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Is there a sense of chance shared by all individuals, regardless of
their schooling or culture? To test whether the ability to make
correct probabilistic evaluations depends on educational and
cultural guidance, we investigated probabilistic cognition in pre-
literate and prenumerate Kaqchikel and K’iche’, two indigenous
Mayan groups, living in remote areas of Guatemala. Although the
tested individuals had no formal education, they performed cor-
rectly in tasks in which they had to consider prior and posterior
information, proportions and combinations of possibilities. Their
performance was indistinguishable from that of Mayan school
children and Western controls. Our results provide evidence for
the universal nature of probabilistic cognition.

probabilistic cognition | literacy | numeracy | number cognition |
cognitive development

He that will look into many parts of Asia and America, will find men
reason there perhaps as acutely as himself, who yet never heard of a
syllogism . . . God has not been so sparing to Men to make them barely
two-legged creatures, and left to Aristotle to make them rational.

J. Locke (1)

The mathematics of probability provides rational procedures
to deal with uncertainty. There is no consensus about the

proper interpretation of the probability calculus (2, 3). Regard-
less of interpretations, however, the basic laws of probability rest
on the same extensional considerations, notably, the principle
that the probability of an event equals the sum of the probabil-
ities of the various ways in which it can occur. Are these prin-
ciples universal? Echoing the argument criticized by Locke that
normative reasoning systems shape common reasoning, a classi-
cal view, based on the outmoded concept of a “primitive mind”,
states that individuals living in traditional cultures are incapable
of reasoning about probabilities (4, 5). Another view is that before
the advent of the probability calculus there was no intuitive evalu-
ation of chance, apart from predictions based on the frequencies
of previously encountered events (6). An alternative theory is that
individuals unfamiliar with the probability calculus sometimes vio-
late its elementary rules (7). However, they possess a sense of
chance that allows them to infer the probability of an event ex-
tensionally, namely, by considering the possible ways in which it
may occur (8). Nonverbal creatures possess probabilistic intuitions,
supporting the sense-of-chance view. Measures of looking time (9,
10) and choice behavior (11) suggest that preverbal infants and even
nonhuman primates (12) form expectations of an event based on its
possibilities. For example, given a container in which 3 yellow balls
and 1 blue ball bounce, 12-mo-olds expect that one of the yellow
balls, rather than the blue one, should exit.
The discovery of preverbal intuitions, however, does not an-

swer the question of the universality of probabilistic cognition
given that the ability to make correct probabilistic evaluations
emerges only at a late stage of development (13). Indeed, before
the age of 5–6 y, children do not make suitable predictions in
tasks analogous to those that have documented infants’ intuitions,
including simple tasks that do not require understanding of ratios.

For example, given the above-described container, 3- and 4-y-olds
answer randomly to the question: “Which sort of ball will exit the
container?” (9, 14). Before the age of 5–6 y, children also fail more
complex tasks in which they have to consider prior and posterior
information (14) or combinations of possibilities (15). Where does
older children’s ability to make correct probability judgments come
from? Unfortunately, previous studies have tested only Western
children who had received preschool or elementary school in-
struction. Western children are not explicitly trained in probability
and combinatorics, at least in the initial school years. However, they
are exposed early to educational practices, such as counting tasks,
and cultural devices, such as sorting games, that may shape the
emergence of probabilistic cognition. Therefore, it is unclear
whether the ability to make correct probabilistic predictions emerges
spontaneously in the course of development or whether it depends
on exposure to educational or cultural guidance.
To answer this question, we studied probabilistic cognition in

preliterate and prenumerate Kaqchikel and K’iche’, two groups
of Maya Amerindians living in rural areas of Guatemala (Fig. 1).
Men are mainly subsistence farmers and women do household
maintenance work. One experimenter (L.F.) collected the re-
ported evidence, testing a total of 188 Mayan participants, in
field trips in 2012–2013 to various villages of Chimaltenango,
Sacatepéquez, and Sololà departments of Guatemala. Several
adults are bilingual in one Mayan language and in Spanish, and
many children attend primary school, taught in Spanish. Do the
advantages that bilingualism offers in some reasoning tasks (16)
extend to probabilistic reasoning tasks? Do Mayan school chil-
dren make better predictions than older but preliterate members
of their culture? To address these questions, in each study, we
tested three groups of Maya, each composed of 20 participants:
monolingual (in K’iche’) adults, bilingual (in Kaqchikel and
Spanish) adults, and bilingual (in Kaqchikel and Spanish) school
children (in Study 1, 8-y-olds; in Study 2, 7-y-olds; in Study 3,
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9-y-olds). In Study 1, we also tested eight adults bilingual in K’iche’
and Spanish. All of the adult participants were preliterate. They
were recruited during the initial weeks of a national literacy pro-
gram (17). In each study, we also tested 20 adult Italians. We used
tasks that could probe the Maya’s mastering of various probabilistic
abilities, including using posterior information (Study 1), reasoning
about proportions (Study 2) and treating possibilities in a combi-
natorial way (Study 3). Although not exhaustive (e.g., we did not
investigate the ability to combine probability and utility), this list of
tasks taps into basic aspects of probabilistic cognition. In all tasks,
participants bet on one of two possible random outcomes. If they
were able to correctly make implicit probability estimations, they
would prefer the more likely outcome.

Study 1. Prior and Posterior Evaluation
If preliterate and prenumerate Maya have a sense of chance,
they should succeed in the probability problems that Western
children solve by extensionally comparing the chances of two
competing events, and without necessarily making a precise
enumeration of the chances favoring each of them. In fact, the
ability to make approximate comparisons of quantities has been
documented in preliterate adults (18, 19). By contrast, if the
ability to draw correct probabilistic inferences depends on formal
education, then the Maya would fail. To test these diverging
predictions, we used a series of three tasks (inspired by ref. 14).
In an initial “prior task,” participants could make an optimal bet
just on the basis of prior information: They were presented with
a set of four chips of two different colors, and had to bet on the
color of a randomly drawn chip (Fig. 2A). The odds were 3:1 in
favor of the prevalent color. In each task, we considered as
correct the bet on the more likely color. The Mayan groups did
not differ reliably from each other (bilingual correct: 19 of 20;

monolingual correct: 14 of 20), χ2(1 n = 40) = 2.8, P = 0.10.
Accordingly, in the following analyses, we collapsed their answers
into one group. All groups of participants performed better than
chance: Mayan adults (correct: 33 of 40), χ2(1 n = 40) = 16.9, P =
0.0004; Mayan school children (correct: 16 of 20), χ2(1 n = 20) = 7.2,
P = 0.007; Italian controls (correct: 18 of 20), χ2(1 n = 20) = 12.8,
P = 0.0003. These responses seem to reflect a trend due to ex-
perience or maturation: Mayan children performed worse than
Mayan adults who, in turn, performed worse than Italian con-
trols. A Jonckheere’s test, however, did not reveal a reliable
trend in the data, P = 0.39. This result indicates that preliterate
Maya are able to use prior information to predict the occur-
rence of a random outcome. In two following tasks (presented
in a counterbalanced order across participants), participants
could make an optimal bet only by taking into account pos-
terior information. If preliterate Maya possess an intuition of
the principles that link prior and posterior probability, they
should solve these tasks. In the “posterior task,” participants
were presented with eight chips (four round chips and four
square chips), five of which had a given color and three of which
had another color (Fig. 2B). The experimenter randomly drew
a chip, indicated its shape and participants bet on its color. The
Mayan groups did not differ reliably from each other (bilingual
correct: 15 of 20; monolingual correct: 16 of 20), χ2(1 n = 40) =
0.14, P = 0.70. All groups performed better than chance: Mayan
adults (correct: 31 of 40), χ2(1 n = 40) = 12.1, P = 0.0005; Mayan
school children (correct: 15 of 20), χ2(1 n = 20) = 5.0, P = 0.025;
Italian controls (correct: 17 of 20), χ2(1 n = 20) = 9.8, P = 0.002.
These data did not reflect a reliable trend: P = 0.44. The
“updating task” was identical to the posterior one, except that
participants were also asked for a prior bet: Before the experi-
menter drew a chip, participants bet on its color (Fig. 2C). The

Fig. 1. Location of the three Guatemalan departments in which the studies were conducted, from left to right: Sololà, Chimaltenango and Sacatepéquez.
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Mayan groups did not differ reliably from each other: mean
number of correct bets out of two (prior and posterior), mono-
lingual = 1.7, bilingual = 1.5, t(38) = 1.29, P = 0.2. In all groups,
participants performed better than chance: Mayan adults, mean =
1.6, SD = 0.54, t(39) = 7.06, P < 0.0001, d = 1.12, Mayan school
children, mean = 1.5, SD = 0.61, t(19) = 3.69, P = 0.002, d = 0.82,
Italian controls, mean = 1.8, SD = 0.53, t(19) = 6.84, P < 0.0001,
d = 1.53. A marginally reliable trend (Mayan children < Mayan
adults < Italians, P = 0.06) indicated that updating performance
was slightly better in older and more experienced individu-
als.* The request to make two consecutive bets on the same
objects could have affected performance in the second bet (20).
In fact, the second bet turned out to be as correct as the unique
bet of the posterior task (77%, in both cases). Both the posterior
and the updating tasks had two versions. In one version (confir-
mation), the posterior information about the chip’s shape in-
creased the odds in favor of the initially prevalent color from 5:3
to 3:1. In another version (disconfirmation), the posterior in-
formation changed the odds from 5:3 in favor of the initially
prevalent color to 1:3 against it. Had preliterate Mayan partic-
ipants neglected the posterior information, they would have per-
formed better in the confirmation than in the disconfirmation
version. In fact, the responses of just two of them fit this pattern,
those of another participant went against it (and the remainder were
ties).† In sum, preliterate Maya make optimal bets on the basis of
prior information, and revise their bets in the light of new evidence.

Study 2. Quantity vs. Proportion
In principle, participants might solve the previous tasks by ap-
plying some superficial heuristic, rather than a proper chance
evaluation. For example, they might bet on the more favorable
outcome by considering the absolute number rather than the
proportion of possibilities in its favor. To test whether preliterate
participants succeed because they apply this “numerosity” heu-
ristic (13), and extend our results, we used a second task [similar
to 11] that would show more directly the use of probabilistic
reasoning. In each trial, participants had to bet on which of two
sets was more likely to yield a winning chip. The simplest trials
did not ask for any estimation of proportions, given that one or
both sets contained just winning chips (Fig. 3 A and B). Two
other trials did ask for this estimation because both sets con-
tained some winning chips (Fig. 3C). In one case, the favorable
set contained a larger proportion as well as a greater number of
winning chips. In the other case, it contained a larger proportion

but not a greater number of winning chips. If preliterate Maya
are able to compare the ratio of winning to nonwinning chips
across sets, they should succeed in this crucial trial. Indeed, in
each trial, all groups performed above chance level (as shown by
binomial tests). Task A: all participants performed correctly, P =
0.0009. Task B-left panel: Mayan adults (correct: 33 of 40), P =
0.0002, Mayan school children (correct: 18 of 20), P = 0.0002,
Italian adults (correct: 20 of 20), P = 0.0009. Task B-right panel:
Mayan adults (correct: 32 of 40), and Mayan school children
(correct: 16 of 20), P = 0.006, Italian adults (correct: 18 of 20),
P = 0.0002. Task C-left panel: Mayan adults (correct: 37 of 40), P =
0.0009, Mayan school children (correct: 18 of 20), P = 0.0002,
Italian adults (correct: 19 of 20), P = 0.0002. Task C-right panel:
Mayan adults (correct: 35 of 40), P = 0.0004, Mayan school
children (correct: 17 of 20), P = 0.002, Italian adults (correct: 18
of 20), P = 0.0002). In no trial the data reflected a reliable trend:
Task B-left panel, Task B-left panel: P = 0.320. Task B-right
panel: P = 0.48. Task C-left panel: P = 0.6. Task C-right panel:
P = 0.63. These results suggest that preliterate individuals can base
their predictions on proportional reasoning. Unlike Studies 1
and 3, we did not have the baseline data on Western children’s
performance in these tasks. Thus, we tested 20 Italian 5–6 y-olds.
They performed like participants in the other groups (see Fig. 3;
Task B’s: P = 0.0002, in both tasks, correct: 18 of 20. Task C’s:
P = 0.002, in both tasks, correct: 17 of 20). This result extends the
recent evidence, published after we completed our work, that non-
verbal creatures perform correctly in nonverbal tasks similar to those
depicted in Fig. 3 (12, 21). Earlier studies reported that Western
children failed problems akin to our crucial tasks. For example, 5-y-
olds prefer to draw a token from a set containing 4 winning tokens
and 4 losing token rather than from a set containing 2 winning tokens
and 1 losing token (22). Compared with most previous problems, our
tasks involved a larger number of tokens (e.g., 60 tokens in task C-
right vs. 11 tokens in the above example), and a greater difference
between proportions (e.g., 3:1 and 1:3 in task C-right vs. 2:1 and 4:4
in the above example). The combination of these factors may have
encouraged approximate comparison over precise assessment of
possibilities and, thus, yielded optimal choices (21).

Study 3. Probability and Combinatorics
Finally, we investigated whether preliterate Maya are able to
form appropriate expectations when they have to combine pos-
sibilities mentally. We used tasks that ask one to predict whether
a given relation will occur between two randomly chosen tokens,
and that Western children appear to solve from the age of about
six (15). Participants were presented a set of chips. They had to
bet on whether two randomly chosen chips would have the same
color or two different colors (Fig. 4). To bet optimally, partic-
ipants did not need to make a precise enumeration of all pos-
sibilities. In three tasks, there were k chips of the same color
and one chip of a different color. Thus, when k > 3, participants
could notice that each chip having the predominant color neigh-
bored k − 1 same-colored chips and only 1 differently-colored
chip. Accordingly, they could bet on the “same color” outcome.

A

B

C

Fig. 2. Performance of Maya and Italian participants in tasks
asking for a prior and/or posterior probability evaluation. In
the prior task (A), participants had to bet on the color of a
randomly drawn chip. In the posterior task (B), participants
had to bet on the color of a randomly drawn chip whose
shape was indicated by the experimenter. In the updating
task (C), participants had to make both a prior and a poste-
rior bet. The grey line indicates the possibilities compatible
with the evidence, namely, the shape of the drawn chip: in B,
the experimenter has drawn a square chip; in C, she has
drawn a round chip. For each task, the figure reports the
percentage of participants making the optimal bet.

*We also tested eight preliterate adults (all women, mean age: 44 y, age range: 32 to
47 y), bilingual in K’iche’ and Spanish, rather than in Kaqchikel and Spanish. They per-
formed like the other Mayan adults (75% correct in both prior and posterior tasks, mean
of correct bets out of 2 = 1.62, in the updating task).

†The other two groups exhibited a similar response pattern: 2 children performed better
in the confirmation version and 2 performed better in the disconfirmation version (the
remainder were ties). Two Italians performed better in the confirmation version and one
performed better in the disconfirmation version (the remainder were ties).
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In three other tasks, there were k pairs of same-colored chips.
Thus, participants could notice that each chip had just another
chip of the same color and several [actually, 2(k − 1)] chips of
different colors. Accordingly, they could bet on the “different
color” outcome. As shown in Fig. 4, the rate of Maya’s bets on
the same color relation follows the same tendency as the prob-
ability of such an outcome.‡ For each participant, we computed
an index Q of the quality of their prediction pattern, by nor-
malizing the expected value of the number of correct bets (ref.
15; see also SI Study 3. Probability and Combinatorics). Q ranges
from −1 (worse quality) to +1 (best quality). All groups per-
formed above chance level: Monolingual Maya, mean Q = 0.37,
SD = 0.53, t(19) = 3.07, P = 0.003, d = 0.69; Bilingual Maya,
mean Q = 0.85, SD = 0.25, t(19) = 14.89, P < 0.0001, d = 3.33;
Mayan school children, mean Q = 0.58, SD = 0.42, t(19) = 6.20,
P < 0.0001, d = 1.39; Italian controls, mean Q = 0.81, SD = 0.38,
t(19) = 9.56, P < 0.0001, d = 2.14. A reliable trend (Maya chil-
dren < Maya adults < Italians, P = 0.03) indicated that perfor-
mance increased with age and experience, suggesting that some
probabilistic intuitions develop into adulthood (24). Unlike in

Studies 1 and 2, adult bilingual Maya outperformed monolingual
ones, t(38) = 3.67, P = 0.0007, d = 1.16. It is difficult to attribute
this result to cultural factors, given that our bilingual and
monolingual participants were equally preliterate, and lived in
similar socio-economic conditions. Because Study 3 tasks involve
mental manipulation of multiple possibilities, this result seems to
support evidence for bilingual advantages in reasoning tasks of this
sort (16). Despite differences in absolute performance levels,
however, the above-chance performance of all groups points to
a shared ability to treat possibilities in a combinatorial way.

Conclusion
To date, the question on whether culture shapes probabilistic
cognition has been addressed only theoretically, applying defunct
conceptions of “primitive mind” (4, 5). Our studies are, to our
knowledge, the first to investigate probabilistic cognition em-
pirically in preliterate individuals. The reported results provide
evidence that the ability to make correct probabilistic evaluations
emerges regardless of culture or instruction. Preliterate Maya
solved problems in which they had to consider prior and poste-
rior information, proportions and combinations of possibilities to
predict the occurrence of random outcomes. And their perfor-
mance was in most cases indistinguishable from that of Mayan
school children and Western controls. Our results also shed
some light on the question of the relation between normative
and common reasoning. The probability calculus emerged only
in the seventeenth century. Some theorists have used this evi-
dence to deny the universal nature of probabilistic reasoning (6),
or to argue that premodern time individuals lacked even the
basic notions of probability, notably, the concept of evidential
support, according to which one thing can indicate, contingently,
the state of another thing (25). These arguments neglect the
written traces that individuals living before the advent of the
calculus were able to evaluate chances by reasoning extension-
ally. For example, medieval authors described dice games by
relying on the principle that the expectation of a given outcome
depends on the number of ways in which it can be obtained (26).
Medieval authors could not even conceive a norm for measuring
chance. However, they had some numerical knowledge to carry
out a combinatorial analysis of the ways in which a sum could be
produced. Our preliterate participants, by contrast, had not re-
ceived any instruction on the symbolic numerical system. How-
ever, they made suitable predictions, indicating that a correct
intuition of chance does not depend on the ability to evaluate
probability numerically (8, 24). Moreover, our preliterate par-
ticipants correctly used posterior evidence to update their deci-
sions, suggesting that the basic concepts of evidence emerge even
in cultures that do not prescribe norms for thinking about un-
certainty. This finding seems to conflict with the evidence that
literate Western adults often do not follow Bayes’ rule in their
judgments of posterior probability (7). In fact, Western adults
succeed in problems whose solution depends on a simple com-
parison of possibilities (8, 27–29). Western children (14) and
preliterate Maya do the same. Like Western adults, they succeed
by reasoning extensionally. [Notice that, unlike the problems
typically used in Western adult literature, our tasks did not ask
for a numerical judgment. However, they are closer to an ideal
test of Bayesian reasoning than adult problems. Unlike the latter,
in which participants do not revise any initial evaluation (6, 7,
27), in our updating tasks participants provide a prior answer and
then a second one, in the light of posterior information.] In sum,
regardless of culture and instruction, individuals share an in-
tuitive comprehension of the basic principles that link prior and
posterior probability.
Skeptics might argue that our results do not yield conclusions

about probabilistic cognition because we used elementary tasks
that asked for choices rather than probability judgments. This
criticism rests on the implicit assumption that assigning a number
on the [0,1] probability scale is the only way in which individuals
express their expectations about uncertain events. This assumption
conflicts with the normative and intuitively compelling principle

A

B

C

Fig. 3. Performance of Maya and Italian controls in tasks in which they had
to bet on which of two sets was more likely to yield a red, winning token.
The percentage of winning tokens is shown on the top of each set. In A and B,
one or both sets contained just winning tokens. In C, both sets contained
a proportion of winning tokens. In one task (left panel), the favorable set
contained a larger proportion as well as a greater number of winning
tokens. In the other task (right panel), it contained a larger proportion but
not a greater number of winning tokens. The percentage of participants
making the optimal bet is reported on the bottom of each task.

‡One might argue that Study 3, in which participants made binary choices, provides
evidence for probability matching. When individuals make sequential binary decisions,
they tend to select the options with a frequency equivalent to the probability of such
options being the best choice (23). But obviously probability matching could not occur in
Study 3 because participants made only one choice for each task.
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that choices reveal the expectations of rational agents (2). More
importantly, it leads to the paradoxical conclusion that individ-
uals who are not able to compute a percentage or a fraction are
not able to express their degree of belief in uncertain events. As
for the elementary nature of our tasks, they were designed to
reveal the existence of a sense of chance, not its limits. Using
more complex tasks, one can easily document them. For example, in
problems in which considering a sample of possibilities suffices to
predict the occurrence of a relation, even preliterate Maya succeed.
However, in problems asking to assess the exact number of the
possibilities in which the relation holds, even literate Westerns fail
(30). They fail even in problems that in principle could be solved by
an extensional treatment of few possibilities. For example, they
judge that getting “6–6” is as likely as getting “6–5” from a throw of
two regular dice (31). Leibniz made the same biased judgment (32).
Biases of this sort show that the application of extensional proce-
dures does not guarantee correct evaluations. In some cases, the
limited capacity of working memory and the difficulty of considering
all relevant possibilities lead literate individuals to succumb to gross
illusions in their reasoning through uncertainty (8, 33, 34). Not
surprisingly, preliterate individuals exhibit similar errors in their
superstitious practices (35).
In conclusion, our results extend previous evidence of probabi-

listic intuitions in infants and apes (9–12) and correct probabilistic
judgments in Western 5- to 6-y-olds (13–15), by showing that adults
who have not been exposed to any sort of formal education are able
to make suitable predictions. Together, these findings indicate that,
along with basic arithmetic (18, 19) and geometry (36), the human
mind possesses a basic probabilistic knowledge.

Methods
The Ethics Committee of CERME (University Ca’ Foscari of Venice) approved
the research. Verbal/written informed consent was obtained from the teach-
ers/parents of the child participants tested in Guatemala and Italy. For further
details on the methods, see Supporting Information.

Study 1. Prior and Posterior Evaluation. Each participant received three tasks.
In each task, the experimenter informed the participants that they could
obtain a prize by playing with two differently colored puppets, each owning
a set of chips of the same color. (WithMayan participants, we used the puppet
procedure because it had proven successful with Western children (14). In
Study 2, we used it only with Mayan and Italian children. Adults were simply
informed that every time they got a red chip, they obtained the reward.)
The experimenter labeled each puppet on the basis of its color. For instance,

if the chips were yellow and blue, the experimenter named the yellow puppet
‘‘Mr. Yellow, the owner of the yellow chips,” and named the blue one ‘‘Mr.
Blue, the owner of the Blue chips.’’ To test participants’ understanding of the
instructions, the experimenter asked them to indicate one chip belonging to
each puppet. If they failed, she corrected them. In posterior and updating
tasks, the games concerned chips of different shapes. The experimenter in-
dicated and named these shapes. To check whether participants had learned
the names, they had to indicate a round chip and a square chip. If they failed,
the experimenter corrected them. The experimenter put the chips in an opa-
que bag. As a mnemonic aid about the content of the bag, a cardboard
depicting the chips was left in front of the participants. In each task, the ex-
perimenter randomly drew a chip, and asked participants to bet on its color.

In the prior task, the experimenter presented 4 triangular chips (2 cm per
side) of blue and yellow color. One chip had one color (e.g., yellow), three
chips the other one (e.g., blue). The experimenter said:

“I’m going to put all of the chips in this bag, but you can remember how
they are because they are copied on this card [the experimenter indicated the
card representing the four chips]. I will shake the bag and I will take a chip from
it without looking. If the chip is . . . [the experimenter named one color], then
Mr. . . . [the experimenter named and indicated the puppet of that color] wins
a prize. If the chip is . . . [the experimenter named the other color], then
Mr. . . . [the experimenter named and indicated the puppet of that color] wins
a prize. You have to choose which puppet you would like to be to win the prize.
Show me which puppet you would like to be.”

In the posterior task, the experimenter presented eight chips: four round
chips (1.5 cm in diameter) and four square chips (2 cm per side), of black and
white color or else of green and red color; five chips had one color (e.g., white)
and three chips had the other one (e.g., black). The experimenter put the
chips in a bag, randomly drew one of them and said:

“Ah, listen. I’m touching the chip that I have drawn and now I know
something that might help you to win the game. I’m touching the chip that I
have in my hand and I feel that it is . . . [the experimenter named a shape:
either round or square]. Now, show me which puppet you would like to be.”

Unknown to the participants, the experimenter touched the chips and
selected a chip having the shape determined by the task version. In the “con-
firmation” version, three out of four chips having the selected shape had the
initially prevalent color. For example, consider a case in which most chips were
white (i.e., five white vs. three black), and most round chips were equally white
(i.e., three white vs. one black). Informing participants that the drawn chip was
round, increased the odds in favor of the white color from 5:3 to 3:1. Therefore,
the correct answer was to bet on the white puppet. In the “disconfirmation”
version, only one out of four chips having the selected shape had the initially
prevalent color. For example, consider a case in which most chips were white
(i.e., five white vs. three black), but most round chips were black (i.e., three black
vs. one white). Informing participants that the drawn chip was round, changed

Fig. 4. Percentage of the “same color” predictions in
six tasks in which participants had to bet on whether
two randomly chosen tokens would have the same
color or two different colors. The optimal bets con-
sisted in predicting “same color” in the first two tasks
and “different colors” in the last three tasks. In the
third task, the two predictions had the same proba-
bility to be correct. The dotted line indicates the
probability of the “same color” outcome.
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the odds from 5:3 in favor of the white color to 3:1 against it. Therefore, the
correct answer was to bet on the black puppet.

In the updating task, the chips were the same as those used in the poste-
rior task, except that they had different colors. For example, if the posterior
task concerned black and white chips, the updating task concerned red and
green chips. The updating taskwas composed of two subtasks: In the first one,
the instructions were the same as those used in the prior task. In the second
one, the instructions were the same as those used in the posterior task. Like
the posterior task, the second subtask of the updating task occurred in a
confirmation or a disconfirmation version.

Study 2. Quantity vs. Proportion. Participants sat in front of a table on which
there were two opaque boxes, placed at about 30 cm from each other, each
measuring 30 × 15 × 10 cm, and each with a hole (10 cm in diameter) on the
top. In front of each box, there was an opaque cup (12 cm in diameter, 10 cm
in height). In each trial, two sets of red and black wooden chips (2 cm in
diameter) were used. The experimenter said:

“Look at these two puppets [The experimenter presented two animal-toys of
two different colors]. Which one do you prefer? [The participant selected
a puppet] OK. You will play with it [The experimenter indicated the participant’s
puppet]. You and your puppet will belong to the red team. This red sticker is for
you and this one for the puppet [The experimenter distributed the stickers]. The
other puppet belongs to the black team [The experimenter placed a black
sticker on the other puppet]. Now, we will play a series of games with some red
and some black chips. [The experimenter showed some chips]. The red chips
make your red teamwin the game. The black chips make the black teamwin the
game. Every time you find a red chip, your red team wins a sticker. Every time
you find a black chip, the black puppet wins a sticker.”

To test participants’ understanding of the instructions, the experimenter
asked them to name or point to the winning chip. If they failed, she cor-
rected them. The experimenter went on:

“Look at these chips. [The experimenter indicated one group of chips] We will
put them in this box. [The experimenter indicated one of the two boxes; then
she encouraged the participant to help her in putting the chips in thementioned
box] To help you remembering the chips that we will put in the box, I have
represented them here [The experimenter indicated a cardboard, 21 × 29 cm,
which depicted the chips]. Look at these other chips. [The experimenter in-
dicated the other group of chips] We put these chips in this box. [The experi-
menter indicated the other box and filled it with the new set of chips] To help
you remembering the chips that we will put in the box, I have represented
them here [The experimenter indicated another cardboard, 21 × 29 cm, which
depicted the second set of chips]. Now, without looking, I take one chip from this

box [The experimenter indicated one box] and one chip from this box [The ex-
perimenter indicated the other box]. And, without looking, I put them in these
two cups [The experimenter took one chip from each box and placed it in the
corresponding cup]. You have to choose a cup. Remember that, to win, you have
to find a red chip. If you find a black chip, the black puppet wins [For adult
participants: If you find a black chip, you do not win the prize]. Before making
your choice, you may look at the two cardboards, which reminds you the con-
tent of each box. Thus, which cup do you choose to find a red chip?”

The participants made their choice, by pointing to one cup. The experi-
menter opened it and assigned the prize. The tasks were presented in the
order indicated in Fig. 3.

Study 3. Probability and Combinatorics. In each task, the experimenter used
a different set of chips (measuring 2 cm in diameter). In three tasks, 1 chip of
a given color and, respectively, 3, 7 and 15 chips of another color composed the
set.We label the tasks 3 vs. 1, 7 vs. 1, and 15 vs. 1, respectively. In three other tasks,
the set consisted of, respectively, 2, 4 and 8 pairs of twin-chips. Each twin-pair
represented a different color. We label these tasks “2 by 2,” “4 by 2,” and “8 by
2,” respectively. Before the six experimental tasks, participants received a famil-
iarization task. The experimenter presented four blue and four red chips. Par-
ticipants had to indicate two chips of the same color, and then two chips of two
different colors. If they failed, the experimenter corrected them. In each ex-
perimental task, the experimenter put the chips on a table, asked participants to
examine them and then put them in an opaque bag. Participants had to draw
two chips at the same time without looking inside the bag. As a mnemonic aid
about the content of the bag, a cardboard depicting the chips was left in front of
the participants. Before they drew the chips, the experimenter asked:

“Do you think you will draw two chips of the same color or two chips of two
different colors? If your answer turns out to be right, you’ll win the prize.”

If participants’ bet turned out to be correct, they received the reward. The
order of presentation of the six tasks was varied in such a way that each task
was presented in all possible ranks to the same number of participants.
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