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We theoretically and numerically study the elastic properties of
hard-sphere glasses and provide a real-space description of their
mechanical stability. In contrast to repulsive particles at zero
temperature, we argue that the presence of certain pairs of
particles interacting with a small force f soften elastic properties.
This softening affects the exponents characterizing elasticity at
high pressure, leading to experimentally testable predictions.
Denoting P(f )∼ f θe , the force distribution of such pairs and ϕc

the packing fraction at which pressure diverges, we predict that
(i) the density of states has a low-frequency peak at a scale ω*,
rising up to it as D(ω)∼ω2+a, and decaying above ω* as D(ω)∼ω−a

where a= (1− θe)=(3+ θe) and ω is the frequency, (ii) shear modu-
lus and mean-squared displacement are inversely proportional
with 〈δR2〉∼1=μ∼ (ϕc −ϕ)κ, where κ=2− 2=(3+ θe), and (iii) con-
tinuum elasticity breaks down on a scale ℓc ∼1=

ffiffiffiffiffi
δz

p
∼ (ϕc −ϕ)−b,

where b= (1+ θe)=(6+ 2θe) and δz= z−2d, where z is the coordi-
nation and d the spatial dimension. We numerically test (i) and
provide data supporting that θe ≈ 0:41 in our bidisperse system,
independently of system preparation in two and three dimen-
sions, leading to κ≈ 1:41, a≈0:17, and b≈ 0:21. Our results for
the mean-square displacement are consistent with a recent exact
replica computation for d=∞, whereas some observations differ,
as rationalized by the present approach.
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The emergence of rigidity near the glass transition is a funda-
mental and highly debated topic in condensed matter and is

perhaps most surprising in hard-sphere glasses where rigidity is
purely entropic in nature. The rapid growth of relaxation time
around a packing fraction ϕg ≈ 0:58 suggests that metastable
states have appeared in the free-energy landscape, and that ac-
tivation above barriers is required for the system to flow (1). This
scenario is presumably what mode-coupling theory captures (2,
3) and can be rationalized via density functional theory (4) and
via the replica method (5). Recently a real-space description of
mechanical stability and elasticity in hard-sphere glasses has
been proposed (6, 7), which is most easily tested at large pres-
sure, deep in the glass phase. It is based on two results. First, in
elastic networks and athermal packings of soft spheres (8–10),
mechanical stability is controlled by the mean number of con-
tacts per particle, or coordination z (as already discussed by
Maxwell in ref. 11), and the applied compressive strain e (10). As
one may intuitively expect, increasing coordination is stabilizing,
whereas increasing pressure at fixed coordination is destabilizing.
Second, within a long-lived metastable state the vibrational free
energy of a hard-sphere system can be approximated as a sum of
local interaction terms between pairs of colliding particles, which
are said to be in contact. On a time scale that contains many
collisions, at high packing fraction the interaction follows ap-
proximately V ðhÞ≈−kBT log h, where h is the time-averaged
distance between two adjacent particles (6, 7). This directly leads
to an effective force law f ðhÞ≈ kBT=h and allows one to map
a hard-sphere system near the random close packing ϕc to a
zero-temperature elastic network. These two sets of results yield
a stability constraint on the microscopic structure of hard-sphere

glasses, which in practice appears to lie very close to saturation
(6, 7, 12). Such marginal stability implies the abundance of very
soft elastic modes, as confirmed empirically (6, 7, 12–16), and
fixes the scaling behavior of elasticity as jamming is approached
(7). In particular the particles’ mean-squared displacement was
predicted to follow hδR2i∼ ðϕc −ϕÞκ with κ= 1:5 (7) instead of
the naive κ= 2, which would hold in a crystal: Particles in the
glass fluctuate much more than the size of their cage (defined as
the typical distance between particles), due to the presence of
collective soft modes.
Very recently a replica calculation (17, 18) predicted κ= 1:41574

in infinite dimensions, close but different from the prediction of
refs. 6 and 7. At ϕc it also predicted for the force distribution
Pðf Þ∼ f θf with θf = 0:42311 and for the gap distribution gðhÞ∼ h−γ

with γ = 0:41269. Some of these latter results are consistent, and
some differ, from an earlier analysis based on the stability of
jammed packings (at ϕc) toward changes of their network of
contacts (19, 20). In these works γ was argued and numerically
shown to be related to the force distribution exponents θe and
θℓ, characterizing respectively two kinds of contacts at low forces
(20) (see Hard Spheres). Here we propose a resolution of these
issues: Heterogeneity in contact strength was neglected in refs. 6
and 7, but the prevalence of weak forces in hard-sphere systems
corrects scaling exponents and leads to the scaling relation
κ= 2− 2= ð3+ θeÞ, consistent with the result of ref. 17, if θf = θe in
dimension d=∞. We compute the associated modification in the
scaling of elastic properties as ϕ→ϕc. Furthermore, we argue
that some key properties of packing differ in finite and infinite
dimensions, so that θf = θℓ in d= 2; 3 while θf = θe in d=∞. In
general, our approach leads to a description of the structure of
packings in terms of four exponents related by three scaling relations.
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How a liquid becomes rigid at the glass transition is a central
problem in condensed matter physics. In many scenarios of the
glass transition, liquids go through a critical temperature be-
lowwhich minima of free energy appear. However, even in the
simplest glass, hard spheres, what confers mechanical stability
at large density is highly debated. In this work we show that to
quantitatively understand stability at a microscopic level, the
presence of weakly interacting pairs of particles must be in-
cluded. This approach allows us to predict various nontrivial
scaling behavior of the elasticity and vibrational properties of
colloidal glasses that can be tested experimentally. It also gives
a spatial interpretation to recent, exact calculations in infinite
dimensions.
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This work is organized as follows. In Elastic Networks, we
present a variational argument for the density of vibrational
modes in weakly coordinated networks with stiffness heteroge-
neity. We also use scaling arguments to compute the shear
modulus and the mean-squared displacement. In Effective Me-
dium Theory, we confirm these predictions using a standard
mean-field approximation, and furthermore predict the length
scale below which continuum elasticity breaks down in such
systems. In Hard Spheres, we show how these results apply to
colloidal glasses and discuss the subtle issue associated with the
existence of two kinds of contacts at low forces in sphere pack-
ings. We also present numerical results supporting our views. In
Comparison with Replica Theory in d=∞ and Conclusion, we
compare our results with replica calculations and discuss pros-
pects for experimental tests in colloidal systems.

Elastic Networks
We consider an elastic network of N points of mass m, connected
by Nc springs, of coordination z= 2Nc=N, in spatial dimension d.
The quadratic expansion of the elastic energy for an imposed
displacement field jδRi follows (21, 22):

δE≡
1
2
hδRjMjδRi= 1

2

X
β

kβδR
k2
β −

fβ
rβ
δR⊥2

β ; [1]

where the sum is over springs β. Here rβ, kβ, and fβ are the spring
length, stiffness, and force (chosen positive for a repulsive in-
teraction) and δRk

β and δR⊥
β are, respectively, the magnitude of

displacements parallel and perpendicular to the spring β, i.e.,
δRk

β =
�
δ~Ri − δ~Rj

�
·~nβ and δR⊥

β =
���δ~Ri − δ~Rj −~nβδR

k
β

���, where ~nβ is
a unit vector along the spring β.
We assume that rβ are narrowly distributed about their mean

hrβi= σ, which defines our unit length, and introduce kc ≡ hkβi and
ωc =

ffiffiffiffiffiffiffiffiffiffiffi
kc=m

p
. Eq. 1 defines the stiffness matrixM, which is positive

definite in a stable configuration. The eigenvalues of M are
λ=mω2, where the ω are the frequencies of vibrational modes,
of density DðωÞ.
Variational Argument. First we consider the springs at rest length,
so that all fβ = 0 and only the parallel term in Eq. 1 is present. Let
δz ≡ z− zc with zc = 2d. As pointed out by Maxwell, if Nd>Nc (or
equivalently δz< 0), then it is clear from Eq. 1 that there are at
least Nd−Nc displacement fields with no restoring force (δE= 0),
the so-called floppy modes. They are solutions to the set of linear
equation δRk

β = 0 at each spring β. We assume that the shape of
the stiffness distribution PðkÞ is independent of z, and wish to
compute the scaling properties of DðωÞ as δz→ 0+. Here we
sketch our arguments and present our main results; details ap-
pear in Supporting Information.
Our strategy to estimate DðωÞ is to build trial modes which are

orthonormal displacement fields with small energy. Using the
fact that M is positive definite then allows one to bound from
below the number of eigenvalues below some threshold, leading
to a lower bound on DðωÞ. This strategy was used in refs. 10 and
23, where trial modes were constructed using the following idea.
A system at δz= 0 has exactly the number of contacts Nc nec-
essary to maintain its mechanical rigidity. This implies that each
contact cut creates one floppy mode. By cutting the system into
compact regions of size L, as shown in Fig. 1A, one cuts a frac-
tion q∼ 1=L of bonds, thus inducing a density of floppy modes q.
These modes can be distorted to lead to trial modes of frequency
ωðqÞ∼ωcq in the original, uncut system (23). A variational in-
equality (24) implies that the number of modes per particle with
frequency smaller than ω, NðωÞ, is thenJ qðωÞ. Because
NðωÞ∝ R ω

0 dωDðωÞ∼ωDðωÞ, one gets DðωÞJω0=ωc, implying
that the vibrational spectrum does not vanish at zero frequency
at the Maxwell bound.

If δz> 0, then the system is overconstrained, and when
a fraction q of bonds are cut, the density of induced floppy
modes is q− δz=zc. This leads to a cutoff frequency ωp ∼ωcδz,
such that DðωÞJ 1=ωc above ωp, as numerically observed (8–
10, 25, 26).
We now show that if the distribution of stiffnesses is broad

enough, then the above bound is not saturated. In this case, we
can improve the variational argument by creating a different set
of trial modes (illustrated in Fig. 1B); we cut a fraction q of the
weakest links, and use the induced floppy modes. We then make
the key assumption that these floppy modes do not decay ap-
preciably with distance from the broken bonds, but extend in the
entire system, displacing particles by some characteristic ampli-
tude. We shall see below that for hard spheres, our assumption
only holds for a fraction of the contacts at low force.
We assume that the distribution of stiffnesses follows PðkÞ∼

kα=kα+1c at low stiffnesses, where α > −1. The fraction q of the
weakest extended bonds then have a characteristic stiffness
k0 ∼ kcq1=ð1+αÞ. In the original system, the induced floppy modes
stretch or compress the fraction q of weak springs of character-
istic stiffness k0, leading to an energy E∼ qk0 as discussed in
Supporting Information. This leads to a characteristic frequency

ωðqÞ∼ωc q
2+α
2+2α: [2]

The variational inequality then implies

DðωÞJ 1
ωc

�
ω

ωc

� α
2+α

: [3]

As above, when δz> 0, the system is overconstrained and there is
a frequency scale

ωp ∼ωc

�
δz
zc

� 2+α
2+2α

; [4]

above which [3] applies. These are our central results: At the
Maxwell threshold (δz= 0), when weak interactions are abundant
(α< 0), the density of states must diverge at zero frequency, with
a nontrivial exponent. When the coordination is larger (δz> 0),
the scaling for DðωÞ, [3], holds above the characteristic fre-
quency ωp.
For α> 0 the new bound is not useful and the previous argu-

ment of ref. 23 applies. Note that in all cases we consider q � 1
so that ω � ωc.
Assuming harmonic dynamics, we can obtain from [3] a bound

on the particles’ mean-squared displacement hδR2i:

A B

Fig. 1. Illustrative diagram of cutting argument, showing cut bonds in blue
(thick lines). (A) Bonds are cut around blocks of size L× L, a useful procedure
when α> 0. (B) When α< 0, the variational argument is improved by cutting
instead the fraction q of weakest bonds.
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kc
�
δR2

	
kBT

=ω2
c

Z
DðωÞ
ω2 dωJ

�
ω p

ωc

� −2
2+α

: [5]

Using previous results on floppy mode displacements, the
shear modulus can also be estimated. As discussed in Supporting
Information, one finds

μ∼ k0 ∼ kcδz
1

1+α: [6]

Role of Prestress. So far we have considered stress-free elastic
networks. The presence of a compressive force in the bonds
reduces the modes’ frequency, as implied by Eq. 1, and can lead
to an elastic instability. It was argued and checked numerically in
ref. 10 that the strongly scattered modes that appear above ωp

have large relative displacements, of order of the displacement
itself:

��δR⊥
β

��∼ ��δ~Ri
��. Following Eq. 1, this implies that some soft

modes will be shifted to a frequency ω0 satisfying δE≡mω2
0 =

mωp2 −Afc, where fc is the characteristic compressive force and
A is a numerical constant. Stability requires δE> 0, implying

ωp Jωc
ffiffiffi
e

p
; [7]

where we have defined the contact strain e≡ fc=kc. Using [4], this
becomes δzJ eð1+αÞ=ð2+αÞ, extending the previous result δzJ

ffiffiffi
e

p
(10) to the case α< 0. In packings of particles, e∝ jϕ−ϕcj, and
the latter bound was argued to be saturated, based on dynamical
considerations (6, 7, 10).

Effective Medium Theory
All of the above predictions can be derived and extended with
effective medium theory (EMT), a mean-field approximation
that treats disorder in a self-consistent way (27–32). EMT has
been shown to give quantitatively correct values for scaling
exponents related to the vibrational spectrum and heat transport
properties of frictionless packings (29, 31). In EMT, a random
elastic network, such as depicted in Fig. 1, is modeled by a reg-
ular lattice with effective frequency-dependent spring constants.
Here we follow the EMT developed in ref. 31, which includes the
effect of forces in Eq. 1. In ref. 31, the randomness in the in-
teraction between two nodes was limited to the presence or
absence of a spring; when a spring was present, its stiffness was
always identical. Here we relax this assumption and allow a full
distribution of stiffnesses, behaving as PðkÞ∼ kα for small k, and
allow a distribution of contact forces, Pðf Þ∼ f θf at small f. Details
of the EMT are presented in Supporting Information.
The EMT confirms that when α> 0, previous results of refs. 10

and 31 are obtained. When α< 0, in addition to confirming the
scaling results presented above, EMT gives the form of the com-
plex shear modulus and density of states when δz is small, and can
be used to extract other vibrational and heat transport properties.
In general, two frequency scales are predicted, as in the varia-
tional argument: ωp and ω0 =ωp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− e=ec

p
, where ec ∼ δzð2+αÞ=ð1+αÞ

is the contact strain at elastic instability (31). For a marginally stable
material, e≈ ec and therefore ω0=ωp � 1. Above its peak at ωp,
EMT predicts that DðωÞ decays as Dðω=ωcÞ∼ ðω=ωcÞα=ð2+αÞ, in
agreement with [3], with a logarithmic correction in d= 2. Between
ω0 and ωp, EMT predicts

DðωÞ∼ 1
ωc

�
ω

ωc

�1+ 2
α+2
�
ω p

ωc

�−4
α+2

: [8]

A numerical solution of the leading-order EMT equation for
a marginally stable material in d= 2 gives the result shown in
Fig. 2, where we have taken α=−0:30. The visible curvature is
due to logarithmic corrections, which are only present in d= 2.

Regarding the shear modulus, EMT confirms the scaling 6,
and in addition we find the dependence on e=ec. At fixed δz, we
find that μ drops by a finite factor at elastic instability, relative to
its unstressed value. Finally, EMT predicts that modes at ωp have
a scattering length ℓc ∼ δz−1=2, also characterizing the response to
a point force (33).

Hard Spheres
The above results on elastic networks can be applied to the free
energy of hard spheres within a metastable state, and near maxi-
mum packing at ϕc. To do so, we consider a mesoscopic time scale
τ, much larger than the typical interval between collisions, τC, and
define a contact network by those particles that collide on the time
scale τ (6, 7, 10). Using the fact that the contact network at ϕc is
isostatic, one can show that the Helmholtz free energy of the
metastable state is well approximated by a sum of two-body ef-
fective potentials, which follow

V ðhÞ≈−kBT log h; [9]

where h is the time-averaged gap between contacting par-
ticles. Hence in link β the force fβ ≈ kBT=hβ and the stiffness
kβ ≈ kBT=h2β. It was previously checked in simulations that this
effective potential is very closely followed near ϕc, and in partic-
ular deviations are less than 5% within the glass phase (6, 7). We
therefore assume that the effective potential is fixed and inde-
pendent of z.
Although missing from many theoretical approaches (5, 34), the

distribution of contact forces at ϕc is known empirically to follow
Pðf Þ∼ f θf at small f, with θf ≈ 0:2 (20, 35). This directly yields a di-
verging distribution of stiffnesses: PðkÞ=Pðf Þdf=dk∼ kα, with
α=−ð1− θf Þ=2< 0. Hence there are indeed very many contacts
with a weak stiffness. However, to apply our earlier results, we have
also assumed in the variational argument that each opened weak
link induces an extended mode that does not decay appreciably
with distance. This condition leads to a subtlety in the exponent α.
In ref. 20 it was observed that when contacts are opened from

hard-sphere packings at ϕc, there are in addition to the extended
modes discussed above, also localized modes, i.e., deformations
that decay on the scale of a few grains. Such localized modes
occur because of local correlations in the structure, as illustrated
in Fig. 3. In Supporting Information, we show that the variational
argument is not improved by including the localized contacts,
and therefore we want to consider only the extended type. In
d= 2 and d= 3, the distribution of localized contacts was ob-
served to follow f θℓ with θℓ ≈ 0:17, whereas that of the extended
contacts follows f θe with θe ≈ 0:44 (20). Because the localized
contacts are more numerous, the distribution of forces follows
Pðf Þ∼ f θf with θf = θℓ. However, only the extended contacts can
be included in our theory, therefore we have α=−ð1− θeÞ=2.

Fig. 2. EMT prediction for the density of states DðωÞ for a marginally stable
material in d = 2 with α=−0:30, at indicated values of e=ϕc −ϕ, in (Left) log–
log axes and (Right) linear axes. As discussed in the text, this corresponds to
a hard disk glass with θe = 0:41. The peak appears at the frequency scale
ω* ∼ωc

ffiffiffi
e

p
.
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We can now present our results for hard spheres. Geometrically,
the characteristic gap hc ∼ϕc −ϕ so that the characteristic force and
stiffness are, respectively, fc ∼ kBT=hc and kc ∼ kBT=h2c . Stability
requires that the Hessian is positive-definite, and therefore follow-
ing [7] that ωp Jωcðfc=kcÞ1=2 ∼ ðϕc −ϕÞ−1=2, a result identical to
the previous approach (6, 7) neglecting stiffness heterogeneity.
In refs. 7 and 12 this bound was observed to be saturated, and
here we assume such marginal stability, ωp=ωc ∼ ðϕc −ϕÞ1=2.
From [3–6] and [8] we then deduce

DðωÞ∼


ω2+a for ω<ωp

ω−a for ωp <ω � ωc
[10]

�
δR2

	
∼
1
μ
∼ ðϕc −ϕÞκ [11]

δz∼ ðϕc −ϕÞ2b; [12]

where

a=
1− θe
3+ θe

; b=
1+ θe
6+ 2θe

; κ=
4+ 2θe
3+ θe

: [13]

Using that the pressure p∼ fc, our prediction for δzðpÞ appears
satisfied in recent simulations (35) if it is assumed that the contact
network corresponds to those particles closer than a characteristic
gap h† where gðhÞ changes behavior. In Supporting Information,
F. Effect of Change of Stiffness Distribution with ϕ, we argue that
these results are not changed if the evolution of PðkÞ with packing
fraction is taken into account.The new scaling relation 11 relates
two experimentally accessible quantities, hδR2i and ϕc −ϕ, but
through an exponent κ that depends on θe, which is not easily
measurable. In refs. 19 and 20, stability of jammed packings at ϕc
was shown to relate the exponent γ describing the distribution of
gaps between particles, gðhÞ∼ h−γ (20, 35–37), and the exponents
θe and θℓ. In particular, triggering one of these contact-opening
excitations can lead to the rewiring of the contact network. Sta-
bility of the system to extensive avalanches of rewiring was shown
to imply (19, 20)

γ ≥
1− θℓ
2

[14]

γ ≥
1

2+ θe
: [15]

In ref. 20 it was observed that contact-opening excitations in pack-
ings are marginally stable, so that the bounds 14 and 15 are satisfied

with equality, with numerical values γ ≈ 0:4, θℓ ≈ 0:17, and θe ≈ 0:44.
Saturation of [15] was recently proven for certain dynamics (38).
Assuming such marginal stability, it follows that θf = θℓ < θe and the
exponent θe can be determined from θe = 2θf=ð1− θf Þ≈ 0:41, a
value consistent with the direct measurement 0.44. [11], [14], and
[15] lead to a description of jammed packings and glasses based on
four exponents, with three scaling relations between them. We have
in particular κ= 2=ð1+ γÞ, both sides of which can be measured
independently.

Comparison with Numerics
To confirm the prediction that DðωÞ is not flat but scales with
frequency as jamming is approached from the hard-sphere side, we
perform numerical simulations of a hard-sphere glass in d= 2, at
pressure p= 1012kBT, and volume fraction ϕ≈ 0:83 (details are in
Supporting Information). The density of states DðωÞ can be com-
puted by identifying a contact network via time averaging as done in
refs. 6 and 7. Our result for the largest pressure is shown in Fig. 4,
confirming the presence of a weak divergence of DðωÞ with fre-
quency. The exponent appears close to that predicted by [3], but
larger simulations are needed, preferably in d= 3, to avoid loga-
rithmic corrections. We note that this prediction could be tested in
colloidal systems using static pair correlation to extract M and
DðωÞ (12–16).
Comparison with Replica Theory in d=∞
A very recent replica computation (17, 18, 39, 40) was used to
compute exponents in d=∞ to arbitrary precision, and results in
γ = 0:41269, κ= 1:41574, and θf = 0:42311. These values are
consistent with our prediction κ= 2=ð1+ γÞ, which appears to be
exactly satisfied. However, the numerical value we found pre-
viously (20, 41) for θf ≈ 0:17 in two and three dimensions differs
from the replica computation at d=∞. It was argued based on
numerics (35) that exponents weakly depend on spatial dimen-
sions up to d= 10, leading to the suggestion that dimension does
not play a role. The same work also reported that θf depends
somewhat on system preparation. However, the statistics in that
work are very limited (one single configuration for each di-
mension probed). To check that our value of θf is not due to the
specific methods we used (in ref. 41, results were obtained in two
dimensions by shear-jamming hard disks, whereas in ref. 20 hard
spheres were compressed in an overdamped medium), we repeat
the measurement of force distribution by decompressing soft
spheres as done in ref. 35, but with much higher statistics for the
dimension considered. Fig. 5 shows Pðf Þ in three dimensions, and
again we find θf = 0:17± 0:02 (details in Supporting Information).
Our results therefore support that system preparation does not
affect the exponent θf , and that its value is indeed about 0.17 for
the bidisperse system used. Note that for monodisperse packings
in three dimensions our numerics suggest a slightly larger ex-
ponent θf ≈ 0:23 as shown in Supporting Information.

Fig. 3. Illustration of a local configuration of particles that gives rise to
small displacements when opening the central horizontal contact. Line
thickness represents, schematically, force magnitude in the central region.
Even if the force f0 in the surrounding contacts is on the order of the mean
force, f0 ∼ hfi, the force in the horizontal contact can be small if the angle ϕ
is small, and displacements resulting from opening that contact will be of
order δR∼ sinðϕÞ.

Fig. 4. Numerical density of states DðωÞ for a hard-sphere glass in d = 2, at
pressure p= 1012, in (Left) log–log axes and (Right) linear axes. The triangle
has the predicted slope −0:17, assuming θe = 0:41, as discussed in the main
text. The characteristic frequency ω* is expected to be ∼10−6ωc , outside the
accessible numerical range at this pressure.
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The value for θf in d=∞ is therefore distinct from its value in
d= 2; 3, and our relation 14 is not satisfied in d=∞. This is
puzzling, because γ appears to be independent of dimension (20,
35). To resolve this dilemma, note that [15] is also exactly sat-
isfied by the d=∞ result if θf = θe. This suggests a simple rec-
onciliation: If it is assumed that localized excitations do not exist
for d=∞, then θf = θe, and one is left with three exponents
constrained by two scaling relations: [15] (where θf = θe), and
[11], both exactly satisfied in the replica calculation. The scaling
description we propose based on the marginality of real-space
excitations (both linear and nonlinear) is thus fully consistent with
the replica calculation, as these two scaling relations are satisfied.
The fact that localized excitations appear to be absent in large

dimension seems plausible, as their existence depends on the
presence of local arrangements of particles that are very soft
(illustrated in Fig. 3), which may become unlikely when each
particle shares many contacts. This situation may be similar to
the behavior of rattlers, i.e., particles which are trapped in a packing
but do not contribute to mechanical stability. The fraction of
rattlers is observed to decay exponentially with d (35), so that in
large dimension, it is extremely rare to find a gap that is large
enough to hold a particle. A similar decay may occur for local-
ized excitations. This could be checked by explicit enumeration
of localized contacts, as described in ref. 33.

Conclusion
We have shown that the stability of hard-sphere glasses is af-
fected by heterogeneity in contact strengths. Our numerics on
the force distribution exponent θf , together with the marginal
stability relations described above, support that the key exponent

θe ≈ 0:41 in d= 2 and d= 3, independent of system preparation.
This yields specific predictions for the exponents (13):

a= 0:17; b= 0:21; κ= 1:41: [16]

If localized excitations are absent in large dimension, then our
results are fully consistent with the replica theory valid for d=∞;
in this case the exponent θe = 0:42311:: and the exponents 16may
change in their final digit.
Our scaling predictions on DðωÞ, hδR2i, and μ, Eqs. 10 and 11,

may be tested experimentally in colloidal systems. From the
covariance matrix of particle displacements, Cij ≡ hδ~Riδ~Rji, one
may define a stiffness matrix Mij ≡ ðmikBTÞ−1C−1ij . Provided the
system remains trapped in a metastable state for the duration of
the experiment, and assuming that states are sampled according
to equipartition, the stiffness matrix corresponds to that of
a system interacting with an effective potential, which for hard
spheres is [9]. Given sufficient temporal resolution, one can also
extract the effective density of states from displacement auto-
correlations (42). This procedure has been carried out in simu-
lations (6, 7, 43) and experiments (13–15), confirming the
presence of a peak in DðωÞ at low frequency.
When ϕ<ϕc, the hard-sphere systems considered in this work

are a limiting case of more realistic soft potentials in the regime
when cage-breaking rearrangements are rare. This occurs when
the temperature kBT is much smaller than the elastic energy «
needed to overlap particles by the characteristic gap in the sys-
tem, thus facilitating rearrangement (12). For commonly studied
harmonic soft spheres, e∼ kðϕc −ϕÞ2, where k is a stiffness, this
gives the hard-sphere regime as TK ðϕc −ϕÞ2, as observed (12,
42, 44). The peak in DðωÞ that we predict should appear at small
ϕc −ϕ is indeed observed in this regime (12, 42, 44). It is also
observed that DðωÞ changes shape at larger T. This expected
crossover from hard- to soft-sphere behavior corresponds to
departures from [9], and will be discussed elsewhere.
Overall, our approach leads to a description of jamming in

finite dimensions based on the marginal stability of three distinct
types of excitations, both linear and nonlinear. It remains to be
seen if plastic flow under shear and thermally activated process
near the glass transition can be expressed in terms of the re-
laxation of these excitations.
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