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The evolution of cooperation in network-structured populations
has been a major focus of theoretical work in recent years. When
players are embedded in fixed networks, cooperators are more
likely to interact with, and benefit from, other cooperators. In
theory, this clustering can foster cooperation on fixed networks
under certain circumstances. Laboratory experiments with
humans, however, have thus far found no evidence that fixed
network structure actually promotes cooperation. Here, we pro-
vide such evidence and help to explain why others failed to find it.
First, we show that static networks can lead to a stable high level
of cooperation, outperforming well-mixed populations. We then
systematically vary the benefit that cooperating provides to one’s
neighbors relative to the cost required to cooperate (b/c), as well
as the average number of neighbors in the network (k). When b/c> k,
we observe high and stable levels of cooperation. Conversely, when
b/c ≤ k or players are randomly shuffled, cooperation decays. Our
results are consistent with a quantitative evolutionary game theoretic
prediction for when cooperation should succeed on networks and, for
the first time to our knowledge, provide an experimental demonstra-
tion of the power of static network structure for stabilizing human
cooperation.
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Human societies, in both ancient and modernized circum-
stances, are characterized by complex networks of co-

operative relationships (1–10). These cooperative interactions,
where individuals incur costs to benefit others, increase the
greater good but are undercut by self-interest. How, then, did the
selfish process of natural selection give rise to cooperation, and
how might social arrangements or institutions foster cooperative
behavior? Evolutionary game theory has offered various explana-
tions, in the form of mechanisms for the evolution of cooperation
(10). For example, theory predicts (and experiments confirm) that
repeated interactions between individuals and within groups can
promote cooperation (11–22), as can competition between groups
(23–26).
However, one important class of theoretical explanations

remains without direct experimental support: the prediction that
static (i.e., fixed) network structure should have an important
effect on cooperation (27–40). When interactions are structured,
such that people only interact with their network “neighbors”
rather than the whole population, the emergence of clustering
(or “assortment”) is facilitated. Clustering means that coopera-
tors are more likely to interact with other cooperators, and
therefore to preferentially receive the benefits of others’ co-
operation. Thus, clustering increases the payoffs of cooperators
relative to defectors and helps to stabilize cooperation. Across
a wide array of model details and assumptions, theoretical work
has shown that static networks can promote cooperation, making
spatial structure one of the most studied mechanisms in the
theory of the evolution of cooperation in recent years (27–40).
However, numerous laboratory experiments have found that

static networks do not increase human cooperation relative to

random mixing (41–50) [in contrast to dynamic networks, where
players can make and break ties, which have been shown to
promote cooperation experimentally (42, 46, 51)]. One expla-
nation for these findings is that static networks cannot maintain
assortment because humans often spontaneously switch strate-
gies (41). This conclusion is a pessimistic one for the large body
of theoretical work demonstrating the success of cooperation
on such networks.
Here, we propose an alternative explanation. A central theo-

retical result is that networks do not promote cooperation in
general. Rather, specific conditions must be met before co-
operation is predicted to succeed. Thus, prior experiments may
have failed to find a positive effect of static networks on co-
operative behavior because they involved particular combina-
tions of payoffs and network structures that were, in fact, not
conducive to cooperation.
To assess this possibility, we conduct a set of laboratory

experiments using artificial social networks. We arrange subjects
on a ring connected to k/2 neighbors on each side (resulting in k
total neighbors in the network; Fig. 1) and have them play a se-
ries of Prisoner’s Dilemma games. In each game, they can defect
(D) by doing nothing or cooperate (C) by paying a cost of c = 10k
units to give each of the k neighbors a benefit of b units (they
must choose a single action, C or D, rather than choosing dif-
ferent actions toward each neighbor). Following each decision,
subjects are informed of the decisions of each of their neighbors,
as well as the total payoff they and each neighbor earned for
the round.
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Our experiments take inspiration from recent work in evolu-
tionary game theory predicting that in static networks,
cooperation will be favored over time if and only if the condition
b/c > k is satisfied (33, 37); discussion of the derivation of this
condition, which arises from a model where players use fixed
strategies (C or D) and then learn by imitating successful
neighbors, is provided in SI Appendix. We therefore experi-
mentally test (i) whether stable cooperation emerges in networks
satisfying the b/c > k condition and (ii) whether, as a result,
networked interactions promote cooperation relative to well-
mixed populations when b/c > k.

Results
In experiment 1, we fix b/c = 6 and k = 2, and recruit n = 109
students from Yale University to play 50 rounds of our game (8.4
subjects per session on average). Subjects are assigned either to
a “network” treatment, in which their position on the ring is held
constant every round, or a “well-mixed” treatment, in which their
position is randomly shuffled every round (subjects in the well-
mixed treatment are informed of this shuffling). Further details
are provided in Methods.
Because the b/c > k condition is satisfied, we expect cooper-

ation to succeed in the network treatment. As shown in Fig. 2, our
results are consistent with this theoretical prediction. We observe
a high stable level of cooperation when subjects are embedded in
the network (no significant relationship between cooperation
and round number; P = 0.290). In the well-mixed treatment, by
contrast, cooperation decreases over time (relationship between
cooperation and round is significantly more negative in the well-
mixed treatment compared with the network treatment; P =
0.030). As a result, cooperation rates in the second half of the
session are significantly higher in the network treatment than in
the well-mixed treatment [P = 0.039; similar results are obtained
when considering the last third (P = 0.027) or quarter (P = 0.033)
of the session; P values generated using logistic regression at the
level of the individual decision with robust SEs clustered on
subject and session, including a control for the total number
of players in the session]. Statistical details are provided in
SI Appendix.
Thus, experiment 1 demonstrates that interaction structure

does matter for stabilizing human cooperation and that static
networks can promote cooperation under the right conditions.
In experiment 2, we build on this finding by providing evidence

that it is the theoretically motivated b/c > k condition in par-
ticular that determines when cooperation succeeds on networks.
To do so, we take advantage of the online labor market Amazon
Mechanical Turk (AMT) (52) to recruit a large number of sub-
jects (1,163 in total) and systematically vary b/c and k across the
values of 2, 4, and 6 in our network treatment. Thus, we have nine
main treatments: [k = 2, k = 4, k = 6] × [b/c = 2, b/c = 4, b/c = 6].
We also include three additional well-mixed control conditions: one
for each [b/c,k] combination that satisfies the b/c > k criterion. We
run four experimental sessions of each treatment, with each con-
sisting of 24.2 subjects on average (no subject participated in more

than one session). Given the practical constraints of online experi-
ments, games in experiment 2 last 15 rounds rather than 50 rounds as
in experiment 1. Because of this shorter length, subjects are not told
the total number of rounds to avoid substantive end-game effects.
We begin by considering the network treatments and ask

whether the b/c > k condition determines the success of co-
operation. Consistent with the results for experiment 1 and
theoretical predictions, we observe a stable high level of co-
operation when b/c > k (Fig. 3A). After an initial transient ad-
justment, cooperation in the b/c > k treatments stabilizes in the
second half of the game (no significant relationship between
cooperation and round number; P = 0.838), whereas co-
operation continues to decline in the b/c ≤ k treatments [P =
0.028; results are equivalent when considering the last third of
the game instead of the second half or when defining the sec-
ond half as starting at round 8 instead of round 9 (SI Appen-
dix)]. This difference in how cooperation unfolds over time
is further demonstrated by a significant interaction between
round number and a b/c > k indicator (P = 0.001) in a regression
with all of the data.
As a result, in the final round, cooperation is significantly

higher when b/c > k compared with b/c ≤ k (Fig. 3B; P = 0.002).
Importantly, there is no significant difference in final round
cooperation comparing b/c < k with b/c = k (P = 0.355) and there
is more final round cooperation in b/c > k compared with b/c = k
(P = 0.034). Thus, we provide evidence that b/c > k, in particular,
is needed for stable networked cooperation (P values generated
using logistic regression at the level of the individual decision
with robust SEs clustered on subject and session, including a con-
trol for the total number of players in the session; statistical details
are provided in SI Appendix).
These differences in the level of cooperation reflect deeper

differences in how players are distributed over the network. When
b/c > k, clusters of cooperators emerge and are maintained,
whereas no such clusters form when b/c ≤ k. We quantify clustering
following the standard definition of assortment in evolutionary
game theory (53), operationalized here as a cooperator’s average
fraction of cooperative neighbors minus a defector’s average
fraction of cooperative neighbors. As shown in Fig. 4A, assort-
ment rapidly emerges when b/c > k, but not when b/c ≤ k. Thus,
we observe a level of assortment that is significantly greater than
zero for b/c > k (P < 0.001), but not for b/c ≤ k (P = 0.461), and
we observe significantly more assortment at b/c > k than b/c ≤ k
(P < 0.001). In other words, the b/c > k environment gives rise to
substantial clustering of cooperators, stabilizing cooperation. To
illustrate this point, sample b/c > k and b/c ≤ k networks for
rounds 1 through 5 are shown in Fig. 4 B and C. Despite similar
initial levels of cooperation across the two networks, the

Fig. 1. Examples of the network structure for the k = 2 (A), k = 4 (B), and
k = 6 (C) cases. Consider the topmost player as the ego (in dark blue); her
links are highlighted in blue, and her neighbors are colored light blue.
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Fig. 2. Networked interactions promote cooperation when b/c = 6 and k = 2
in experiment 1, run in the physical laboratory. Shown is the fraction of sub-
jects choosing cooperation in each round, for network (dark green circles) and
well-mixed (light green diamonds) conditions.
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distribution of cooperators within the networks quickly becomes
noticeably different [P values generated using linear regression
taking one observation per session per round, with robust SEs
clustered on session; results are robust to controlling for k
(SI Appendix)].
This assortment has important strategic implications. Defec-

tors earn significantly higher payoffs than cooperators when
b/c ≤ k (P < 0.001; Fig. 5A). The clustering that arises when b/c > k,
however, allows cooperators to interact preferentially with other
cooperators. Thus, the cost of cooperating may be balanced out
by increased access to the benefits created by other cooperators,
improving the payoffs of cooperators relative to defectors. In-
deed, cooperators earn significantly higher payoffs relative to
defectors when b/c > k compared with b/c ≤ k (P < 0.001), so
much so that when b/c > k, defectors no longer earn significantly
more than cooperators (P = 0.152; Fig. 5B; P values generated using
linear regression on payoff relative to session average per subject
per round, with robust SEs clustered on subject and session; sta-
tistical details are provided in SI Appendix).
Thus far in experiment 2, we have shown that stable co-

operation emerges in static networks when b/c > k and that this
cooperation is supported by assortment. We now provide evi-
dence that it is indeed the network structure of interactions that
is driving these results, by ruling out two potential alternatives.
First, we show that the key factor determining outcomes is the

b/c > k criterion, rather than merely the b/c ratio itself (which is
larger when b/c > k than when b/c ≤ k). When we include
a control for the b/c ratio (statistical details are provided in SI
Appendix), we continue to find a significant interaction between
round number and a b/c > k indicator (P = 0.004). We also
continue to find that when comparing b/c > k to b/c ≤ k, there is
significantly more cooperation in the final round (P = 0.047), sig-
nificantly more assortment (P < 0.001), and significantly higher

payoffs of cooperators compared with defectors (P < 0.001). Thus,
the network properties (i.e., the relationship between b/c and k) must
be considered, and the results cannot be explained by b/c alone.
Second, we replicate the result from experiment 1 that shuf-

fling the network results in a decay of cooperation even if the
b/c > k condition is satisfied. In our well-mixed b/c > k control
conditions, there is (by design) significantly less assortment than
in the networked treatments (P = 0.001). As a result, we find that
cooperation significantly declines in the second half of the game
when the population is well mixed (P = 0.004), even though b/c > k.
Furthermore, the well-mixed controls show less cooperation in
the final round (P = 0.033) and lower payoffs to cooperators
compared with defectors (P < 0.001). Together with experiment 1,
these results show that it is not enough to interact with k players in
each round. Interactions must be embedded in static networks to
achieve stable cooperation in our experiments (statistical details and
further analysis are provided in SI Appendix).

Discussion
Here, we have demonstrated the power of static interaction
networks to promote human cooperation. With the right com-
bination of payoffs and structure, networked interactions allow
stable cooperation via the clustering of cooperators. This clus-
tering offsets the costs of cooperating and makes it possible to
maintain high levels of cooperation in sizable groups and to
avoid the tragedy of the commons. Our experimental results
support the substantial theoretical literature suggesting that co-
operation can be favored in structured populations under the
right conditions (27–40). Our findings provide insight into the
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profoundly important role that networks may play in the origins
and maintenance of cooperation in human societies.
Our results also help to explain why previous studies con-

cluded that static network structure does not promote co-
operation in experiments with human subjects (41–48). We find
that the b/c > k condition is required for cooperation to succeed
and that this condition was not satisfied in most previous
experiments where cooperation failed in networked populations.
Traulsen et al. (41) used b/c = 3 and a lattice with k = 4; Rand
et al. (42) used b/c = 2 and a random graph with average k =
3.25; Suri and Watts (43) used a Public Goods game with an
effective b/c = 2.67 and various different network structures all
having k = 5. Other experiments used Prisoner’s Dilemma games
that are not decomposable into a benefit-to-cost ratio, but can be
analyzed using a generalized form of the b/c > k condition [for
a general Prisoner’s Dilemma game, where a player earns T from
defecting while the partner is cooperating, R from mutual co-
operation, P from mutual defection, and S from cooperating
while the partner is defecting; the condition for cooperation to
succeed is Q* > k with Q* = (P + S − R − T)/(R + S − P − T)
(37)]. Cassar (44) used Q* = 4 and various network structures all
having k = 4, Gruji�c et al. (45) used Q* = 5.67 and a lattice with
k = 8, and Wang et al. (46) used Q* = 2.2 and cliques or random
regular graphs with k = 5. Thus, the fact that networked inter-
actions did not promote cooperation in any of these experiments
is consistent with the theory and our results. It is also important
to note that in some of these previous experiments (42–44, 46),
participants were not given information about the payoffs of
their neighbors, precluding the method of strategy updating
which allows cooperation to succeed when the b/c > k condition

is satisfied; thus, we would not predict stable cooperation in
these settings even with b/c > k.
Importantly, the decline of cooperation in these previous

network studies shows that the stability we observe when b/c > k
is not driven purely by repeated game effects. Even though all of
these experiments (as well as our b/c < k treatments) involved
repeated interactions between the same fixed neighbors, stable
cooperation was not observed [and in experiments that included
shuffled control conditions, cooperation was not greater with
fixed partners than with shuffled partners (41, 42, 45)]. This
failure of cooperation in these repeated games suggests that
interaction structure plays a key role in the stability we observe.
There are two previous experiments that did satisfy the theo-

retical condition and, nonetheless, did not find stable co-
operation. However, these studies involved design features that
make inference regarding the b/c > k condition difficult. Gracia-
Lázaro et al. (47) used Q* = 5.67 and a lattice with k = 4 or
a heterogeneous network with an average k = 3.13, but they ran
only a single replicate of each network (yielding only two in-
dependent observations). Kirchkamp and Nagel (48) used b/c =
5 and networks with k = 4 (satisfying the condition) or k = 10
(not satisfying the condition), but subjects were given no in-
formation about the payoff structure of the game. Instead, they
received information each round regarding choices and resulting
payoffs for themselves and their neighbors, from which they
could try to make inferences about the payoff structure. Thus, it
seems likely that subjects in this experiment may have engaged in
a high degree of experimentation in an effort to understand the
game, and experimentation undermines the ability of networks
to promote cooperation. (Similarly, subjects in the study by
Gracia-Lázaro et al. (47) were high-school students, and thus
may have also engaged in more experimentation and non-
strategic behavior than our older subjects).
Issues related to experimentation in network experiments

were first emphasized by Traulsen et al. (41), who linked this
behavior to the theoretical concept of “exploration dynamics”
(54). Experimentation was defined as switching to a strategy not
currently played by any of one’s neighbors (a process similar to
mutation in evolutionary models). Exploration/mutation disrupts
the clustering of cooperators, because a player surrounded by
cooperators might spontaneously switch to defection. Thus,
theory predicts that, as the mutation rate increases, the b/c re-
quired to maintain cooperation rises above k (40). It may be that
by concealing the payoff structure from subjects, Kirchkamp and
Nagel (48) induced a rate of exploration large enough to derail
cooperation even with b/c = 5 and k = 4.
What, then, is the role of exploration in our data? We find that

defectors with all defecting neighbors switch to cooperation
15.7% of the time when b/c ≤ k and 17.4% of the time when
b/c > k, a nonsignificant difference (P = 0.464). Thus, “muta-
tions” from defection to cooperation, which do not prevent the
clustering of cooperators, are common in both cases. However,
spontaneous changes from cooperation to defection are signifi-
cantly less common when b/c > k compared with b/c ≤ k (P =
0.010). Cooperators with all cooperating neighbors switch to
defection 14.1% of the time when b/c ≤ k, but only 5.1% of the
time when b/c > k. Importantly, this 5.1% mutation rate is low
enough that the success of cooperation in our b/c > k experi-
mental conditions comports well with theoretical predictions,
even taking into account exploration/mutation (with a 5.1%
mutation rate, b/c > 3.35 is required for k = 2 and b/c > 4.99 is
required for k = 4, both of which are satisfied by our relevant b/c > k
conditions; SI Appendix). Moreover, these results suggest that the
extremely high exploration rates observed by Traulsen et al. (41)
may have been the result of subjects (correctly) judging those game
settings as unfavorable to cooperation. Exploring the evolutionary
dynamics of strategies that can modify their mutation rates across
settings is an important direction for future work.
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An important limitation of the extant theory generating the
b/c > k condition is that it does not take into account expected
game length (in the case of “indefinitely repeated” games with
uncertain ending conditions) or end-game effects (in the case of
“finitely repeated” games of known length). The reason is that
the theory assumes very simplistic agents who merely copy their
neighbors proportional to payoff, without engaging in any more
complex strategic thinking. Thus, these agents’ decisions are
unaffected by game length/ending. However, previous experi-
mental work shows that expected game length has a notable ef-
fect on cooperation in pairwise (non-networked) repeated games
(10, 17, 55), and end-game effects (where participants begin
defecting as the end of a finitely repeated game approaches)
have been found in a wide range of settings, including games on
networks (46, 56–58). Thus, exploring how game length effects
interact with payoffs and network structure is an important
direction for future experimental work.
The success of the b/c > k condition in predicting experimental

play in our repeated games, despite its derivation in the context
of unconditional strategies (33), suggests that this theory may
have wider implications than previously conceived. Perhaps
when players are informed of the payoffs of others, they focus on
this information when choosing C or D, rather than reciprocating
neighbors’ behavior (as prescribed by typical strategies from re-
peated games theories). There may also be rationales for the
b/c > k criterion that come from behavioral models or myopic
learning models in addition to the evolutionary model in which it
was first derived, or from update rules other than the rules as-
sumed by the particular evolutionary theory that originally gen-
erated the b/c > k rule (33). For example, when b/c > k is
satisfied, cooperators need only one cooperative neighbor to
“break even” (i.e., to earn more than the zero payoff they would
earn if they had not played the game or if they had played in
a group where all players defected). Thus, the b/c > k condition
may be relevant for agents who, rather than maximizing their
payoff through imitation as in most evolutionary models, engage
in a variant of conditional cooperation (59), where they
cooperate as long as doing so does not make them worse off than
the baseline reference point. For similar reasons, the b/c > k con-
dition may also be relevant for learning models that seek a “sat-
isficing” payoff, rather than a maximal payoff (60). Further
exploration of these possibilities, as well as other behavioral and
learning models (49, 50), is a promising direction of future study.
Experimentally manipulating the cooperative dynamics of the

network, for example, by using artificial agents that evince par-
ticular strategies, and thus help stimulate the emergence and
maintenance of cooperative clusters, will also be instructive. So
too will looking at how our findings for cycles with different
numbers of neighbors extend to other network structures.
Our results suggest that regularity in network structure can

contribute to cooperation, and this effect may help to explain
why such structures exist and have been maintained. They also
emphasize the important role that even static networked inter-
actions can play in our social world and suggest that it may be
possible to construct social institutions that foster improvements
in collaboration simply by organizing who is connected to whom.

Methods
Experimental Design. Subjects are arranged on a ring and connected to one,
two, or three neighbors on each side (k = 2, 4, or 6 total neighbors). They
begin with 100 points in their account and then play a repeated cooperation
game. In each round, they can choose D by doing nothing or C by paying
a cost of c = 10 * k points to give all k neighbors a benefit of b points (b = 20,
40, or 60). Thus, subjects make a single cooperation decision and cannot
selectively opt for cooperation with some neighbors but not others (making
the game closer to a repeated Public Goods game than a repeated Prisoner’s
Dilemma game). Following each decision, subjects are informed of the
decisions of each of their neighbors, as well as the total payoff for the round
earned by themselves and by each neighbor.

Subjects begin by reading the instructions and then play one practice
round that does not count toward their final payoff. Positions in the network
are then rerandomized, and subjects proceed to play the game for 50 rounds
in experiment 1 and 15 rounds in experiment 2. In experiment 1, we were not
concerned about end-game effects because, over 50 rounds, it is difficult to
keep track of exactly which round one is in, and therefore to know which
round is the final round. In experiment 2, however, the game was much
shorter; therefore, subjects are not informed about the game length to
simulate an infinitely repeated game (as in ref. 19). If a subject drops out of
the game in experiment 2 at some point (an issue that is much more pro-
nounced in online experiments compared with traditional laboratory
experiments), her spot on the ring is eliminated and her neighbors are
rewired accordingly (although they are not notified of this change to min-
imize the disruption caused by the dropout).

Recruitment: Experiment 1. Subjects in experiment 1 were recruited from the
Yale University School of Management’s subject pool. Subjects participated
in the experiment at the Yale University School of Management’s behavioral
laboratory, consisting of 12 visually partitioned computers. Subjects read
instructions on the computer and then interacted via custom software designed
to implement our game in the laboratory.

Subjects received a $10 fixed rate for completing the experiment, plus an
additional $1 for every 300 points earned during the game (mean additional
earnings of $11.92 from the game: minimum of $3 and maximum of $18).
Instructions and screenshots of the game interface are provided in SI Appendix.

Experiment 1 has two treatments. In the network treatment, subjects play
with the same partners for 50 rounds. In the well-mixed treatment, subjects’
positions on the ring are reshuffled before each of the 50 rounds, destroying
the possibility for assortment to arise. We ran 13 sessions over the course of
2 d. To preserve random assignment to condition, we alternated sessions on
each day between the network treatment (seven sessions in total) and the
well-mixed treatment (six sessions in total); thus, there was no systematic
variation between treatments in terms of date or time of day at which the
experiments were carried out. In total, we recruited n = 109 subjects. The
number of subjects per session did not vary significantly across treatments
(χ2 test, P = 0.413).

For completeness, we note that two additional well-mixed sessions were
run on a separate day (an additional 17 subjects), but because no corre-
sponding network treatments were run on that same day, these sessions
violated our random assignment scheme. Therefore, we do not include them
in our analyses. Including these extra well-mixed sessions, however, does not
qualitatively change our results: We still find stable cooperation in the network
treatment (because including the extrawell-mixed sessions does not change these
data), and we still find significantly more cooperation in the network treatment
compared with the well-mixed treatment in the second half (P = 0.010), last third
(P = 0.008), and last quarter (P = 0.010) of the game (note that these results
actually become more statistically significant when including the randomization-
violating treatments).

Recruitment: Experiment 2. Subjects in experiment 2 were recruited online
using AMT (43, 52, 61) and redirected to an external website where our
experimental was implemented. AMT is an online labor market in which
employers contract with workers to complete short tasks for relatively small
amounts of money. Workers are paid a fixed baseline wage (show up free
for experiments) plus an additional variable bonus (which can be condi-
tioned on their performance in the game).

AMT and other online platforms are extremely powerful tools for
conducting experiments, allowing researchers to recruit easily and cheaply
a large number of subjects who are substantially more diverse than typical
college undergraduates. Nonetheless, there are potential issues in online
experiments that either do not exist in the physical laboratory or are more
extreme [a detailed discussion is provided by Horton et al. (52)]. Most notably,
experimenters have substantially less control in online experiments, because
subjects cannot be directly monitored as in the traditional laboratory. Thus,
multiple people might be working together as a single subject or one person
might log on as multiple subjects simultaneously (although AMT goes to
great lengths to prevent multiple accounts and, based on Internet Protocol
address monitoring, it happens only rarely). One might also be concerned
about the representativeness of subjects recruited through AMT, although
they are substantially more demographically diverse than subjects in the
typical college undergraduate samples.

To address these potential concerns, numerous recent studies have ex-
plored the validity of data gathered using AMT [an overview is provided by
Rand (61)]. Most relevant here are two direct replications using economic
games, demonstrating quantitative agreement between experiments
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conducted in the physical laboratory and experiments conducted using AMT
with ∼10-fold lower stakes in a repeated Public Goods game (43) and a one-
shot Prisoner’s Dilemma (52). It has also been shown that play in one-shot
Public Goods games, Trust games, Dictator games, and Ultimatum games on
AMT using $1 stakes is in accordance with behavior in the traditional lab-
oratory (62).

Consistent with standard wages on AMT, subjects received a $3 fixed rate
for completing the experiment, plus an additional $0.01 for every 10 points
earned during the game [average additional earnings of $0.93 (SD = $0.83)
from the game: minimum of $0 and maximum of $4.62]. Experimental
instructions and screenshots of the game interface, as well as participant
demographics, are provided in SI Appendix.

In total, we have nine main treatments: [k = 2, k = 4, k = 6] × [b/c = 2, b/c =
4, b/c = 6]. In these treatments, subjects play with the same partners for 15
rounds. We also include additional control conditions where subjects’ posi-
tions on the ring are reshuffled before each of the 15 rounds, destroying the

possibility for assortment to arise. Our design has three such controls, one for each
[b,k] combination satisfying b/c > k (i.e., k = 2, b = 4; k = 2, b = 6; k = 4, b = 6).

For each treatment, we ran four sessions, for a total of 48 sessions. Each
session consisted of 24.2 subjects on average (minimum of 15 players and
maximum of 34 players), for a total of 1,163 participants. The number of subjects
per session did not vary significantly across treatments (χ2 test, P = 0.321). An
average of 1.38 subjects per session had dropped out by the final round (mini-
mum of zero players and maximum of five players). The number of players
dropping out did not vary significantly across treatments (χ2 test, P = 0.771).
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