Skip to main content
Plant Physiology logoLink to Plant Physiology
. 1981 Nov;68(5):1180–1185. doi: 10.1104/pp.68.5.1180

The Effects of Ear Removal on Senescence and Metabolism of Maize 1

Leslie E Christensen 1, Frederick E Below 1, Richard H Hageman 1
PMCID: PMC426065  PMID: 16662071

Abstract

Ears were removed from field grown maize (Zea mays L.) to determine the effects on senescence and metabolism and to clarify conflicting literature reports pertaining to these effects. Ears were removed at three days after anthesis and comparisons were made of changes in metabolism between eared and earless plants until grain of the eared plants matured as judged by black layer formation.

The initial visual symptom following ear removal was the development of reddish colored leaves. As judged by leaf yellowing, the removal of ears not only initiated an earlier onset but enhanced the rate of senescence. With this exception, the visual patterns of senescence were similar for earless and eared plants. Other characteristics associated with ear removal were: (a) marked decrease in dry weight and reduced N accumulation by the whole plant; (b) progressive, parallel decreases in leaf reduced N, nitrate reductase activity, and chlorophyll; (c) increases in carbohydrate content of both the leaf and stalk and of reduced N in the stalk. These changes indicate that ear removal reduced photosynthesis and nitrate reduction by approximately equal proportions and that the stalk serves as an alternate sink for both carbohydrate and nitrogen.

The remobilization of nitrogen from the leaf was not dependent on the presence of an ear. A logical reason for the more rapid loss of nitrogen from the leaf of the earless plants appears to be the cessation of nitrate uptake and/or flux of nitrate to the leaves.

From these results and from related experiments we tentatively conclude that the loss of nitrogen from the leaf is a major cause of death of the intact maize plant.

Full text

PDF
1184

Selected References

These references are in PubMed. This may not be the complete list of references from this article.

  1. Allison J. C., Weinmann H. Effect of absence of developing grain on carbohydrate content and senescence of maize leaves. Plant Physiol. 1970 Sep;46(3):435–436. doi: 10.1104/pp.46.3.435. [DOI] [PMC free article] [PubMed] [Google Scholar]
  2. Feller U. K., Soong T. S., Hageman R. H. Leaf Proteolytic Activities and Senescence during Grain Development of Field-grown Corn (Zea mays L.). Plant Physiol. 1977 Feb;59(2):290–294. doi: 10.1104/pp.59.2.290. [DOI] [PMC free article] [PubMed] [Google Scholar]
  3. Mondal M. H., Brun W. A., Brenner M. L. Effects of Sink Removal on Photosynthesis and Senescence in Leaves of Soybean (Glycine max L.) Plants. Plant Physiol. 1978 Mar;61(3):394–397. doi: 10.1104/pp.61.3.394. [DOI] [PMC free article] [PubMed] [Google Scholar]
  4. Reed A. J., Below F. E., Hageman R. H. Grain Protein Accumulation and the Relationship between Leaf Nitrate Reductase and Protease Activities during Grain Development in Maize (Zea mays L.): I. VARIATION BETWEEN GENOTYPES. Plant Physiol. 1980 Jul;66(1):164–170. doi: 10.1104/pp.66.1.164. [DOI] [PMC free article] [PubMed] [Google Scholar]
  5. Setter T. L., Brun W. A. Abscisic Acid Translocation and Metabolism in Soybeans following Depodding and Petiole Girdling Treatments. Plant Physiol. 1981 Apr;67(4):774–779. doi: 10.1104/pp.67.4.774. [DOI] [PMC free article] [PubMed] [Google Scholar]
  6. Setter T. L., Brun W. A., Brenner M. L. Effect of obstructed translocation on leaf abscisic Acid, and associated stomatal closure and photosynthesis decline. Plant Physiol. 1980 Jun;65(6):1111–1115. doi: 10.1104/pp.65.6.1111. [DOI] [PMC free article] [PubMed] [Google Scholar]
  7. Setter T. L., Brun W. A. Stomatal closure and photosynthetic inhibition in soybean leaves induced by petiole girdling and pod removal. Plant Physiol. 1980 May;65(5):884–887. doi: 10.1104/pp.65.5.884. [DOI] [PMC free article] [PubMed] [Google Scholar]
  8. Shaner D. L., Boyer J. S. Nitrate Reductase Activity in Maize (Zea mays L.) Leaves: I. Regulation by Nitrate Flux. Plant Physiol. 1976 Oct;58(4):499–504. doi: 10.1104/pp.58.4.499. [DOI] [PMC free article] [PubMed] [Google Scholar]
  9. Sinclair T. R., de Wit C. T. Photosynthate and nitrogen requirements for seed production by various crops. Science. 1975 Aug 15;189(4202):565–567. doi: 10.1126/science.189.4202.565. [DOI] [PubMed] [Google Scholar]
  10. Wilson R. F., Burton J. W., Buck J. A., Brim C. A. Studies on Genetic Male-Sterile Soybeans: I. Distribution of Plant Carbohydrate and Nitrogen during Development. Plant Physiol. 1978 May;61(5):838–841. doi: 10.1104/pp.61.5.838. [DOI] [PMC free article] [PubMed] [Google Scholar]

Articles from Plant Physiology are provided here courtesy of Oxford University Press

RESOURCES