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A combinatory approach using metabolomics and gut microbiome analysis techniques was
performed to unravel the nature and specificity of metabolic profiles related to gut ecology in
obesity. This study focused on gut and liver metabolomics of two different mouse strains, the
C57BL/6J (C57J) and the C57BL/6N (C57N) fed with high-fat diet (HFD) for 3 weeks, causing diet-
induced obesity in C57N, but not in C57J mice. Furthermore, a 16S-ribosomal RNA comparative
sequence analysis using 454 pyrosequencing detected significant differences between the
microbiome of the two strains on phylum level for Firmicutes, Deferribacteres and Proteobacteria
that propose an essential role of the microbiome in obesity susceptibility. Gut microbial and liver
metabolomics were followed by a combinatory approach using Fourier transform ion cyclotron
resonance mass spectrometry (FT-ICR-MS) and ultra performance liquid chromatography time of
tlight MS/MS with subsequent multivariate statistical analysis, revealing distinctive host and
microbial metabolome patterns between the C57J and the C57N strain. Many taurine-conjugated bile
acids (TBAs) were significantly elevated in the cecum and decreased in liver samples from the C57J
phenotype likely displaying different energy utilization behavior by the bacterial community and the
host. Furthermore, several metabolite groups could specifically be associated with the C57N
phenotype involving fatty acids, eicosanoids and urobilinoids. The mass differences based
metabolite network approach enabled to extend the range of known metabolites to important bile
acids (BAs) and novel taurine conjugates specific for both strains. In summary, our study showed
clear alterations of the metabolome in the gastrointestinal tract and liver within a HFD-induced
obesity mouse model in relation to the host–microbial nutritional adaptation.
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Introduction

The gut microbiome is a complex microbial ecosys-
tem containing bacteria, archaea, fungi, viruses and
eukaryotes that are functionally involved in
various biological processes, thus, affecting directly
and indirectly host physiology (Neish, 2009; David
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et al., 2013). Several studies demonstrated that
the gut microbiome composition changes depend
on diet, host genotype as well as intestinal and
metabolic diseases (Spor et al., 2011). Weight gain
and obesity are risk factors for development of
insulin resistance and type 2 diabetes and were
linked to changes in the gut community composi-
tion in different independent studies (Kahn and
Flier, 2000; Turnbaugh et al., 2006; Bäckhed et al.,
2007; Caballero, 2007). Studies were undertaken
using germ free, conventional and colonized mice in
order to understand the role of gut microbiome and
its contribution to weight gain or obesity (Bäckhed
et al., 2004). For instance, colonization of germ-free
wild-type mice with normal body fat mass with
microbiota from genetically (ob/ob) or diet-induced
obese donor mice accelerated body fat accumulation
in the recipients (Turnbaugh et al., 2006; Bäckhed
et al., 2007). These observations suggest a strong
impact of the gut microbial community on energy
balance regulation. A widely used method to analyse
gut microbiome structures is 454 pyrosequencing
of 16S-ribosomal RNA (rRNA) genes to explore
bacterial community compositions involved in
pathophysiology of metabolic disorders. In addition
to the knowledge about the involved microbiome in
such a scenario of a metabolic disease, the con-
sequential question about the functional impact of
these communities can be answered by non-targeted
metabolomics, which is a part of systems biology.
This is a hypothesis-free and unbiased approach
that enables to detect changes in metabolite patterns
during pathophysiological states, drug treatments or
nutritional changes (Nicholson et al., 1999). Electro-
spray ionization Fourier transform ion cyclotron
resonance mass spectrometry in positive and nega-
tive mode ((þ /–) ESI FT-ICR-MS) allows to profile
and describe globally the metabolome changes
associated with metabolic conditions based on
measurements of several thousands of mass signals
simultaneously due to high sensitivity, resolution
and mass accuracy (Jansson et al., 2009). Most of the
metabolomics studies relevant in the research of
obesity were performed with body fluids that cover
only a small subset of metabolites (Xie et al., 2012).
Only few metabolomics studies applied MS based
techniques to investigate the metabolite patterns in
intestinal/fecal and liver samples following expo-
sure to different diets and disease conditions to
discover the role and influence on the metabolome
as a readout (Jansson et al., 2009; Antunes et al.,
2011; Baur et al., 2011; Swann et al., 2011;
Matsumoto et al., 2012). This study is performed
by using two C57BL/6 mouse strains (C57BL/6J
(C57J) and C57BL/6N (C57N)) exposed to a high-fat
diet (HFD) for 3 weeks. Apart from several single-
nucleotide polymorphisms, the two strains differ in
the nicotinamide nucleotide transhydrogenase gene,
which bears a missense mutation, detected in the
strain C57J. Moreover, the strain phenotype, such as
body weight, insulin resistance, blood glucose levels

were strongly dependent on the applied diet (Toye
et al., 2005; Mekada et al., 2009; Nicholson et al.,
2010; Montgomery et al., 2013).

The aim was to reveal the impact in the host
microbial metabolome and microbiome patterns
related to body weight gain after 3 weeks in the
C57N strain applying 454 pyrosequencing and a
non-targeted metabolomics approach to assess the
role of gut ecology and host in obesity.

Materials and methods

Diet intervention, body composition analysis and
sample collection
C57N (Taconic, Ry, Denmark) and C57J were bred
and housed under standard vivarium conditions
(12:12 light–dark-cycle). At an age of 14 weeks, male
mice were single housed (cages included dome-
house) on grid panels in the same room. Males of
each strain were litter-matched, body weight was
recorded and mice allocated into two groups. The
strains were switched to a HFD (Ssniff, Soest,
Germany; 24.3 kJ g–1) rich in safflower-oil for 3
weeks. Food was exchanged every 2nd to 3rd day.
Body mass was measured 1 day before the start and
at the end of the experiment in each mouse. After 3
weeks, mice were killed with an isoflurane over-
dose. The gastrointestinal tract of each animal was
removed and the luminal content of the cecum of
each mouse was collected and was equally divided
for microbiome and meta-metabolome analyses,
immediately snap-frozen in liquid nitrogen and
preserved in � 80 1C before further experiments. In
addition, liver samples were collected for metabo-
lomics analyses. All animals received humane care
according to criteria outlined in the NAS ‘Guide for
the Care and Use of Laboratory Animals’. Animal
experiments were approved by the Upper-Bavarian
district government (Regierung von Oberbayern,
Gz.55.2-1-54-2532-70-07, Gz. 55.2-1-54-2532-4-11).

16S-rRNA gene pyrosequencing
Approximately 30 mg of cecal luminal contents of
C57J (n¼ 8) and C57N (n¼ 11) mice were used for
microbiome analysis. Total bacterial genomic DNA
was extracted using NucleoSpin for Soil Kit
(Macherey-Nagel, Dueren, Germany) following the
manufacturer’s instructions. Amplification of the
V6–V9 region was performed according to Timmers
et al. (2012). Briefly, for PCR 16S-rRNA gene forward
primer 926F (50-AAACTYAAAKGAATTGACGG-30)
(Lane, 1991) attached to the Roche A adapter for
454-library construction and reverse primer 630R
(50-CAKAAAGGAGGTGATCC-30) (Juretschko et al.,
1998) attached to the Roche B adapter were used.
For multiplexing purposes, each primer included a
10-nt barcode sequence. Three independent PCRs
were performed for each sample with Fast Start High
Fidelity PCR System (Roche, Mannheim, Germany)
containing 20 ng of DNA with an optimal annealing
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temperature of 50 1C and 22 cycles. PCR reactions
were pooled and purified using a QiaQuick PCR
Purification Kit (Qiagen, Hilden, Germany). After
quantification using a Quant-iT PicoGreen dsDNA
quantification kit (Invitrogen, Paisley, UK), samples
were equally pooled. The sequencing of the partial
16S-rRNA genes was performed on a 454 GS FLX
Titanium system (Roche). Amplicons were sequenced
as recommended in the instructions of the manufac-
turer for amplicon sequencing. Sequences were
processed and data were analysed according to the
454 Schloss standard operating procedure (http://
www.mothur.org/wiki/Schloss_SOP) (Schloss et al.,
2011) with the software mothur v.1.29.0 (Schloss
et al., 2009). Total bacterial diversity was estimated
analysing reverse sequences only. Reads were
denoised, quality filtered and trimmed. Sequences
with similarity 497% were combined to one
operational taxonomic unit (OTU). For taxonomy
analysis, sequences were aligned against Silva SEED
alignment database (Quast et al., 2013), chimeras
were removed using uchime implementation (Edgar
et al., 2011) in mothur and taxonomic assignment
was done using RDP trainset 7 with a cut off
of 80% (Cole et al., 2009). For equal comparison,
subsamples of 6486 sequences of each sample were
created. Within the significantly different families of
the four abundant phyla 1–2 OTUs, showing highest
abundances, were aligned against Silva database
(http://www.arb-silva.de) using SILVA Incremental
Aligner (SINA) (v.1.2.11) (Pruesse et al., 2012) and
then imported to ARB (SILVA SSU database, release
111) (Ludwig et al., 2004). The closest cultivated
relatives were selected and included for calculation
of similarity distance matrices.

Multivariate and statistical analysis of micro-
biome data was performed on R platform (R version
2.15.1; http://www.r-project.org) using the packages
vegan (Dixon, 2003) and ade4 (Dray and Dufour,
2007) and custom R scripts. All OTUs with o0.01%
of the total abundance were excluded from the
analysis. The measured abundances were Hellinger
transformed (Ramette, 2007). Differences between
groups (on phylum, family and OTU level) were
analysed using Wilcoxon–Mann–Whitney test with
Benjamini–Hochberg correction for multiple testing
(Benjamini and Hochberg, 1995). Differences with
an adjusted Pp0.05 were considered to be statisti-
cally significant. The means of sequence abun-
dances of the two strains were expressed as
percentages and displayed in stacked barplots. For
the statistical analysis on OTU level, non-parametric
multivariate analysis of variance analysis (npMA-
NOVA) was performed based on Bray–Curtis
distance measure.

Non-targeted metabolomics

Metabolite extraction of cecal and liver samples.
Cecal samples (B10 mg) of C57J (n¼ 10) and C57N

(n¼ 12) were placed in ceramic bead tubes
(NucleoSpin Bead Tubes, Macherey-Nagel, Dueren,
Germany) combined with a metal bead (Qiagen,
Hilden, Germany) on dry ice. After the addition of
1 ml of cold (� 20 1C) methanol (LC-MS Chromasolv,
Fluka, Sigma-Aldrich, St Louis, MO, USA), the
homogenization was performed in TissueLyser II
(Qiagen) for 5 min at a rate of 30 Hz to homogenize
and disrupt the bacterial cells and extract the meta-
bolites of the gut microbiome. Then, the samples
were centrifuged two times at 14 000 r.p.m. for 10 min
at 4 1C and the supernatant was collected for MS
analysis. About 50 mg of liver were grounded and
homogenized under liquid nitrogen. Metabolite
extraction was performed by applying same meta-
bolite extraction procedure, done with cecal samples.

FT-ICR-MS analysis. Non-targeted metabolomics
was performed by means of a FT-ICR-MS (Bruker
Daltonik GmbH, Bremen, Germany), equipped with
a 12 Tesla superconducting magnet and an Apollo II
ESI source. Before the measurements, the external
calibration of the FT-ICR-MS was performed with
clusters of arginine by using 5 mg l–1 arginine
solution in methanol for negative ionization mode
resulting in calibration errors below 0.1 p.p.m. for
four selected m/z signals of arginine clusters (m/z
173.10440, 347.21607, 521.32775 and 695.43943).
The infusion of the extracted samples into the mass
spectrometer was performed in a randomized order
with a flow rate of 120 ml h–1 by using a Gilson
autosampler system (Gilson, Inc., Middleton, WI,
USA). The spectra were acquired with a time
domain of 2 megawords in a mass range of
140–1000 m/z with a resolving power of 400 000 at
m/z 400. The ion accumulation time was set to 0.5 s
and time of flight was set to 0.8 ms. Spectra were
accumulated for 450 scans in both modes for all
samples. The mass spectrometer was set to a
capillary voltage and a spray shield voltage to
(þ /–) 4000 V and (þ /–) 500 V, respectively. Drying
gas flow rate and temperature was set to 4 l min–1

and 200 1C and nebulizer gas flow rate was set to 1.0
bar. The raw spectra were processed with Data
Analysis Version 4.0 SP2 (Bruker Daltonik GmbH,
Bremen, Germany). Different pre-processing steps
have been undertaken before the statistical analysis.
First, the raw spectra were internally calibrated with
reference lists with given masses for both modes
with an error below 0.1 p.p.m. The calibrated mass
spectra were exported into ASCI files with a signal-
to-noise ratio of 4 and a relative intensity threshold
of 0.01% covering all signals above background
noise. The acquired peak lists were aligned through
an in-house program (Lucio et al., 2010). The
alignment was performed by clustering the masses
within an error window of 1 p.p.m and concatenat-
ing consequently their intensities. Identification
experiments were performed with ultra perfor-
mance liquid chromatography time of flight
MS/MS (detailed information in Supplementary
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Information). Data processing, statistical analysis
and data annotation of metabolome data are
described in Supplementary Information.

Results

General
The C57N strain showed higher body weight
changes compared with the C57J strain because of
3 weeks of HFD feeding, shown in Figure 1a. We
hypothesized that the observed body weight
changes occurred between the strains are associated

with different patterns of gut microbiome structure
and metabolite patterns in cecum and liver organ. In
mammalian system, a cecal metabolome is shaped
by both bacterial and host compounds, thus termed
as meta-metabolome, while the liver metabolome
reflects majorly the host metabolism. Both organs
were used to reflect the metabolism between C57J
and C57N mice on HFD.

Description of the differences in the gut microbiome
structure
Microbiome studies were based on 454 pyrosequen-
cing of 16S-rRNA genes. To compare community

Figure 1 HF feeding of 3 weeks impacts body weight in C57N mice compared with the C57J and influences the bacterial community in the
gut. (a) Significant body weight changes between C57J and C57N mice, P-value *o0.05, **o0.01, ***o0.001, (Student’s t-test) (b) Bacterial
community changes between C57J (black rectangle) and C57N (gray dots)) mice, originated from principal component analysis (PCA). The
analysis was performed on data based on relative abundance and Hellinger transformed 16S-rRNA data of classified OTUs with 497%
identity. (c) Cecal bacterial profiles on phylum level of C57J and C57N mice, displaying relative abundance of partial sequences of bacterial
16S-rRNA genes. Individual phylum levels of each mouse are shown in d. Classification was done at the phylum level using mothur with a
modified 16S-rRNA gene database from RDP: P-value: *o0.05, **o0.01, ***o0.001 (Wilcoxon–Mann–Whitney test).

Gut metabolome and microbiome in C57BL/6 strains
A Walker et al

2383

The ISME Journal



patterns, a principal component analysis was used.
A scatter plot based on principal component
analysis scores obtained from the sequences at
OTU level with 497% similarity showed a clear
separation of the community composition between
the groups (Figure 1b). In addition, a npMANOVA,
based on Bray–Curtis distance also confirmed sig-
nificant differences (P-value o0.001) between bac-
terial community composition on OTU level.
Around 99% of the total bacterial abundance was
classified into eight phyla, while the rest was
allocated to various unclassified bacteria. As shown
in Figure 1c, Firmicutes was the most abundant
phylum in all samples, accounting for 55% (in C57J
mice) and 71% (in C57N mice) of the total bacterial
sequences. Other dominant phyla were Bacteroidetes,
Proteobacteria and Deferribacteria ranging between
3% and 27% (see Figure 1c). Moreover, in Figure 1d,
a detailed overview of individual profiles of each
mouse is illustrated on the phylum level (Figure 1d).
In this study, the dominant phyla including Firmi-
cutes, Proteobacteria and Deferribacteres showed
significant differences between the groups
(Figure 1c). Higher abundances of Firmicutes and
Deferribacteres were observed in C57N mice and
higher abundances of Proteobacteria in C57J mice.
Bacteroidetes showed differences close to signifi-
cance (adj. P-value¼ 0.052) with higher abundances
in C57J mice. No statistically significant differences
were observed in less frequent phyla such as
Tenericutes, TM7, Actinobacteria and Verrucomicro-
bia with abundances o1% (summarized as ‘others’ in
Figure 1c). Afterwards, we were focusing on differ-
ences on family level (Supplementary Table S1). The
sequences of the most abundant OTUs, originated
from each family were imported to ARB and matched
against sequences of closest cultivated relatives. We
observed differences in the phylum of Firmicutes that
were represented by two families with higher abun-
dances: Ruminococcaceae in C57N mice and Erysipe-
lotrichaceae (summarized in Supplementary Table S2)
in C57J mice. The most abundant OTU within
Ruminococcaceae (C57J: 6.4%; C57N: 15.8%, adj.
P-value p0.05) had no cultured relative in the ARB
rRNA sequence database, while the second most
abundant OTU showed 95.9% identity to Anaero-
truncus colihominis (C57J: 1.0%; C57N: 3.1%, adj.
P-value p0.05). Within Erysipelotrichaceae, the most
abundant OTU, which could be found mainly in C57J
mice (C57J: 11.2%; C57N: 0.001%, adj. P-value
p0.001) was classified as Allobaculum, but was not
closely related to any cultured organism (Allobaculum
stercoricanis, 91.8% similarity). In addition, within
the second most common phylum Bacteroidetes, the
genus Bacteroides belonging to the Bacteroidaceae
family was clearly more numerous in C57J mice
(Supplementary Table S2), all identified as Bacter-
oides (B.) inhabiting mostly C57J mice (C57J: 12.5%;
C57N: 1.0%, adj. P-value p0.05). The most
abundant OTU showed 100% sequence similarity
to next cultivated relatives B. fluxus and 99.5% to

B. uniformis and B. rodentium. Sequences belonging
to the second most abundant OTU (C57J: 4.4%;
C57N: 0.3%, adj. P-value p0.05) were 100% similar
to B. acidifaciens and B. xylanisolvens. The differ-
ences between C57J and C57N mice in phylum
Proteobacteria was limited to Epsilonproteobacteria.
The highly abundant sequences in C57J mice were
all classified to the family of Helicobacteraceae
and belonged to the genus Helicobacter (H.). The
most abundant OTU (C57J: 9.7%; C57N: 0.7%, adj.
P-value p0.05) showed 100% sequence similarity to
H. hepaticus and 97.9% similarity to H. bilis. The
phylum Deferribacteres was composed of a single
family, Deferribacteraceae, including Mucispirillum
as highly abundant genus in C57N mice. The most
abundant OTU (C57J: 2.5%; C57N: 9.9%, adj.
P-value p0.05) was found to have 100% similarity
to Mucispirillum schaedleri.

Cecal meta-metabolomics reveals obesity-related
changes between the strains
We showed previously that the microbiome struc-
ture strongly influences the metabolite profiles by
analysing human fecal water extracts in inflamma-
tory bowel disease (Jansson et al., 2009). In this
study, we followed the differences in the cecal
but also the liver metabolome corresponding to the
observed differences in the microbiome structure of
the two strains. A MS-based metabolomics analysis
of the cecal and liver samples was performed by
direct infusion ESI FT-ICR-MS and complemented
by ultra performance liquid chromatography time of
flight MS/MS. To infer the metabolites associated
with the body weight changes, we performed
un- and supervised multivariate statistical analyses.
The application of principal component analysis
showed a sufficient separation between the groups
in the first three dimensions, displaying the second
and third components (Supplementary Figure S1A).
In order to extrapolate the lists of mass signals
causing the possible separation between the two
classes (C57J vs C57N), an orthogonal partial least
squares discriminant analysis (OPLS/O2PLS-DA)
has been performed (Trygg, 2002; Trygg and Wold,
2002; Barker and Rayens, 2003; Bylesjö et al., 2006).
The robustness of the model has been tested with
cross-validation analysis of variance (P¼ 0.000275).
The values of OPLS/O2PLS-DA model were 0.94 for
goodness-of-fit R2Y(cum) and goodness-of-predic-
tion of 0.78 for Q2(cum). The scores scatter plot
of the model is illustrated in Figure 2a. The
mass signals responsible for the separation are
highlighted in the corresponding S-plot, whereas
some of the putative metabolites were illustrated
(Figure 2b). Moreover, we examined the significance
of the discriminative mass signals by applying
a univariate statistical analysis. The application
of non-parametric Wilcoxon–Mann–Whitney test
resulted in 2453 significant mass signals (total¼ 10
515), whereas 488 were annotated in MassTRIX
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and remaining mass signals were defined as
‘Unknowns’, accented by an asterisk in all figures.

Liver metabolomics confirms the involvement of host
metabolism due to obesity
To complement the host metabolome, we analysed
extracted liver samples by FT-ICR-MS, followed by
the same data processing steps applied before for the

data matrix of cecal samples. In addition, here the
application of unsupervised principal component
analysis method for the liver metabolome resulted
in a sufficient clustering of C57J and C57N mice
(Supplementary Figure S1B). Besides, we subse-
quently performed an OPLS/O2PLS-DA, in order
to classify and discriminate a possible group
separation. We could find a valid model for the
discrimination applying a cross-validation analysis

Figure 2 Non-targeted metabolomics performed with FT-ICR-MS reveals microbial and host related metabolome changes. (a) OPLS-DA
scores scatter plot of cecal meta-metabolome (a) and liver metabolome (c) from C57J and C57N mice. (b) S-plot illustrated the putative
metabolites responsible for the discrimination of C57J and C57N mice concerning the cecal (b) or liver metabolome (d). Venn diagram of
total count of mass signals (e) detected commonly or uniquely in cecum or liver samples. Venn diagram of significant mass signals (f)
detected commonly or uniquely in cecum or liver samples.
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of variance with a P-value smaller than 0.001 with
the respective values of R2Y(cum)¼ 0.67 and
Q2(cum)¼ 0.58, with illustrated scores scatter
plot in Figure 2c. Correspondingly, some of the
putative metabolites are highlighted in the S-plot
(Figure 2d). Here, the Wilcoxon–Mann–Whitney
test resulted in 3327 significant mass signals and
470 mass signals could be annotated by MassTRIX
(total¼ 13 336). Subsequently, we compared the
mass signals originated from both matrices in order
to examine the similarity but also the uniqueness of
both matrices by alignment within an error window
of 1 p.p.m. In total, we found 21 239 different mass
signals, whereas 8025 mass signals were unique for
cecal samples and 10 379 were unique for liver
samples (Figure 2e). About 2475 mass signals were
matched in both matrices. Comparing only the
significant mass signals, we found 5438 mass
signals, whereas 316 were in common and 2986
uniquely significant in liver and 2136 in cecum
(Figure 2f). Owing to the fact that in both
comparisons the common signature is very low
(11% in total and 5% in significant), we can
conclude that cecal and liver metabolome are very
unique and the metabolite patterns of cecum and
liver changed differently and immensely between
C57J and C57N mice.

Obesity affects a huge variety of metabolites in different
classes detected in cecal meta-metabolome
The focus in this study was to discover the cecal
meta-metabolome and how the body weight changes
affects the metabolite patterns. According to the
S-plot, we extrapolated eight mass signals, high-
lighted in Figure 2b, which were responsible for the
discrimination of the achieved data analysis through
OPLS/O2PLS-DA. The mass signals of the loadings
are summarized in Supplementary Table S3. Four
putative metabolites assigned as deoxycholic acid
(DCA), taurocholic acid (TCA) sulfate, arachidonic
acid and TCA characterized the group of C57J mice
group, which was also confirmed by univariate
statistics (Supplementary Table S3). Three other
putative metabolites assigned as eicosadienoic acid,
I-urobilinogen and urocortisol represented the group
of C57N mice. This already indicates that specific
metabolite classes such as fatty acids (FAs), bile
acids (BAs), taurine-conjugated BAs (TBAs) and
urobilinoids may have an essential role in discrimi-
nating the groups. Considering this information, we
were looking specifically for these metabolite
classes. We observed several metabolite classes
of the BA metabolism such as C24 BAs, C24 TBAs,
other conjugated C24 BAs, C27 TBAs and sulfates of
C27 BAs. Moreover, several FAs and endocannabi-
noids were discriminative between C57J and C57N
mice. Furthermore, bacterial metabolites were chan-
ged between C57J and C57N mice including urobi-
linoids and phenyl-containing metabolites.

BA metabolism
In detail, we could find increased and significant
different levels of oxolithocholic acid, oxocholenoic
acid and cholandienoic acid in C57J mice, shown as
a heatmap in Figure 3a. Increased but not significant
patterns were observed for cholic acid and litho-
cholic acid. Contrary, other BAs such as hydroxy-
cholic acid, trihydroxyoxocholanoic acid and
trioxocholanoic acid were increased in C57N mice.
Furthermore, we could detect 10 C24 TBAs,
shown in Figure 3b. Significantly increased TBAs
(Tauro) were observed in C57J mice, including
taurooxocholenoic acid, taurooxocholanoic acid,
taurolithocholic acid (TDCA), taurodioxocholanoic
acid, taurohydroxyoxocholanoic acid, taurodeoxy-
cholic acid (TDCA), taurohydroxyoxocholanoic
acid, TCA, taurohydroxycholanoic acid and the
sulfate conjugate of TCA. Here we have to mention
that six TBAs were not given in any database used
for annotation. These unknown metabolites are
highlighted by an asterisk in the heatmap (Figure 3).

Elevated levels were also measured for other
conjugated C24 BAs such as glycodeoxycholic and
glycoholic acid (Figure 3c). Among the C24 TBAs, we
could find several C27 TBAs that were significantly
increased in C57J mice, such as taurotrihydroxy-
cholestanoic acid and taurodihydroxycholestanoic
acid, which were annotated and already described
in LIPID MAPS database. Moreover, we could
find eight additional C27 TBAs, including taurodi-
hydrocholestenoic acid, taurocholestenoic acid,
taurodioxocholestanoic acid, taurodihydroxycholes-
tenoic acid, taurodihydroxyoxocholestenoic acid,
taurodihydroxycholestenoic acid, taurotetrahy-
droxycholestenoic acid and taurotetrahydroxycho-
lestanoic acid, with increased ratios in C57J mice
(Figure 3d). None of the eight C27 TBAs was given in
the used metabolite databases. Finally, another class
of sulfate conjugates of C27 BAs, including dihy-
droxyoxocholestanoic acid sulfate and dihydroxy-
cholestenoic acid sulfate, increased in cecal samples
of C57N mice, both belonging to ‘Unknowns’
(Figure 3e). Some C27 TBAs such as tauropenta-,
taurotetra- and taurotrihydroxycholestanoic acid
were already described and observed in urine of
patients with Zellweger syndrome, Refsum’s disease
or with peroxisomes dysfunction in the liver
(Lawson et al., 1986; Libert et al., 1991).

Lipid metabolism
As shown in the heatmap of Figure 3f, FAs were
changed between C57J and C57N mice. Differences
were observed in the ratios of arachidonic acid
(C20:4), docosahexaenoic acid (C22:6), eicosapen-
taenoic acid (C20:5), retinoic acid, leukotriene B4,
hydroxyl leukotriene B4 and hydroxyeicosatetrae-
noic acid with higher levels in C57J mice (Figure 3f).
Contrarily, significantly decreased levels of
eicosadienoic acid, docosadienoic acid (C20:2),
docosatrienoic acid as well as pristanic acid were
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observed in C57J mice (Figure 3f). Interestingly,
several endocannabinoid-like molecules were
increased in C57N mice, primarily consisting of
saturated/mono-unsaturated FAs (stearic acid, oleic
acid (N-oleoylethanolamine; OEA), erucic acid
and (C20:1) FA), shown in Figure 3g. Additionally,
N-arachidonoyltaurine and lysophosphatidic acid
(C18:1) showed different patterns between C57J and
C57N mice.

Bacterial-derived metabolites
Two main degradation metabolites of lignans, for
example, secoisolariciresinol, the so-called entero-
lactone and enterodiol were increased in cecal
content of C57J mice (Figure 3i). Besides the lignan
catabolites, several bilirubin degradation com-
pounds were increased in C57N mice (Figure 3h)
including urobilinogens and urobilins such as
D-, L- and I-urobilinogen and D- and L-urobilin. No
changes were observed for bilirubin. Furthermore,
we could identify a novel metabolite named di-
phloretoylputrescine (Figure 3i). All detailed
information about the identification of the
novel metabolite is summarized in Supplementary
Information and the MS/MS is given in Supplementary

Figure S2A of Supplementary Information.
The novel metabolite was significantly increased
in cecal samples of C57J mice and was categorized
into the class of polyamine conjugates. The most
plausible structure is shown in Supplementary
Figure S2B. Furthermore, MS/MS experiments per-
formed by using ultra performance liquid chromato-
graphy time of flight MS/MS validate the presence
of several metabolites as a representative of each
class. We identified DCA, TDCA, arachidonic
acid (C20:4), eicosadienoic acid (C20:2), entero-
lactone, L-urobilin, taurodihydroxycholestenoic
acid and dihydroxyoxocholestanoic acid sulfate
(Supplementary Figures S3A–H).

Liver metabolome underlines the effect of obesity but
reveals opposite patterns of taurine-conjugated BAs
As mentioned above, we could show that liver
metabolome separates between C57J and C57N mice.
Here, we elaborated only the metabolites that have
already been described before. Moreover, we took
only metabolites that were significant between C57J
and C57N mice in liver samples. We detected
metabolites involved in BAs metabolism, summar-
ized in the heatmap of Figures 4a–e and

Figure 3 BA metabolism is influenced between C57J and C57N mice depicted through comparative analysis of cecal meta-metabolome.
Obesity influences a variety of metabolite classes in cecum of C57J and C57N mice including C24 BAs (a), tauro C24 BAs (b), other
conjugated BAs (c), tauro C27 BAs (d), sulfates of C27 BAs (e), FAs (f), endocannabinoids (g), urobilinoids (h) and phenyl-containing
metabolites (i). *Unknown metabolites.
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Supplementary Table S3. Especially the conjugated
BAs such as C24 TBAs or C27 TBAs showed a
complete opposite pattern between C57J and C57N
mice, with elevated levels in C57N mice comparing
with the cecal C24 and C27 TBAs that were elevated
in C57J mice (Figure 3b). In addition, C27 BAs
such as di- and tetrahydroxycholestanoic acid were
changed significantly in liver samples but not in
cecal samples (Figure 4d). Accumulated levels of C27

BAs were already described in patients with
mitochondrial dysfunction in Zellweger’s syndrome
(Hanson et al., 1979). Here all FAs were increased in
the liver of C57N mice (Figure 4f). Lysophosphatidic
acid (C18:1) and retinoic acid were increased in
C57J mice. Urobilinoids showed similar patterns
comparing with results of cecal meta-metabolome
(Figure 4g). The phenyl-containing metabolites were
not detected in liver samples in either C57J or C57N
mice. Thus, we assume that these metabolites are
exclusively derived from bacterial metabolism.

Impaired alpha oxidation in C57N mice depicted
through involved metabolites
Especially, the accumulation of C27 BAS and C27

TBAs in liver metabolome gives us a hint of possible
dysfunction of liver peroxisomes in C57N mice
because of appearance of unusual BAs, associated
with impaired peroxisome function (Lawson et al.,
1986; Libert et al., 1991). Perixosomal dysfunction

was reported to have impaired alpha oxidation of
phytanic acid (PA; Tien Poll-The et al., 1989). We
detected higher levels of PA in liver samples of
C57N mice, whereas no changes were shown for
hydroxyPA and pristanic acid, shown in Figures 5a–c.
Moreover, PA and hydroxyPA were not changed in
cecal samples of C57N mice, but pristanic acid was
elevated in C57N mice, shown in Figures 5e–g.
Besides, phytol (Figure 5d) was also elevated
significantly in cecum of C57N mice, but was not
detected in liver samples.

Dealing with ‘Unknowns’—exploration of novel
metabolites with mass difference analysis
To unravel novel metabolites (‘Unknowns’), we
approached the experimental compositional space
by annotation of all experimental mass signals
through exact mass difference analysis using
NetCalc and network visualization (Tziotis et al.,
2011). Here, we used the data of the cecal meta-
metabolome as an example, but this method is
applicable for all mass spectra data derived
from ultra-high-resolution MS such as FT-ICR-MS
analysers. First, we calculated molecular formulas
for all mass signals (n¼ 10 515) within an error
range of 0.2 p.p.m. Within this error range, we could
find 5434 mass signals (pie diagram: red and black
part, Figure 6a) with valid molecular formulas
consisting of carbon, hydrogen, nitrogen, oxygen,

Figure 4 Liver metabolome reveals opposite patterns of conjugated BAs, especially C24 and C27 TBAs. Metabolite classes affected
between C57J and C57N mice including C24 BAs (a), C24 TBAs (b), other conjugated C24 BAs (c), C27 BAs (d), C27 TBAs (e), sulfates of C27

BAs (f), FAs (g) and urobilinoids (h). *Unknown metabolites.

Gut metabolome and microbiome in C57BL/6 strains
A Walker et al

2388

The ISME Journal



sulfur and phosphorus, whereas 1438 mass signals
were annotated in MassTRIX (black part, Figure 6a)
and 3643 mass signals were solely assigned by their
molecular formula (red part of the pie). There is still
a huge remaining part of mass signals, which were
not assigned by NetCalc (in total 5081 mass signals;
gray part of the pie chart). Then, NetCalc performed
the calculation of possible mass differences between
the mass signals by applying a reference list
consisting of 24 mass differences, for example,
including biochemical transformations such as
hydroxylation, taurine or sulfate conjugation (sum-
marized in Supplementary Table S4, Supplementary
Information). Afterwards, we were able to visualize
the results of the mass difference analysis through a
graphical representation of the generated network.
The graph represents the metabolic network that
consists of masses (nodes) with their respective
molecular formula (Figure 6b, zoomed view in
Figure 6c), edges (mass differences in gray color)
and its connectivity, consisting of two main
sub-graphs (12C and 13C). Moreover, the network is
colored according the known (black nodes) and
unknown (red nodes) mass signals with their
molecular formula (blue labels), derived from the
pie diagram. An example is displayed in Figure 6d,

showing one node with the molecular formula of
C20H32O5, which is putatively assigned as hydroxyl
leukotriene B4 that possesses 23 connections to
other nodes and belongs to one of the highly
connected nodes of the total network. We could
especially reveal new metabolites of hydroxyl
leukotriene B4, connected by mass differences
with S-containing molecular formulas, shown in
Figure 6d.

Discussion

In our study, we showed that body weight gain,
observed in one of two different mouse strains after
HFD feeding, resulted in diverse gut microbiome
and metabolome patterns. To unravel the complex
gut microbial ecology, we applied and combined
two high-resolution techniques, that is, 454 pyro-
sequencing and FT-ICR-MS-based metabolomics.
The application of HFD for 3 weeks led to strong
body weight changes particularly in the C57N strain
with different microbial or host-related metabolome
patterns. In this study, we detect several phyla and
families of the gut microbiome that were also
observed in human, mouse or other animal studies

Figure 5 Impaired alpha-oxidation in C57N mice. C57N mice showed increased levels of PA (a), but no changes of hydroxyPA (b) or
pristanic acid (c) in liver samples. Increased levels of phytol (d) were detected in cecal samples of C57N mice with no changes of PA (e),
hydroxyPA (f) but elevated levels of pristanic acid (g). P-value: *o0.05, **o0.01, ***o0.001 (Wilcoxon–Mann–Whitney test).
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Figure 6 Mass difference network analysis and visualization—exploration of ‘Unknowns’. (a) Pie diagram illustrating the number of
total mass signals detected in cecal meta-metabolome data set of (–) FT-ICR-MS (total¼ 10 515 mass signals); consisting of 5434 mass
signals that were assigned to molecular formulas with carbon, hydrogen, nitrogen, oxygen, sulfur and phosphorus (CHNOSP)
composition, divided into Unknown mass signals (red) and known metabolites (black), which were annotated in MassTRIX. The gray
part of the pie diagram consists of mass signals (5081) that were not assigned after NetCalc annotation. A mass difference network is
illustrated in b generated from 5434 mass signals (nodes, black and red nodes) and 24 mass differences (edges) are colored in gray.
Detailed inspection of the network in c; (d) A mass signal with molecular formula of C20H32O5, assigned as hydroxyl leukotriene B4,
possessing edges to known and unknown mass signals.
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as common gut flora or during HFD exposure in
different metabolic phenotypes (Zhang et al., 2010;
Kim et al., 2012b). The change of the bacterial
community composition, especially for Firmicutes/
Bacteroidetes ratio, with enriched abundances of
Firmicutes and depleted occurrence of Bacteroidetes
in the obese C57N phenotype is in accordance with
many former studies (Ley et al., 2005; Turnbaugh
et al., 2006, 2009; Cani et al., 2007). It has been
postulated that HFD is one of the factor responsible
for changes in the bacterial community. Bacteria are
able to harvest more energy from dietary nutrients
(Turnbaugh et al., 2006), likely resulting in higher
body weight changes in the C57N strain. In another
mouse study, Erysipelotrichaceae were reported to
be the predominant family (Zhang et al., 2010). Here
we demonstrated that in C57N mice this family was
suppressed, while Ruminococcaceae were present
in increased abundances compared to lean C57J
mice. Higher abundances of Ruminococcaceae are
in accordance with other studies following HFD
intervention (Zhang et al., 2010; Kim et al., 2012b).
The observed appearance of B. uniformis was
reported before, whereas oral administration of a
B. uniformis strain counteracts HF feeding and was
able to reduce body weight gain, liver steatosis and
reduce dietary fat absorption (Gauffin Cano et al.,
2012). However, the observation of decreased abun-
dance of Proteobacteria after HFD application in
C57N mice is contradictory to previous results
(Hildebrandt et al., 2009; Geurts et al., 2011).
The third highest abundant OTU in gut bacterial
community of C57J mice was highly similar to
H. hepaticus and to a lower degree similar to
H. bilis. Both are known to colonize the intestinal
mucus and have been found in liver, in the latter
case even in bile (Fox et al., 1995, 2011). As a
consequence of HFD-induced obesity, the abun-
dance of phylum Deferribacteres increased in the
gut microbiome, especially the abundance of the
genus Mucispirillum (Ravussin et al., 2012; Serino
et al., 2012). The highly abundant OTU belonging to
Mucispirillum schaedleri seems to be an important
factor in the metabolism of C57N mice. It is known
to colonize the mucus layer, has been found in ileal,
colonic and liver tissue samples and is assumed to
be capable of translocating from the intestinal tract
to the hepatobilary system (Robertson et al., 2005).
As no earlier studies have focused on the differences
between the gut microbiota between these mouse
strains, our results reveal interesting aspects of
bacteria that could be involved in obesity under
the impact of HFD. The uniqueness of the study lies
in the focus on two mouse strains expressing small
variations at the genetic level but strong variations
in HFD-induced obesity.

Concerning the metabolome, until now several
metabolomics studies have been performed to
unravel the microbial metabolism following differ-
ent biological questions. Many of these studies
investigated the particular role of metabolites in

inflammatory bowel diseases by using primarily
NMR studies (Lin et al., 2011). Non-targeted meta-
bolomics approaches in gut microbial sample
matrices and liver, analysing changes occurring in
metabolic diseases like obesity, are rarely given, but
many studies addressed obesity-related metabolome
characterization (Dumas et al., 2006; Williams et al.,
2006; Fearnside et al., 2008; Li et al., 2008, 2010a;
Shearer et al., 2008; Newgard et al., 2009; Waldram
et al., 2009; Kim et al., 2009, 2010, 2011; Calvani
et al., 2010; Xie et al., 2010, 2012; Zhao et al., 2010;
Oberbach et al., 2011; Duggan et al., 2011a,b; Jung
et al., 2012; Hanhineva et al., 2013; Schäfer et al.,
2014; Seyfried et al., 2013; Won et al., 2013; Xu
et al., 2013; Daniel et al., 2014; Eisinger et al., 2014).
Comparing with other studies, our study provides a
greater insight into different metabolite classes that
were involved in obesity-related changes by reflect-
ing both bacterial and host metabolism. Here, we
highlighted in comprehensive manner the meta-
bolome changes in the complex environment of the
gut microbiome, given in both strains and compared
them to the liver metabolome. Both organ systems
were immensely altered between the strains and
several metabolite classes were shown to be differ-
entially affected between C57J and C57N mice.
A major imbalance occurred in BA metabolism of
cecum and liver, revealing distinct profiles of free
and conjugated BAs. FAs, endocannabinoids,
urobilinoids as metabolites of the bilirubin degrada-
tion pathway and metabolites of lignans, enterodiol
and enterolactone are reflecting different bacterial
and liver metabolism. The BA metabolism is one of
the important key factors in obesity-related changes,
including free and conjugated BAs. BAs are known
to exert several biological effects in vivo, such as
having a role in lipid and cholesterol metabolism
but also act as signaling molecules activating
nuclear hormone receptors, affecting body weight
and insulin resistance (Watanabe et al., 2006;
Lefebvre et al., 2009; Li et al., 2010b). Distinct BA
levels in cecal samples could be derived through
altered enterohepatic circulation, bacterial meta-
bolism or increased BA excretion. As one example,
DCA is one of the major secondary BAs derived
through dehydroxylation of bacteria in the gut.
Narushima et al. (2006) indicate that Bacteroides is
the main bacterial genus that is responsible for the
dehydroxylation of CA to DCA. In our study,
elevated BAs and simultaneously higher abun-
dances of B. acidifaciens could be observed in the
C57J strain, indicating that co-occurrence of ele-
vated BAs and B. acidifaciens could provide a
protection against HFD-induced obesity in C57J
mice. Miyamoto and Itoh (2000) discovered B.
acidifaciens in murine cecum and described its
growth capability in high contents of bile. Interest-
ingly, elevated BA was observed in feces of diabetic
mice (ob/ob mice) with elevated levels of CA and
DCA (Li et al., 2012). Thus, it can be explained
through different regulation of BA pool, which is
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depending on the disease state. Transgenic mice
overexpressing cholesterol 7a-hydroxylase, which is
involved in the biosynthesis of BAs from choles-
terol, were resistant against diet-induced weight
gain and development of fatty liver with elevated
BAs concentration in the intestine (Li et al., 2010b).
Administration of CA to obese C57J mice that were
fed with HFD led to a decrease of body weight and
improves insulin resistance. This effect was also
observed in KK-Ay mice, which showed increased
levels of CA, DCA, TCA and TDCA in liver and
intestine, which were also observed in our study in
cecal samples of C57J mice fed with a HFD
(Watanabe et al., 2006). The patterns of TBAs can
be modulated through diet, absence of bacteria,
distinct microbiome community, BAs or farnesoid X
receptors agonists (Claus et al., 2008; Li et al., 2010a;
Swann et al., 2011; Watanabe et al., 2011). In this
study, lower abundance of TBAs in cecum of C57N
mice could also be explained through an increase in
their deconjugation rate by specific gut bacteria that
are using the sulfur-containing taurine as an energy
source such as Enterobacteria or Bacteroides spp.
(Ridlon et al., 2006; Martin et al., 2007). Moreover,
the prominent opposite levels of all TBAs, compar-
ing cecal and liver system, underlines a possible
bacterial involvement. The detection of several C27

TBAs indicated a possible liver peroxisome dys-
function in C57N mice, affirmed through metabo-
lites of impaired alpha oxidation (Steinberg et al.,
2006). Especially, FAs that were increased in C57J
mice, are important modulators of peroxisome
proliferator-activated receptors activity, involved in
FA and lipid homeostasis (Krey et al., 1997). Here,
elevated FAs in liver of C57N mice and decreased
FAs in cecal samples are probably due to decreased
excretion. Endocannabinoid-like metabolites such
as OEA and lysophosphatidic acid were elevated in
cecum of C57N mice and lysophosphatidic acid was
lower in liver samples of obese C57N mice. OEA is
one of the endocannabinoid-like metabolites, which
is modulating satiety and decreases body weight
through activation of peroxisome proliferator-
activated receptor-a but do not regulate the endo-
cannabionid system (Capasso and Izzo, 2008).
Lysophosphatidic acid is another bioactive lipid
that mediates adipocyte proliferation and differen-
tiation through downregulation of peroxisome pro-
liferator-activated receptor-g and is involved in
obesity (Nobusue et al., 2010; Federico et al.,
2012). Enterolactone and enterodiol are bacterial
metabolites, produced by certain bacteria and have
been reported to exert beneficial effects in the body
(Woting et al., 2010). Studies showed that low
concentrations of enterolactone in human plasma
were positively correlated with obesity, which are
similar to our results (Sonestedt et al., 2008). Obese
C57N mice showed also lower levels of enterolac-
tone in cecum. Subcutaneous injection of entero-
lactone and enteridiol tend to decrease body weight
in mice (Tominaga et al., 2012). The patterns of

urobilinoids are likely due to different communities
that were observed in C57J and C57N mice by our
16S-rRNA gene analyses. The degradation of bilir-
ubin occurs through intestinal bacteria such as
Clostridium spp. (Tiribelli and Ostrow, 2005). How-
ever, also one further phenolic compound seems to
have an important role in discriminating C57J and
C57N mice. Especially, a conjugate of two molecules
of phloretic acid and putrescine, named diphlor-
etoylputrescine is assumed to be an important
metabolite in C57J mice. Moreover, this metabolite
was only detected in the cecum, assuming to be
derived through bacterial metabolism. Phloretic acid
is a degradation product of the tyrosine metabolism
and putrescine is derived through bacterial degrada-
tion of proteins (Booth et al., 1960). Previously
related, so-called polyamine conjugates with differ-
ent phenol-containing molecules such as coumaric,
ferulic and caffeic acid were discovered, predomi-
nantly in plants (Moreau et al., 2001; Choi et al.,
2007). Especially, the conjugates dicoumaroylpu-
trescine and diferuoylputrescine were shown to be
anti-inflammatory and inhibit nitric oxide produc-
tion in macrophages (Kim et al., 2012a).

Our study clearly discriminates between C57J
and C57N mice under HFD conditions and shows
changes of the cecal microbiome and metabolome
reflecting alterations in the gut bacterial commu-
nity composition and metabolism of host and
microbiome. Applying both approaches, we were
able to access directly some functional aspects in
the host–gut microbiome interactions and meta-
bolism and identify new factors that could
contribute to HFD-induced obesity. A deeper
understanding of possible triggers for these dysba-
lance patterns could also provide a new strategy for
engineering the gut microbiome, to counteract body
weight gain and to treat obesity.
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