Th17
cells. Nevertheless, another study indicated that human bone
marrow-derived stem cells produce IL-17 and favor skeletal
metastatic dissemination of breast cancer cells overexpressing
IL-17 receptor (IL-17R).48 Altogether, these data suggest that
Th17 cells favor tumorgrowth in the bone, a process that is likely
to be mediated by IL-17 and RANKL production.

Dendritic Cells

DCs are important regulators of T-cell activation by virtue of their
antigen-presenting capacities (APCs). Thus, DC-based vac-
cines have been used in various cancers to induce tumor-
specific T-cell responses. Sipuleucel-Twas the first therapeutic
vaccine approved by the FDA to treat mCRPC. Sipuleucel-T
consists of the injection of ex vivo processed APCs, including
DC, that express a key tumor antigen to stimulate patient’s T-cell
responses. In a phase III clinical trial, men receiving Sipuleucel-
T experienced an overall reduced risk of death and improved
overall survival of B20 months compared with placebo.49

However, the beneficial antitumor effects of Sipuleucel-T in
mCRPC patients older than 65 years remain controversial.50

Results from the ongoing clinical trial combining ipilimumab and
Sipuleucel-T will help define new strategies to improve anti-
tumor immunotherapy efficacy.

Unfortunately, like CTLs, DCs can be the target of immu-
nosuppressive effects used by the tumor. Data suggest that
tumor-infiltrating DCs remain in an immature state, which
suppresses their ability to properly activate T cells.51 Tumor-
infiltrating DCs have also been reported to suppress CD8þ T
cells through the production of TGF-b, nitric oxide, IL-10, VEGF
(vascular endothelial growth factor) and arginase I.52–54 Fur-
thermore, the accumulation of DCs with immunosuppressive
properties at a tumor site promotes the recruitment of other
immunosuppressive populations such as Tregs and MDSCs,
thus supporting tumor progression and metastasis.55

In a recent study, Sawant et al.56 reported elevated numbers
of plasmacytoid DC (pDCs) within the bone of mice inoculated
with 4T1 mammary cancer cells. Depletion of pDCs by PDCA-1
showed reduced lung and bone metastases. Interestingly,
accumulation of Tregs and the monocytic fraction of MDSCs
within the bone was also reduced by PDCA-1 Ab. As Tregs and
MDSCs have been shown to have a critical role in late stages of
tumor development, it would be interesting to test the ther-
apeutic effects of the PDCA-1 Ab on established tumors.

Myeloid-derived Suppressor Cells

MDSCs are a heterogeneous cell population of immature
myeloid cells derived from the bone marrow, which potently
suppress T-cell-mediated antitumor responses. MDSCs are
identified by the coexpression ofam integrin (CD11b) and Gr-1 in
mice and CD11b and CD33 in humans.57–63 Stimulated by
tumor, MDSCs leave the bone marrow and are found in high
numbers in circulation, spleen and tumor sites.64 Up to a 10-fold
increase in MDSC numbers is also detected in the blood of
cancer patients.65 Recent evidence indicates a correlation
between MDSC numbers, stage of malignancy and poor
prognosis, with the highest numbers observed in advanced
cancers with worst prognostic outcomes. Mechanistically,
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MDSCs exert their proneoplastic effects through the release of
small soluble oxidizers, impairment of T-cell/antigen recognition
and depletion of essential amino acids from the local extra-
cellular environment, all ultimately leading to T-cell suppres-
sion.61,62,66,67 In addition, it has been suggested that MDSCs
can induce the expansion of Tregs.68 Furthermore, MDSCs can
favor tumor proliferation through the overproduction of cyto-
kines and angiogenic factors.69 In a recent phase I study with
advanced stage of small-cell lung cancer patients, the addition
of all-trans retinoic acid (ATRA) induced a greater immune
response to DC-expressing p53 vaccine. As ATRA has been
shown to induce MDSC apoptosis, this result suggests that
MDSC depletion may benefit patients with metastatic disease.
Nevertheless, further studies are required to validate these
combined therapies prospectively in patients with bone
metastases.

The role of MDSCs in bone metastases has only become
apparent in recent years. We found that tumor-bearing
PLCg2� /� mice have an increased percentage of MDSCs in the
spleen and bone marrow.12 Interestingly, despite the blockade of
OC differentiation and resorption, tumor growth in the bone of
PLCg2� /� mice wassignificantly higher than that in the WT mice
because of the inhibition of antitumor T-cell responses.13 The
effects of PLCg2 in the T-cell population were not intrinsic, as
PLCg2 is not required for T-cell activity. Thus, modulation of T-cell
responses in this context is likely due to aberrant expansion/
activation of MDSCs. This study indicates that the immune
phenotype of PLCg2� /� animals overrides the requirement for
active OC in promoting tumor growth in the bone.13 These data
support the assumption that immunosuppressive myeloid
populations modulate tumor growth in the bone, independent of
the OC status, by affecting T-cell responses.

However, a role for MDSCs in promoting bone metastases
through OCs has also been proposed. Sawant et al.,70 using an
immunocompetent model of breast cancer bone metastases,
showed that MDSCs isolated from the tumor–bone micro-
environment differentiate into resorbing OCs in vitro.
Remarkably, OC differentiation does not occur if MDSCs are
isolated from tumor-free mice or tumor-bearing animals without
bone metastases.70 Similarly, in the context of multiple mye-
loma (MM), Zhuang et al.71 discovered that MDSCs from tumor-
bearing mice have increased osteoclastogenic potential.
Importantly, coinjection of tumor-challenged MDSCs together
with MM cells leads to increased tumor burden and osteolytic
lesions, an effect that is inhibited by administration of ZOL.
Despite the evidence that MDSCs can become OCs in vitro or
can induce OC activation in vivo when adoptively transferred
into tumor-bearing mice, the study with PLCg2� /� mice, which
have intrinsic OC defects, suggests that MDSCs can enhance
tumor growth in the bone independent of their ability to dif-
ferentiate into OCs.12

Macrophages

Macrophages are mature tissue-resident myeloid cells72 that
originate from circulating bone marrow-derived monocytic
precursors, suggested to be a subset of MDSCs.57,66,73 In
recent years, macrophages have been divided into two major
subsets (proinflammatory M1 and anti-inflammatory M2) with
many other subsets in between. M1 macrophages detect
endogenous danger signals present in the debris of necrotic

cells through Toll-like receptors 2, 5 and 6, intracellular pattern
recognition receptors and the IL-1R. Once activated, M1
macrophages produce high levels of proinflammatory cyto-
kines such as IL-1, IL-6, IL-12, IL-23 and IFN-g,72,74 and
participate in the elimination of tumor cells.75 Distinct from M1,
M2 macrophages, also called tumor-associated macrophages
(TAMs), have a negative prognostic value for the overall survival
in patients with breast, gastric, ovarian and thyroid cancers.76

Tumor-derived factors such as IL-4, IL-10, IL-13, TGF-b and
prostaglandin 2 promulgate an anti-inflammatory macrophage
polarization associated with tumor progression. M2 macro-
phages are characterized by high expression of IL-1Ra (IL-1
decoy receptor), mannose receptors, scavenger receptors and
elevated CCL17 and CCL22 secretion. Activated M2 macro-
phages also produce high levels of IL-10 and TGF-b, which alter
the activation of CD4þ and CD8þ T cells.77 Furthermore, their
ability to express VEGF, matrix metalloproteinase 9 (MMP9) and
other proangiogenic factors has been associated with their
positive role in metastatic dissemination.78,79 Thus, depleting
agents targeting the infiltrating macrophage population are
under intensive investigation for their antitumor effects.

Recent studies using clodronate-coated liposomes, which
target phagocytic cells including macrophages, showed
reduced incidence of bone metastases, as well as a number of
metastatic lesions in the hindlimbs of nude mice injected with
human lung cancer cells.80 In this study, macrophages and OCs
were reduced at the tumor sites. The anti-mouse CD115 mAb
(CSF1R antagonist) reduces the recruitment of TAMs to the
primary sites in the MMTV-PyMT mammary tumor model81 and
decreases the osteolytic bone lesions in nude mice injected
intracardiacally with breast tumor MDA-MB-231 cells.82

Altogether, these studies suggest a role for macrophages in
supporting tumor growth in bone. Nevertheless, so far there is
no direct evidence suggesting that the antitumor effects of
targeting TAMs in the context of bone metastases are not simply
because of the inhibition of OC differentiation.

Neutrophils

Polymorphonuclear neutrophils (PMNs) are the predominant
leukocyte subset in human peripheral blood. They are released
from the bone marrow to the blood as mature cells. PMNs have
been extensively studied for their proinflammatory role in host
defense against microorganisms. Based on similarities in
inflammatory reactions between cancer and infection, PMNs
have recently emerged as new infiltrating myeloid cells in the
tumor microenvironment. Indeed, PMNs represent a significant
proportion of the inflammatory cell infiltrate in human cancers,
leading to the term tumor-associated neutrophils or TANs.83–85

Some in vitro studies reported that PMNs may display antitumor
effects by inducing tumor cell lysis via Ab-dependent cell-
mediated cytotoxicity.86 However, more recent studies in
humans suggest the involvement of TANs in tumor progression
rather than in antitumor responses.83–85 Several groups pro-
posed the neutrophil-to-lymphocyte ratio as a useful prognostic
biomarker for predicting overall survival in metastatic colorectal
cancer87,88 and advanced gastric cancer.89 In addition, neu-
trophils are able to release VEGF and MMP9, two factors
involved in the metastatic process.90 Considering the abun-
dance of neutrophils in bone marrow, their involvement in
favoring tumor growth in bone requires further investigations.
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Conclusion

Unfortunately, there is no curative treatment for bone metas-
tasis. Tumor cells that reach the bone environment are usually
resistant to current antitumor therapeutic approaches. The only
options for these patients are palliative treatments to reduce
pain and prevent additional bone destruction.

The presence of CD8þ tumor-infiltrating lymphocytes in
primary breast tumors correlates with reduced metastatic
invasion and increased overall survival.91 In this review, we
describe several strategies to stimulate therapeutic antitumor
cytotoxic T-cell responses. We also discuss that immuno-
suppressive cells are major obstacles in the development of
active immunotherapy for cancer patients. Unfortunately,
because of the limited number of orthotopic bone metastatic
tumor models available in immunocompetent mice, the role of
immunosurveillance in bone metastasis is understudied. There
are still major holes in the relevance of specific immune cell
types regulating metastasis to bone, especially in breast or
prostate cancer. Additional studies are needed to further
elucidate the key immunosuppressive mechanisms at play and
to identify possible biomarkers that would predict respon-
siveness to therapy. Completion of this task could lead to the
design of appropriate clinical trials based on the identification of
immunosuppressive/promoting phenotypes in a particular
cancer type.
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