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Abstract

Objective—To compare myocardial blood flow (MBF) and myocardial flow reserve (MFR) 

estimates from 82Rb PET data using ten software packages (SPs): Carimas, Corridor4DM, 

FlowQuant, HOQUTO, ImagenQ, MunichHeart, PMOD, QPET, syngo MBF, and UW-QPP.

Background—It is unknown how MBF and MFR values from existing SPs agree for 82Rb PET.
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Methods—Rest and stress 82Rb PET scans of 48 patients with suspected or known coronary 

artery disease (CAD) were analyzed in 10 centers. Each center used one of the 10 SPs to analyze 

global and regional MBF using the different kinetic models implemented. Values were considered 

to agree if they simultaneously had an intraclass correlation coefficient (ICC) > 0.75 and a 

difference < 20% of the median across all programs.

Results—The most common model evaluated was the one-tissue compartment model (1TCM) 

by Lortie et al. (2007). MBF values from seven of the eight software packages implementing this 

model agreed best (Carimas, Corridor4DM, FlowQuant, PMOD, QPET, syngoMBF, and UW-

QPP). Values from two other models (El Fakhri et al. in Corridor4DM and Alessio et al. in UW-

QPP) also agreed well, with occasional differences. The MBF results from other models (Sitek et 

al. 1TCM in Corridor4DM, Katoh et al. 1TCM in HOQUTO, Herrero et al. 2TCM in PMOD, 

Yoshida et al. retention in ImagenQ, and Lautamäki et al. retention in MunichHeart) were less in 

agreement with Lortie 1TCM values.

Conclusions—SPs using the same kinetic model, as described in Lortie et al. (2007), provided 

consistent results in measuring global and regional MBF values, suggesting they may be used 

interchangeably to process data acquired with a common imaging protocol.
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Introduction

Measuring myocardial blood flow (MBF) in absolute terms with PET is nowadays possible 

in clinical routine practice (1). These measurements at rest and under stress can be 

completed fast (2,3), and the reconstructed dynamic images can be analyzed in few minutes 

by the majority of the available software packages (4). The analysis produces left ventricle 

(LV) absolute MBF values measured in mL/min/g at rest and under stress as well as the 

myocardial flow reserve (MFR)—the ratio of stress to rest MBF expressed as a unitless 

number. These values provide unique information regarding diagnosis and monitoring of 

coronary artery disease (CAD), micro-vascular health (5), multi-vessel CAD (6), and risk 

stratification (7). Although recent studies have shown the diagnostic and prognostic value of 

MBF quantification over the standard relative image analysis (6,8,9), and use of the 

generator-produced rubidium-82 (82Rb) (10,11) has brought MBF quantification closer to 

clinic, its integration into clinical routine practice remains under-utilized (5).

To convert imaging data to quantitative MBF parameters, measured radioactivity 

concentration values need to be transformed into milliliters of blood per minute per gram of 

myocardial tissue (mL/min/g) by applying tracer kinetic modeling to dynamic PET images. 

Thus, any numerical value that any professional receives from 82Rb PET is a result of this 

transformation. At least eight different models have been proposed (12-19) for 82Rb. 

Although deKemp et al. (20) and Tahari et al. (21) had addressed the reproducibility of 82Rb 

PET analysis methods for MBF quantification, they had focused on a limited number of 

methods; therefore, a comprehensive comparison study was needed to analyze the current 
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situation in 82Rb PET quantification to help establish common and robust methods to 

support collaborative multi-center clinical trials.

The objective of the RUBY project was to compare all currently available software 

packages that can analyze 82Rb PET MBF studies. The criteria for inclusion were the 

presence of the software in the peer-reviewed literature and the willingness of the 

development team to collaborate according to same ground rules, including blind analysis of 

the same selected patient data sets. The ten software packages compared in the present study 

were Carimas (22), Corridor4DM (23), FlowQuant (24), HOQUTO (19), ImagenQ (25), 

MunichHeart (16), PMOD (26), QPET (26), syngo.MBF (26), and UW-QPP (18) (for the 

detailed treatment see The evaluated software packages in the Appendix; for the side-by-

side comparison of the packages, see Table 1 in Saraste et al., 2012 (4)).

Materials and methods

Image Acquisition

All 82Rb PET studies were performed at the Department of Nuclear Medicine of the 

University Hospital of Lausanne (Switzerland), according to the routine clinical practice. 

The study protocol was approved by the local ethics committee. Written informed consent 

was obtained from each patient prior to the study. Forty-eight patients with suspected or 

known CAD underwent rest and adenosine-induced stress 82Rb PET. Patients were studied 

after an overnight fast and were instructed to refrain from caffeine- or theophylline-

containing products or medications for 24 h before the 82Rb PET study. During the study, 

patients were instructed to breathe normally (for the detailed treatment of the PET image 

acquisition see the Appendix).

Image analysis

The reconstructed rest and stress images were delivered to 10 facilities located in 10 centers 

across seven countries. Each investigator used one software package and, by the rules of this 

project, had been blinded to results of the image analysis of the other readers before they 

shared their results (see Appendix for details of the Study design).

In general, all the 10 packages implemented variations of a one-tissue-compartment model 

(1TCM) (28). Seven packages implemented the modification of 1TCM suggested by Lortie 

et al. in 2007 (14). An eighth package (ImagenQ-Lortie) also used the Lortie et al. 1TCM, 

however with a shorter 2.5-minute dynamic sequence (8x12s, 2x27s) interpolated from the 

original image data. Additionally, one SP—UW-QPP—implemented an axially-distributed 

blood flow model (18), and another—PMOD—used a two-tissue-compartment model 

(2TCM) (12) (Table 1). The image analysis process in all the packages consisted of image 

reorientation, segmentation—of both LV myocardium and cavity—and tracer kinetic 

modeling. Several packages enabled automatic reorientation and segmentation; other 

depended on the operator to influence segmentation of regions where modeling would be 

done (See The evaluated software packages in the Appendix for the details of image 

analysis process).
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Image analysis resulted in estimated values for three parameters: rest MBF, stress MBF and 

MFR on global and regional levels. Global presented the average LV value, and regional 

presented values for the three vascular territories in the regions of coronary arteries: the left 

anterior descending (LAD), left circumflex (LCx) and right coronary artery (RCA). The 

vascular territories were in agreement with the 17-segment AHA standard model (29).

Statistical analysis

The large number of models compared prohibited use of standard approaches to measure 

agreement between two methods (30), so, a custom linear mixed model for the repeated 

measures (31) was applied to the dataset. The statistical model output included two main 

agreement metrics—intraclass correlation coefficient (ICC) and difference between the 

values from the implemented kinetic models—both calculated pairwise. The pairwise 

agreement between models we considered sufficient if the difference was less than 20% of 

the median across all programs, and with the corresponding ICC being equal to or greater 

than 0.75. The criteria for ICC was based on (32), and the difference greater than the 

predefined 20% standard. We also expressed the values as a percent of corresponding 

medians to demonstrate the scale of differences.

The paired t-test (Microsoft Excel 2013) was used to evaluate the differences between 

hemodynamic parameters of patients at rest and at pharmacological stress.

Biplot analysis

To visualize the large number of results of the RUBY-10 comparisons, we developed a 

custom biplot, relating the two defined metrics—the differences and the ICC values of 

compared pairs. In this plot the X-axis shows pairwise differences between the model values 

and the Y-axis shows corresponding pairwise values of 1 minus ICC. In this biplot the origin 

(x=0 and y=0) is the point of identity between the compared values, where there is no 

difference and the intraclass correlation is equal to 1. Thus, values further from the origin 

are less in agreement: either showing increasing difference or reduced ICC. The predefined 

criteria of agreement were defined as a rectangular region on the biplot. Thus, this biplot 

visualizes in an intuitive way our predefined criteria of agreement— the pairs inside of these 

borders were considered to have high pre-defined agreement.

Results

Patient characteristics and hemodynamics

The study population demographic and hemodynamic characteristics are in Table 2. During 

the pharmacological stress test, heart rate increased (P<0.001) while blood pressure (BP) 

showed a mild decrease (P<0.05); resulting in a rate pressure product (RPP) net increase 

(P<0.01). All 48 patients—also the one with 70/30 mm Hg stress BP—tolerated the stress 

test well.

Absolute values of MBF at rest and during adenosine stress and MFR

Average MBF and MFR values (Table 3) showed marked variation between models. 

Differences (at P<0.0001) between highest and lowest values for any studied parameter were 
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always greater than a factor of 1.5 times. For rest MBF the ratios between extreme values 

were 1.7 globally, and ~1.8 regionally; for stress MBF the ratios ranged from 1.9 globally to 

~2.2 regionally; for MFR the ratios were 1.5 globally and ranged from 1.9 to 2.3 regionally.

Agreement of global LV MBF measurements

The biplots (Figure 1) demonstrated several consistent patterns. The first pattern was that 

Lortie et al. (14) implementations (green elements) in eight software packages tended to 

concentrate close to the origin. The second pattern was that Katoh et al. (19) implemented in 

HOQUTO (purple elements) provided results that differed greatly from other models on all 

studied levels for both MBF and MFR. The third pattern was that Sitek et al. (17) 

implemented in Corridor4DM (red elements) provided MBF values much higher than the 

others, both at rest and stress. Note also that Yoshida et al. (13) implemented in ImagenQ 

(yellow elements) was within the predefined difference limits globally at rest (up to 19.8% 

of the median), but showed higher values for stress (up to 35.0% of the median) and for 

MFR (up to 24.5%).

Agreement of regional LV MBF measurements

Regional values generally showed larger differences; up to 41.5% of the median for RCA. 

Also, over half (60%) of ICC values did not fulfill the predefined criteria for agreement. 

Lautamäki et al. (16) as implemented in MunichHeart (pink elements) was within the 

predefined limits globally for MBF and MFR values, also regionally in the LAD and LCX, 

but had somewhat larger differences in RCA (up to 28.5%), and almost all (97%) of the ICC 

values did not fulfill the criteria of agreement.

Herrero et al. (12) implemented in PMOD (brown elements) exhibited similar pattern to the 

Lautamäki model: all the global differences were below the predefined limit, as well as the 

regional differences except for the RCA values, which were up to 48.3% of the median, yet 

again almost all the ICC values (97%) did not fulfill the criteria of agreement.

Differences using El Fakhri et al. (15) as implemented in Corridor4DM (light blue elements) 

were within the predefined limits globally and regionally, with the exception of MFR in the 

RCA where the difference was 30.0% of the median. ICC values in 38% of comparisons 

were below predefined limits; however, discarding Yoshida, Lautamäki and Herrero models, 

ICC values fulfilled the agreement criteria in 80% of remaining comparisons.

Differences between Alessio model (18), as implemented in UW-QPP, and the other models 

were generally within the predefined limits, yet occasionally were above: 23.5% of the 

median at rest and 22.5% at stress on the global level. Differences for MFR were low, yet in 

RCA, the difference was 25.7% of the median comparing to ImagenQ. Almost all (95%) of 

the ICC values were > 0.75.

Agreement of LV MBF measurements for Lortie 1TCM

Since the Lortie model (14) was the most commonly applied model in the evaluated 

software packages, specific biplots for inter-Lortie comparisons were created and are 

displayed in Figure 2, red elements demonstrate the implementations of the model in UW-
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QPP (red squares) and ImagenQ (red triangles) that were added later to the RUBY project. 

Globally, all the stress differences were well within the pre-defined limits of agreement < 

20% of the median value, and the majority of rest differences were also within this limit 

(except for the ICC values comparing with ImagenQ-Lortie). Similar patterns were observed 

regionally: the majority of stress MBF values were well within the predefined limits. 

However, in general, regional differences seemed to be larger in the RCA region. Values of 

the largest differences between implementations of the 1TCM of Lortie et al. (14) are shown 

in Table 4.

Discussion

RUBY-10 is the first and currently the only study aimed at comparing all existing software 

tools—used both in clinical cardiology and in research setting—for analyzing MBF and 

MFR with the most widely used cardiac PET tracer—82Rb.

The positive finding of our study is that the 1TCM model described by Lortie et al. (14)— 

commonly found in most PET analysis programs—provided results generally close enough 

to be used interchangeably, if dynamic time binning protocols are the same. We must 

emphasize that without an absolute reference standard—such as microsphere data—we 

cannot infer the diagnostic or quantitative accuracy any of the methods considered. Despite 

this, our results do demonstrate that applying the same kinetic model to the same 82Rb PET 

data, the received MBF and MFR values are independent of the software package within the 

specified agreement tolerances.

The negative finding is that different kinetic models currently used in 82Rb PET produce 

different values for the same PET data. The finding is not new: in 2005, Khorsand et al. 

found differences comparing 1TCM with 2TCM for 13N-ammonia PET (33). New is the 

magnitude of possible differences: in the referred study, global differences were up to 13% 

for MBF and up to 26% for MFR, our results demonstrate that for 82Rb PET global 

differences can be up to 90% for MBF and 50% for MFR. Regional differences can be up to 

130% for both MBF and MFR.

The causes of differences can vary. In some cases, smoothing of the data can result in higher 

MBF (34) for factor-analysis-based methods such as Sitek et al. (17) and El Fakhri et al. 

(15) in Corridor4DM, and minimal filtering is recommended for improved MBF estimates. 

In other, the difference in prompt-gamma corrections (PGC) for 82Rb between the PET-CT 

scanner used to perform the current study and the PET studies used originally to develop 

HOQUTO could be the cause of the difference (35). Notwithstanding the causes, the 

practical implication is clear: values of MBF or MFR presented without reference to the 

kinetic model cannot be directly compared, neither for pooling of patient data, nor for 

following up same patients.

Two metrics, derived from our statistical model, were used to indicate the agreement—ICC 

and differences between the compared MBF and MFR values. The benefit of using ICC was 

clear: it avoids the limitation of standard correlation coefficients—often met in comparison 

studies— when a linear relationship is mistaken for agreement. However, like other 
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correlation coefficients, ICC depends on the range of variables measured, and this can 

explain its lower value for rest MBF and MFR compared to stress. The choice of limits of 

agreement is critical, and for ICC we used recommended (32) values—a cutoff for excellent 

agreement at over 0.75. For the differences, the choice of appropriate limit is not that 

straightforward, and we chose to use <20% difference in studied parameters as acceptable, 

as it is similar to the test-retest repeatability of 20-25% for rest MBF and MFR reported 

recently using 82Rb PET (36). Increasing the number of compared models geometrically 

increases the results, which makes the analysis and display of these results challenging. For 

the measured global and regional values there were 2520 differences (210*(3+9)) and 1260 

ICC values; listing all these values is impractical. The biplot binds these values, and with 

predefined cutoffs informs on the relative agreement of the model results. Therefore, the 

developed biplots enabled to handle the complexity of the data inherent in a cross-

comparison of this scale.

The analysis of a dynamic PET scan goes through several steps—reorientation, myocardial 

segmentation, selection of the input function, kinetic modeling, and polar plot generation—

each of which could significantly affect the results. We designed our study to simulate the 

clinical routine practice as much as possible and treated the workflow inside each software 

package as a “black box” being only interested in input—the patient PET images—and the 

output—the results in milliliters (MBF) or ratio units of MFR. As all the studied software 

packages were operated either by their developers or under their close supervision, we 

believe that the tools were used appropriately.

Limitations

The most significant limitation of this study is that there was no gold standard used and thus 

no claim of quantitative accuracy of a particular model can be inferred by these results. 

Another consideration is that the ImagenQ analysis used interpolated dynamic image frames 

to produce a dataset compatible with this implementation of the Lortie model. The shortened 

dynamic sequence used by ImagenQ may tend to exaggerate any differences from later 

uptake and washout frames that were used by the other Lortie models. Lastly, one of the 

limitations of the study can be considered the fact that one software tool, ImagenQ, was 

added after the preliminary results had been already received. The same approach led to 

inclusion of the two Lortie models: UW-QPP and ImagenQ, which were implemented after 

receiving preliminary (study average) results of RUBY. These decisions were made for the 

sake of comprehensiveness since it would have been practically impossible to repeat the 

study de novo, so we chose to include these analyses in the primary results. However, these 

analyses were still performed blinded to the individual results of the other software 

programs.

We do not consider a limitation the fact that we used only 82Rb data coming from one 

centre, acquired on one scanner, reconstructed with one algorithm, etc., because introducing 

these new variables into our combinatorial study would have lead to practical impossibility 

to carry out the project.
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Conclusions

Myocardial blood flow and myocardial flow reserve values obtained by 82Rb PET must be 

interpreted together with information on their computational origin. The most important 

such information may not be the software program used to obtain these values, but rather the 

mathematical tracer kinetic model implemented within the software. The most widely 

implemented model for 82Rb PET is the one-tissue-compartment model published by Lortie 

et al. (2007) available in eight software tools out of the studied ten. When different 

implementations of this kinetic model are used to analyze the same data, the results appear 

to be independent of the particular software program utilized. The quantitative blood flow 

results agree well between these analysis programs and may be used interchangeably for the 

benefit of large multi-center trials.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Cross-comparison of results from all implemented models in 10 software tools
The X-axis for REST and STRESS is difference in MBF values (mL/min/g), for MFR in 

unitless ratios; Y-axis is always 1-ICC. The x-range of the shaded green area represents ± 

20% of the median value
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Figure 2. Cross-comparison of results from implemented Lortie models in eight software tools
The X-axis for REST and STRESS is difference in MBF values (mL/min/g), for MFR in 

unitless ratios; Y-axis is always 1-ICC. The x-range of the shaded green area represents ± 

20% of the median value.
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Table 1

The eight kinetic models implemented in ten software packages of RUBY-10

Retention One-tissue compartment Two-tissue compartment Axially-distributed

Yoshida 
et al. 
1996

Lautamaki 
et al. 2009

Sitek 
et al. 
2000

Lortie 
et al. 
2007

El 
Fakhri 
et al. 
2009

Katoh 
et al. 
2012

Herrero et al.1992 Alessio et al 2013

Carimas +

Corridor4DM + + +

FlowQuant +

HOQUTO +

ImagenQ + +

MunichHeart +

PMOD + +

QPET +

syngo MBF +

UW-QPP + +
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Table 2

Patient characteristics

Number of subjects 48

Number of males (% of total) 35 (73%)

Age, yrs. (range) 63±12.7 (33-87)

Weight, kg (range) 79± 15.3 (48-116)

Body mass index, kg/m2 (range) 27.0±4.78 (16.0-41.7)

Symptoms 36 (75%)

Angina 28 (58%)

Dyspnoea 27 (56%)

Family history of cardiovascular disease 14 (29%)

Known CAD 24 (50%)

Previous myocardial infarction 15(31%)

Received procedures 20 (42%)

Coronary artery bypass graft surgery 5 (10%)

Percutaneous coronary intervention 17 (35%)

Hypercholesterolaemia 29 (60%)

Arterial hypertension 38 (79%)

Diabetes mellitus 10 (21%)

Currently smoking or ex-smoker 28 (58%)

Hemodynamics at rest

Heart rate, beats/min (range) 76±17.0 (49-135)

Systolic blood pressure, mm Hg (range) 136±22.3 (94-212)

Diastolic blood pressure, mm Hg (range) 71±13.3 (46-110)

Rate pressure product, mm/min (range) 10400±2870 (6000-18900)

Hemodynamics at pharmacological stress

Heart rate, beats/min (range)
85±15.6

*
 (48-135)

Systolic blood pressure, mm Hg (range)
131±21.1

†
 (70-183)

Diastolic blood pressure, mm Hg (range)
68±15.1

†
 (30-115)

Rate pressure product, mm/min (range)
11200±2870

‡
 (6100-21600)

Values are number (%) or arithmetic mean ± SD

*
p<0.001 vs. rest

†
p<0.05 vs. rest

‡
p<0.01 vs. rest
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Table 4

Largest differences between software packages implementing Lortie et al. (2007)

Difference (absolute)
† Difference (percent of median SW name SW name at P value ICC

GLOBAL Rest 0.15 13.7 C4DM FQ 0.0008 0.874

Stress 0.30 13.5 PMOD ImagenQ 0.0019 0.837

MFR 0.28 13.7 QPET ImagenQ 0.0068 0.835

LAD Rest 0.25
22.0

* C4DM FQ <0.0001 0.869

Stress 0.32 14.7 PMOD FQ 0.0020 0.892

MFR 0.33 17.0 FQ UWQPP 0.0010 0.689

LCx Rest 0.15 13.7 ImagenQ C2 0.0016 0.533

Stress 0.22 10.8 C4DM UWQPP 0.0356 0.922

MFR 0.25 12.6 PMOD ImagenQ 0.0134 0.768

RCA Rest 0.14 13.5 C4DM QPET 0.0039 0.854

Stress 0.56
24.5

** PMOD ImagenQ <0.0001 0.782

MFR 0.51 24.0 QPET ImagenQ 0.0001 0.834

†
Differences between MBF values are in units of mL/min/g; differences between MFR are in unitless ratios

*
In LAD there are two values > 20% of the corresponding median, both involving FQ

**
In RCA (both stress and MFR) there are three values > 20%; all three involve ImagenQ.
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