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Atherosclerotic plaque localization correlates with regions of dis-
turbed flow in which endothelial cells (ECs) align poorly, whereas
sustained laminar flow correlates with cell alignment in the di-
rection of flow and resistance to atherosclerosis. We now report
that in hypercholesterolemic mice, deletion of syndecan 4 (S4−/−)
drastically increased atherosclerotic plaque burden with the appear-
ance of plaque in normally resistant locations. Strikingly, ECs from
the thoracic aortas of S4−/− mice were poorly aligned in the direc-
tion of the flow. Depletion of S4 in human umbilical vein endothelial
cells (HUVECs) using shRNA also inhibited flow-induced alignment in
vitro, which was rescued by re-expression of S4. This effect was
highly specific, as flow activation of VEGF receptor 2 and NF-κB
was normal. S4-depleted ECs aligned in cyclic stretch and even elon-
gated under flow, although nondirectionally. EC alignment was pre-
viously found to have a causal role in modulating activation of
inflammatory versus antiinflammatory pathways by flow. Consis-
tent with these results, S4-depleted HUVECs in long-term laminar
flow showed increased activation of proinflammatory NF-κB and
decreased induction of antiinflammatory kruppel-like factor (KLF)
2 and KLF4. Thus, S4 plays a critical role in sensing flow direction
to promote cell alignment and inhibit atherosclerosis.
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Syndecan 4 (S4) is a transmembrane heparan sulfate pro-
teoglycan that serves as a coreceptor for extracellular matrix

proteins and growth factors (1–3). S4−/− mice are viable and
fertile (4, 5) but show defective wound healing consequent to
impaired angiogenesis (6). They also have higher mortality after
LPS injection (7) and exhibit defective muscle repair and myofiber
organization as a result of inefficient differentiation and migration
of muscle satellite cells (8). We and others have also demonstrated
that S4 plays a critical role in the control of cell polarity, by
controlling Rho GTPase activity (9–11), as well as in planar cell
polarity (12). S4 has also been recently identified as a putative
mechanosensor (13).
Atherosclerosis is an inflammatory disease of large to mid-

sized arteries that is the major cause of illness and death in de-
veloped nations and is rapidly increasing in developing nations
(14, 15). It is linked to a variety of risk factors including high LDL
cholesterol level and triglycerides, diabetes, smoking, hypertension,
sedentary lifestyle, and inflammatory mediators. However, athero-
sclerotic lesions occur selectively in regions of arteries that are
subject to disturbances in fluid shear stress (FSS), the frictional
force flowing blood exerts on the endothelium. Regions of arteries
with lower flow magnitude, flow reversal, and other complex spatial/
temporal flow patterns are predisposed to atherosclerosis. Systemic
risk factors appear to synergize with local biomechanical factors in
the initiation and progression of atherosclerotic lesions (16).
The importance of S4 in endothelial biology prompted us to

test its role in atherogenesis. Surprisingly, S4 deletion not only
drastically increased atherosclerotic plaque burden in hyper-
cholesterolemic mice but also caused plaque to form in regions
that are normally resistant to disease. These findings led us to

investigate the role of S4 in flow signaling. Our results showed
that S4 is specifically required in alignment of endothelial cells
(ECs) in flow and suggest that loss of this atheroprotective mech-
anism leads to increased atherosclerosis in S4−/− mice.

Results
Widespread Atherosclerotic Lesions in Hypercholesterolemic S4−/−

Mice. S4 KO mice were crossed into the hypercholesterolemic
low-density lipoprotein receptor (LDLR)−/−/apolipoprotein B
(apoB)100/100 (DKO) background. DKO/S4+/+ and DKO/S4−/−

male mice at 12 wk were put on the lipid-enriched Paigen diet
without cholate (PD) for 16–20 additional weeks to induce ath-
erosclerotic lesions (17–20). In DKO/S4+/+ mice, small lesions in
the descending aorta were visible after 16 wk of PD (Fig. 1 A and
B), specifically localized near the branch points for small in-
tercostal arteries, a known site of flow disturbance (21). These
lesions covered, on average, 9% of the total aortic surface. In
DKO/S4− /− aortas, widespread lesions near the intercostal
bifurcations were also visible after 16 wk of PD, covering up to 18%
of the total area (P = 0.0028). Surprisingly, nascent lesions also
appeared in other regions, away from intercostal branches, that are
normally atheroresistant. After 20 wk of PD, DKO/S4+/+ mice
showed larger lesions that were still highly localized to branch
points, whereas DKO/S4−/− mice showed massive appearance of
lesions over much of the aorta (Fig. 1A). Lesions were also visible
inside the intercostal arteries, where the flow profile is laminar (Fig.
1C). No significant difference in HDL and LDL levels was observed
in the two strains, excluding a contribution of impaired lipoprotein
metabolism: 239 ± 30 mg/dL LDL for DKO/S4−/− (n = 6) and
236 ± 6 mg/dL for DKO/S4+/+ (n = 4), and 46 ± 4 mg/dL HDL
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for DKO/S4−/− (n = 6) and 44 ± 6 for DKO/S4+/+ (n = 4; results
are expressed as mean ± SD).

Deletion of S4 Inhibits Endothelial Alignment in Vivo. The presence
of lesions in areas that are normally resistant suggested impair-
ment of flow-dependent atheroprotective mechanisms by loss of
S4. We first examined EC alignment, which is highly correlated
with atheroresistant regions of arteries (22, 23) and plays an
important role in the activation of antiinflammatory versus
proinflammatory pathways by flow (24). Staining the descending
thoracic aorta for β-catenin to mark EC boundaries in wild-type
C57BL/6 mice revealed uniformly elongated ECs that were well
aligned in the direction of blood flow. In contrast, the same re-
gion in S4 KO mice showed poor alignment in the direction of
flow, with markedly less elongation and many misaligned cells
(Fig. 2A). The average cell shape index (4π area/perimeter2) was
0.33 ± 0.01 in wild-type mice and 0.58 ± 0.01 in S4 KO mice (n >
300 cells, four arteries). ECs in wild-type mice had well-orga-
nized actin stress fibers that were highly oriented in the direction
of the flow, whereas in S4 KO mice, actin stress fibers were
present but were poorly organized and misaligned (Fig. 2B; n >
300 cells, four arteries). Together, these data demonstrate a
drastic loss of alignment in the direction of flow in S4 KO mice.

S4 Knock-Down Inhibits Flow Alignment in Vitro. We then tested
alignment under flow in vitro in ECs stably expressing S4 shRNA,
which decreased S4 levels by 65–80% (Fig. 3C). These cells
formed a confluent monolayer with normal actin cytoskeletal or-
ganization, similar to control cells with scrambled shRNA (Fig.
3A). Cells were subjected to steady laminar FSS (12 dynes·cm−2)
for 16 h and then fixed, the nuclei stained, and alignment quantified
by measuring the angle between the major axis of the nucleus and
the flow direction. Nuclear orientation is highly correlated with
stress fibers and cell orientation (25) (Fig. S1A) and is more ac-
curately and easily measurable. S4-depleted cells showed a striking
failure to align in the direction of flow (Figs. 3 A and B). A second
shRNA sequence gave similar effects, rescued by expression of

shRNA-resistant murine S4 (Fig. 3 C and D). In fact, rescued cells
aligned somewhat better than control, untreated cells, probably
because of the moderately higher S4 levels (Fig. 3C). We also
noted that in preparations in which S4 expression was 5–10-fold
above endogenous levels, flow-induced alignment was inhibited
(Fig. S1C), indicating that S4 must be present at physiological
levels. We also tested the response of cells over a wide range of
shear stress magnitudes: scrambled shRNA cells aligned between 10
and 20 dynes·cm−2, whereas cells depleted for S4 never aligned in
the flow direction (Fig. S1B).
To determine whether S4 is generally required for alignment in

response to mechanical stimulation, cells were subjected to cyclic
uniaxial stretch. S4 knock-down cells aligned perpendicularly to
the direction of the force, similar to control cells (Fig. 3 A and B).
Thus, the failure to align in flow does not reflect a general defect
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Fig. 1. Effect of S4 deletion on atherosclerosis. (A) Thoracic aortas from
male DKO hypercholesterolemic mice with or without S4 (S4+/+ or S4−/−)
after 16 or 20 wk on PD. Aorta were stained with Oil red O to reveal the
atherosclerotic lesions (in white/red). (B) Quantification of the lesions area,
normalized to the total area of the thoracic aorta (n = 6 for DKO/S4+/+ and
n = 7 for DKO/S4−/−; P < 0.01). (C) Detailed view of the intercostal arteries
(white stars) after 20 wk of PD.
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Fig. 2. Endothelial morphology in the thoracic aorta. En face view of the
thoracic aorta from wild-type or S4−/− mice. Tissue was stained for beta-
catenin to mark cell borders (A) or with phalloidin and DAPI to mark stress
fibers and nuclei (B). Stress fiber alignment: stress fibers were considered
“aligned” if their direction was parallel to the direction of the cell major axis
(within 30° of the major axis) and “misaligned” if not (n < 300 cells, four
arteries per condition).
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in mechanical or cytoskeletal responses. In addition, we did not
detect any difference in the endothelial glycocalyx after S4 knock-
down in human umbilical vein endothelial cells (HUVECs; Fig.
S2A). Heparan sulfate, the major proteoglycan component of
S4, mostly localized on the basal side of scrambled shRNA cells,
and its organization and localization were not affected by S4
depletion (Fig. S2B). These observations argue against direct
roles for the endothelial glycocalyx or heparan sulfate organi-
zation in sensing flow direction.

S4 Knock-Down Cells Still Respond to Flow. We have reported that
multiple EC responses to flow, including cell alignment, require a
complex of proteins at cell–cell junctions consisting of platelet
endothelial cell adhesion molecule 1 (PECAM-1), vascular
endothelial (VE)-cadherin, and VEGF receptor 2 (VEGFR2)
(26). Flow triggers activation of the VEGFR2 tyrosine kinase,
which mediates downstream events, including activation of NF-
κB. We therefore examined activation of these events by flow.
Phosphorylation at VEGFR2 tyrosine 1054 at 45 s after flow was
increased similarly in S4 shRNA and control shRNA cells (Fig.
4A). Activation of NF-κB by flow was modestly, but significantly,
higher in S4 knock-down cells compared with controls (Fig. 4C;
P < 0.05). Thus, signaling through the junctional complex does
not require S4.
Fluid shear stress also induces elongation of the cell body and

nucleus (27, 28). Remarkably, after flow for 16 h, nuclear ec-
centricity increased in S4 knock-down cells to a slightly greater
extent than in control cells (Fig. 4B), despite their random ori-
entation (Fig. 3). Together, these results underscore the highly
specific defect in sensing flow direction after S4 depletion.

S4 Promotes Flow-Dependent Atheroprotective Pathways. Align-
ment of ECs in the direction of flow is an important adaptive
mechanism by which inflammatory pathways are down-regulated
and antiinflammatory pathways are activated (24). This point is
evident in Fig. 4C, where laminar flow at later times reduces p65

nuclear translocation below the levels seen in unstimulated
conditions in wild-type cells. In contrast, in S4 knock-down cells,
p65 translocation remained above the no-flow baseline and was
strikingly higher than for control cells in flow for 16 h. To further
assess proinflammatory versus antiinflammatory mechanisms, we
measured levels of the antiinflammatory transcription factors
kruppel-like factor (KLF) 2 and KLF4, which are induced by
sustained laminar flow (29, 30). Induction by flow was substantially
less in S4 shRNA cells compared with control cells (Fig. 4D; P <
0.05). Taken together, these results show that ECs lacking S4
fail to align in flow and have higher NF-κB activity and lower
antiinflammatory KLF2 and KLF4 expression. These effects
thereby may provide a mechanism for increased atherosclerosis
in S4−/− mice, especially at normally atheroresistant regions of
the vasculature.

Discussion
Although atherosclerosis is strongly associated with systemic risk
factors such as high LDL cholesterol or diabetes, the localization
of atherosclerotic lesions within arteries is highly correlated with
areas of disturbed blood flow, characterized by low-magnitude
FSS and directional changes during the cardiac cycle (31, 32). In
contrast, high laminar shear inhibits the inflammatory, oxidative,
and thrombotic pathways that promote atherosclerosis. The
transcription factors Klf2 and Klf4 are major mediators of the
atheroprotective phenotype in high laminar flow (29, 30), whereas
NF-κB is a major proinflammatory transcription factor that pro-
motes atherosclerosis (33). In vitro, onset of high-laminar FSS
applied to ECs transiently activates the inflammatory transcription
factor NF-κB; however, over several hours, cells align in the di-
rection of flow and NF-κB declines to levels below baseline (34).
Cell alignment in the direction of flow has therefore been pro-
posed to be an adaptive mechanism that alters the way forces act
on the cells (35). In contrast, cells in disturbed flow do not align,
Klf2 and Klf4 remain low (36, 37), and NF-κB and other

A
N

R
hs

4
n

ac
e

d
n

ys
A

N
R

hs
el

b
m

arcs
No Flow Laminar Flow Cyclic Stretch

0 15 30 45 60 75 90
0

10

20

30 scramble shRNA
syndecan 4 shRNA

Cell orientation
 (relative to flow direction, degrees)

Fr
eq

ue
nc

y
(%

)
Cell orientation

 (relative to stretch direction, degrees)
Fr

eq
ue

nc
y

(%
)

0 15 30 45 60 75 90
0

10

20

30 scramble shRNA
syndecan 4 shRNA

Cell orientation
 (relative to flow direction, degrees)

Fr
eq

ue
nc

y
(%

)

0 15 30 45 60 75 90
0

10

20

30

40 Scramble shRNA
Syndecan 4 shRNA
Rescue Syndecan 4

A B

C

D

E

Fig. 3. S4 is required for endothelial cell polarity in flow. (A) HUVECs stably expressing scrambled shRNA or S4 shRNA (#119) were untreated (no flow) or
subjected to laminar FSS at 12 dynes/cm2 for 16 h [(B) quantification, n > 3,000 cells/experiment from 15 independent experiments] or 10% uniaxial cyclic stretch
(1 Hz) for 4 h [(C) quantification, n > 2,000 cells/experiment from seven independent experiments]. Cells were fixed and labeled with DAPI (red) and phalloidin
(cyan). (D) Rescue of S4 knockdown (shRNA #121) by adenoviral reexpression of rat S4. Western blot of S4 and actin as a loading control; all samples were
sheared for 16 h. (E) Nuclear orientation was quantified to characterize cell orientation relative to flow direction (n > 3,000 cells, from at least four independent
experiments). Values are means ± SEM.

17310 | www.pnas.org/cgi/doi/10.1073/pnas.1413725111 Baeyens et al.

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1413725111/-/DCSupplemental/pnas.201413725SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1413725111/-/DCSupplemental/pnas.201413725SI.pdf?targetid=nameddest=SF2
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1413725111/-/DCSupplemental/pnas.201413725SI.pdf?targetid=nameddest=SF2
www.pnas.org/cgi/doi/10.1073/pnas.1413725111


inflammatory pathways remain high (22, 23, 34). Poor endo-
thelial alignment is also a marker for susceptibility to athero-
sclerosis in vivo (38).
The results presented here identify S4 as a potent anti-

atherosclerotic molecule. In particular, the appearance of pla-
ques in normally atheroresistant regions of arteries was striking.
We cannot completely exclude that lesions may propagate into
atheroresistant areas because of the effects of lesions on down-
stream flow. However, the observed phenotype is not observed in
other mouse models of severe atherosclerosis, even after a pro-
longed high-fat diet (39–42). Moreover, mislocalized plaque was
evident even at earlier times. The increase and broad distribution
of plaque correlated with loss of EC alignment in the direction of
flow. S4 suppression also inhibited flow-dependent alignment in
vitro, accompanied by elevated NF-κB activity and decreased Klf2
and Klf4 expression at longer times in high laminar shear. This
effect was highly specific, as loss of S4 inhibited neither signals
through the PECAM-1/VE-cadherin/VEGFR2 complex involved
in shear stress sensing (26) nor alignment of ECs in cyclic stretch.
Remarkably, nuclei in S4-depleted ECs elongated in flow, al-
though without any preferred direction. These results lead to the
conclusion that S4 is specifically required for sensing flow direction,
which is independent of other aspects of flow mechano-
transduction. Although ECs are generally thought to have multiple
flow sensors (16), to our knowledge, this work provides the first

evidence that flow direction sensing is separate from sensing
flow magnitude.
The alignment defect in vivo, together with recent results show-

ing that alignment is critical for the switch from proinflammatory to
antiinflammatory signaling (24), suggest the hypothesis that loss of
alignment leads to an activated endothelium, which increases sus-
ceptibility to atherosclerotic risk factors. It is tempting to speculate
further that these findings may relate to the minority of cases in
which atherosclerotic plaque occurs in regions of coronary arteries
where flow patterns are expected to be laminar (43). Examining EC
alignment and S4 expression in human specimens could test
whether loss of this mechanism is a factor in the diffuse athero-
sclerosis seen in some patients (44–47).
In summary, these data reveal a highly specific role for S4 in

sensing flow direction. Its loss, in vitro, leads to misaligned cells
that show proinflammatory “priming,” which we hypothesize is
similar to what is normally seen in atheroprone regions of dis-
turbed flow (33). These cells are then susceptible to further acti-
vation by global risk factors, leading to formation of atherosclerotic
lesions. How S4 mediates shear stress direction sensing is presently
unknown. Indeed, the highly specific role of S4 in direction sensing
underscores our ignorance about the mechanisms of this process.
S4 can cooperate with integrins in adhesion to extracellular matrix
and subsequent signaling (48); however, in the context of flow
signaling, our data show they clearly act on distinct pathways. S4
has been reported to interact with polarity proteins (12), to control
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polarized recycling of integrins (49, 50), and to control polarized
activation of Rac1 (9). It is attractive to speculate that the inter-
actions between S4 and integrins might therefore be involved in the
integration of adhesion/signaling pathways and polarity pathways
in responses to flow. These questions await further research. The
identification of S4 effector pathways is therefore an important
question for future work that may provide a means for un-
derstanding more generally how ECs sense flow direction.

Methods
Cell Culture. HUVECs, in which each batch was pooled from three different
donors, were obtained from the Yale Vascular Biology and Therapeutics
program. Cells were cultured in M199 medium supplemented with 20% FBS,
50 μg·mL−1 endothelial cell growth supplement prepared from bovine hy-
pothalamus, 100 μg·mL−1 heparin, 100 U·mL−1 penicillin, and 100 μg·mL−1

streptomycin. They were used between passages 3 and 5.

Lentivirus Generation. Lentivirus for stable shRNA expression was generated
as described (51). Briefly, packaging plasmids (Addgene) were mixed with
shRNA plasmid (Mission shRNA, Sigma-Aldrich) in Optimem medium (Invi-
trogen) and Lipofectamine 2000 (Invitrogen) with the following ratios: 5 μg
pMDL/pRRE, 2.5 μg pRSV-Rev, 2.5 μg pCMV-VSG, and 10 μg shRNA. The
mixture was transferred to 90% confluent 293T cells in 10-cm dishes for 6 h.
The medium was replaced with regular DMEM 10% FBS and collected after
48 h. Medium containing virus was filtered through a 0.45-μm filter and used
immediately for HUVEC transduction. The target sequences for human
S4 were: #119, targets 3UTR: CCGGGCCAGGTTCTTCTTGAGCTTTCTCGAGA-
AAGCTCAAGAAGAAGAACCTGGCTTTTTG; and #121, targets controlled
dangerous substance: CCGGCCCGTTGAAGAGAGTGAGGATCTCGAGATCCT-
CACTCTCTTCAACGGGTTTTTG.

Stable Knock-Down. To achieve stable knockdown, HUVECs at passage 2 were
seeded on gelatin-coated 10-cm plates and transduced at 70% confluence
with freshly produced lentivirus carrying scrambled or S4 shRNAs also con-
taining a puromycin-resistance gene. After 6 h, the medium was replaced
with complete M199 medium. Forty-eight hours after infection, cells were
treated with puromycin (1 μg·mL−1) for 3 d. Selected cells were maintained in
complete M199 medium with puromycin (0.4 μg·mL−1) and used for no more
than two more passages.

Adenoviral Expression. Rat S4 [previously known as ryudocan (52)] with a
hemagglutinin tag after the signal peptide was cloned into the Ad-Cla
(E1/E3 deleted) adenoviral vector provided by the Harvard Gene Therapy
Initiative (hgti.med.harvard.edu) virus core laboratory, which subsequently
used the construct for the production of replication-deficient adenovirus.

Shear Stress. Cells were seeded on fibronectin-coated (20 μg·mL−1) slides. After
reaching confluency, cells were starved with M199 medium containing 5%
FBS with 100 U·mL−1 penicillin and 100 μg·mL−1 streptomycin for a mini-
mum of 4 h. Shear stress with a calculated intensity of 12 dynes·cm−2 was
applied in a parallel flow chamber (53). Alignment was examined after 16 h
of steady laminar flow.

Uniaxial Cyclic Stretch. Cells were seeded on fibronectin-coated Uniflex 6-well
culture plates (Flexcell International Corporation) for 48 h. Plates were
transferred to a Flexcell 5000 station and submitted to uniaxial stretch for 4 h
(10% tension, 1Hz, sinusoidal waveform). Cells were immediately fixed with
3.7% paraformaldehyde (PFA) for 10 min. We then removed the central
rectangular area of the well with a scalpel, processed for staining, and
mounted on a glass slide.

Western Blot. Cellswerewashedwith cold PBS andproteinswereextractedwith
Laemmli’s buffer. Samples were run on 8% SDS/PAGE and transferred onto
nitrocellulose membranes. Membrane was blocked with StartingBlock buffer
(Thermo Scientific) and probed with primary antibodies overnight at 4 °C:
pVEGFR2 (Invitrogen), VEGFR2 (Cell Signaling), S4 (Abcam), and actin (Santa
Cruz). DyLight conjugated fluorescent secondary antibodies (680 and 800 nm;
Thermo Scientific) were used to detect primary antibodies. Bands were de-
tected and quantified with an Odyssey infrared imaging system (Li-Cor).

Immunofluorescence. Cells were fixed for 10min with 3.7% PFA, permeabilized
10 min with 1% Triton X-100 in PBS, blocked for 30 min with StartingBlock
buffer (Thermo Scientific), and then probed with p65 antibody (Cell Signaling)
or phalloidin conjugated to 647 Alexa Fluor (Molecular Probes) and DAPI. Cells
were mounted in Fluoromount G. Aortas were perfusion-fixed with 3.7% PFA,
excised, and adventitial tissue was removed. The vessels were opened longi-
tudinally and fixed again for 4 h at 4 °C. They were permeabilized with 0.1%
Triton X-100 in PBS for 5 min, blocked for 1 h with 5% normal goat serum in
PBS (Cell Signaling), and probed with beta-catenin antibody (Cell Signaling)
or phalloidin-conjugated to 647 Alexa Fluor (Molecular Probes) and DAPI.
Specimens were mounted, en face, using fluoromount G. Images were cap-
tured with a 20× objective (HUVEC cells) or 63× oil immersion objective (en
face aorta) mounted on a Perkin-Elmer spinning disk confocal microscope.

Image Analysis. Masks of the images were made using a combination of an
adaptive histogram equalization algorithm with intensity and size thresh-
olding. Cell orientation was calculated by taking the masks of the cell nuclei
(determined from DAPI images), fitting them to an ellipse, and determining
the angle between the flow direction and the major axis of the ellipse. Nuclei
eccentricity was measured on the basis of the eccentricity of the fitted ellipse.
Nuclear translocation was computed by taking the mask of the transcription
factor stain (p65) and calculating the product of both the area and the in-
tensity of the stain present in the nucleus and dividing it by the product of the
total stain area and the total intensity of the stain. This yields a unitless metric
we termed the translocation factor, which equals 1 in cells with complete
nuclear translocation and 0 in cells with no translocation.

RNA Isolation and Real-time PCR. Cells were washed with PBS and homoge-
nized with a QIAshredder kit (Qiagen). Total RNA was extracted with an
RNeasy Plus mini kit (Qiagen), which eliminates gDNA. cDNA synthesis was
performedwith an iScript cDNA synthesis kit (Bio-Rad). Quantitative real-time
PCR was performed in triplicate, using an iQSYBR Green Supermix kit and
CFX96TM real-time system (Bio-Rad). Thermocycling conditions were 95 °C
for 3 min, followed by 45 cycles that used 95 °C for 10 s and 60 °C for 30 s.
Gene expression was normalized with the housekeeping gene (GAPDH), and
relative expression was calculated using the ΔΔCt method. Primers sequences:
GAPDH: 5′-GAGTCAACGGATTTGGTCGT-3′ (sense) and 5′-GACAAGCTTCCCGT-
TCTCAG-3′ (antisense); S4: 5′- TGTTCTTCGTAGGCGGAGTC-3′ (sense) and
5′- CCCCACTACATCCTCATCGT-3′ (antisense); KLF2: 5′-GCCACTCACCGGTGTCC-3′
(sense) and 5′-CGGCCAGCGCTCCTG-3′ (antisense); and KLF4: 5′-ATCTCGGC-
CAATTTGGGGTT-3′ (sense) and 5′-TTGACGCAGTGTCTTCTCCC-3′ (antisense).

Mouse Strains and Diet. S4−/− and LDLR−/− KO/ApoB 100/100 S4−/− mice were
generated by heterozygous crossing and then nine backcrosses, including
daughter–father crosses on a C57BL/6 background. B6;129S-Apobtm2Sgy

Ldlrtm1Her/J (LDLR−/− ApoB100/100; DKO) mice (Jackson Laboratories) were
crossed with S4−/− mice. LDLR−/− ApoB100/100 genotype was confirmed by PCR
amplification of DNA extracted from tail snips, using primer sets and PCR
conditions described by Jackson Laboratories. The S4−/− genotype was veri-
fied using forward primer 5′ GGAGAGTCGATTCGAGAG 3′ and reverse
primer 5′ AAGCCATGCGTAGAACTC 3′. Thermocycler conditions were as
follows: one cycle at 95 °C for 1 min, followed by 40 cycles of 95 °C for 45 s,
56 °C for 45 s, 72 °C for 60 s, and one cycle at 72 °C for 5 min. LDLR−/−

ApoB100/100/ S4−/− mice were backcrossed seven times. Atherogenic LDLR−/−

ApoB100/100/ S4−/− were fed normal chow diet for 12 wk, followed by 14–20 wk
PD (Research Diets), as previously described (17–19). PD consists of 20%
protein, 45% carbohydrate, 35% fat, and no cholate (54).

Statistical Analysis. At least three independent experiments were performed
for each condition. Statistical differences were tested by using either analysis
of variance tests or nonpaired Student t tests, as indicated.
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