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Abstract

Tetrabromobisphenol A (TBBPA) is a widely used flame retardant. Despite the presence of 

TBBPA in gestational tissues and the importance of proper regulation of inflammatory networks 

for successful pregnancy, there is no prior study on the effects of TBBPA on inflammatory 

responses in gestational tissues. The present study aimed to investigate TBBPA activation of 

inflammatory pathways, specifically cytokine and prostaglandin production, in the human first 

trimester placental cell line HTR-8/SVneo. TBBPA enhanced release of interleukin (IL)-6, IL-8, 

and prostaglandin E2 (PGE2), and suppressed TGF-β release in HTR-8/SVneo cells. The lowest 

effective concentration was 10 μM TBBPA. A commercial immune response PCR array revealed 

increased expression of genes involved in inflammatory pathways stimulated by TBBPA in 

HTR-8/SVneo cells. Because proper regulation of inflammatory mediators in the gestational 

compartment is necessary for normal placental development and successful pregnancy, further 

investigation on the impact of TBBPA-stimulated responses on trophoblast function is warranted.
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1. Introduction

Tetrabromobisphenol A (TBBPA) is the most widely used brominated flame retardant 

(BFRs) in the world representing about 60% of the total brominated flame retardant market 
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[1]. Although TBBPA is mainly used as a reactive flame retardant, approximately 10% is 

used as an additive flame retardant, facilitating release of TBBPA into the environment [2, 

3]. TBBPA has been detected in the air [4], dust [5], soil, sediment [6], and food [7]. 

TBBPA has also been found in human breast milk [7, 8], adipose tissue, serum [8], and 

gestational compartments such as umbilical cord serum [8]. Because of TBBPA’s 

environmental persistence and toxicity, it is on the 4th Priority List of the European Union 

(EU) Existing Substance Regulation [9]. Moreover, TBBPA is considered to be a 

“persistent, bioaccumulative and toxic (PBT)” chemical under Washington State’s PBT rule 

[10] and is a chemical of high concern to children by the Washington State Department of 

Health in the Children’s Safe Product Act [11]. TBBPA exhibits neurodevelopmental, 

hepatic, renal, immunological and thyroid toxicities in animal and in vitro studies [12–16]. 

Despite the presence of TBBPA in gestational compartments [8], the impact of TBBPA on 

pregnancy is poorly understood.

To date, no epidemiological or experimental data on the effects of TBBPA during human 

pregnancy are available. However, a few animal studies suggest reproductive toxicity of 

TBBPA. For example, in one study, exposure of adult zebra fish to TBBPA resulted in 

decreased egg production and increased premature oocytes [2]. In the same study, exposure 

of eggs to TBBPA reduced hatching, increased post-hatching mortality, and increased 

caudal and cranial malformation of embryos and pericardial fluid accumulation, indicating 

decreased reproductive success in zebra fish [2]. Oral administration of TBBPA as its 

formulated product, Saytex 111, to pregnant rats resulted in reduced fetal weight, increased 

malformations, and increased fetal death [17]. In another study, rats orally exposed to 

TBBPA prior to mating and during mating, pregnancy, and lactation resulted in increased 

weight of the testis and pituitary gland in males, delayed sexual development in females, and 

decreased pup mortality [9]. These data suggest potential toxicity of TBBPA exposure 

during pregnancy, calling for studies about TBBPA effects on human gestational cells and 

tissues.

Inflammatory mediators, such as cytokines and prostaglandins, not only play a role in innate 

immune response as a part of host-defense mechanisms, but also are considered to be key 

components in reproductive processes including the establishment and maintenance of 

pregnancy, and the initiation of labor [18–26]. Improper regulation of the inflammatory 

networks may lead to adverse pregnancy outcomes such as miscarriage, preeclampsia, 

intrauterine growth restriction and preterm labor [27, 28]. For example, increased levels of 

cytokines, prostaglandins, adhesion molecules, C-reactive protein in cervical fluid, amniotic 

fluid, and maternal serum have been linked to the pathophysiology of preterm birth, 

preeclampsia, and intrauterine growth restriction [29–34]. Through pathologic activation of 

pro-inflammatory pathways, pregnancies complicated with bacterial vaginosis [35, 36] or 

intrauterine infection [37, 38] have been associated with increased risk of preterm birth. 

Such findings suggest that inflammation occurring at the maternal–fetal interface during 

pregnancy could contribute to adverse obstetrical outcomes.

Studies conducted with immune cells in vitro examined the effects of TBBPA on 

inflammatory or innate immune responses. In murine RAW 264.7 macrophages, TBBPA 

induced cyclooxygenase (COX)-2 and pro-inflammatory cytokine expression through 
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activation of Akt/MAPK/NF-κB/AP-1 signaling, and also enhanced production of the 

COX-2 metabolite prostaglandin (PG) E2 [39]. In addition, TBBPA had an 

immunosuppressive effect on human natural killer cells by decreasing their lytic function 

[40]. Moreover, exposure of human neutrophil granulocytes to TBBPA led to an activation 

of the NADPH oxidase by an ERK 1/2 stimulated pathway [13]. Although these data 

suggest that TBBPA may play a role in the activation of inflammatory pathways and 

modulating innate responses, to the best of our knowledge, there are no reports on the effects 

of TBBPA on gestational cells or tissues. Given the detection of TBBPA in the gestational 

compartment and the importance of proper regulation of inflammatory networks for 

successful pregnancy, a study on the effects of TBBPA on inflammatory responses in 

gestational tissues is warranted. The purpose of this study is to investigate the effect of 

TBBPA on the activation of inflammatory pathways, specifically cytokine and prostaglandin 

production in the human first trimester placental cell line HTR-8/SVneo.

2. Materials and Methods

2.1. Chemicals and assay kits

TBBPA (97% purity), dimethyl sulfoxide (DMSO), indomethacin, and NS-398 were 

purchased from Sigma Aldrich (St. Louis, MO, USA). TBBPA was prepared in DMSO as a 

50 mM stock solution. RPMI medium 1640, fetal bovine serum (FBS), OptiMem 1 reduced-

serum medium, Hank’s balanced salt solution (HBSS), 0.25% trypsin/EDTA solution and 

penicillin/streptomycin (P/S) were purchased from Invitrogen Life Technologies (Carlsbad, 

CA, USA).

2.2. Cell Culture and treatment

The human first trimester extravillous trophoblast cell line HTR-8/SVneo was kindly 

provided by Dr. Charles S. Graham (Queen’s University, Kingston, ON, Canada) [41]. Cells 

between passages 71 and 84 were cultured in RPMI 1640 medium supplemented with 10% 

FBS and 1% penicillin/streptomycin at 37°C in a 5% CO2 humidified atmosphere. Cells 

were grown to 70–90% confluence before treatment. From solutions of 5, 10, 20 and 50 mM 

TBBPA in DMSO, exposure media containing 5, 10, 20 and 50 μM TBBPA were made in 

OptiMem 1 containing 1% FBS and 1% P/S immediately prior to initiating the experiment. 

Exposure concentrations were selected based on preliminary experiments and are 

comparable to concentrations used in other published in vitro studies [42–44]. The final 

concentration of DMSO in medium was 0.1 % (v/v).

2.3. Cytotoxicity and cell viability assays

Cells were seeded in a white 96-well plate at a density of 1 × 104 cells per well and 

incubated for 24 h at 37 °C. Cells were exposed to DMSO (0.1% v/v, solvent control) or 

TBBPA (5, 10, 20 or 50 μM), and then incubated for 8, 16, or 24 h. After treatment with 

TBBPA, TBBPA-induced toxicity was measured using the CyQuant Direct Cell 

Proliferation Assay (Invitrogen), following the manufacturer’s protocols. The assay is based 

on a cell-permeant DNA-binding dye in combination with a background suppression 

reagent. The DNA-binding dye is a live cell-permeable reagent while the suppression dye is 

designed to selectively penetrate only the compromised membranes of dying cells, 
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suppressing the fluorescence of the DNA binding dye. Therefore, the decrease in 

fluorescence is directly proportional to the degree of TBBPA-induced toxicity. Cell viability 

was quantified using the Cell Titer Glo Luminescent Cell Viability Assay (Promega; 

Madison, WI), following the manufacture’s protocols. The luminescence is directly 

proportional to intracellular ATP production in cells.

2.4. Measurement of cytokine release

HTR-8/SVneo cells were seeded at a density of 5 × 104 cells per well in a 24-well plate and 

cultured for 24 h at 37 °C. Cells were washed with OptiMem 1 containing 1% FBS and 1% 

P/S twice and acclimated with the medium for 1 h at 37 °C. After incubation with 5, 10, or 

20 μM TBBPA for 4, 8, 16, or 24 h, culture medium was collected and centrifuged to 

remove any residual cell lysates. The concentration of interleukin (IL)-6, IL-8, and 

transforming growth factor-beta (TGF-β) in the supernatant was measured by sandwich 

enzyme-linked immunosorbent assay (ELISA) following the manufacturer’s protocols (R & 

D systems; Minneapolis) and expressed as pg/ml.

2.5. Measurement of prostaglandin production

Cells were prepared and treated as previously described in the preceding section on 

measurement of cytokine release. To determine if TBBPA-stimulated PGE2 release is 

dependent upon the activity of cyclooxygenase (COX), cells were treated with TBBPA in 

the absence and presence of 10 μM indomethacin (COX-1 and COX-2 inhibitor) or 10 μM 

NS-398 (COX-2 specific inhibitor). After 24-h incubation with TBBPA, the culture medium 

was removed and cells were washed with HBSS once. Then, cells were incubated with 2.5 

μM arachidonic acid in HBSS (without TBBPA) for 4 h at 37 °C. After 4-h incubation with 

arachidonic acid, the concentration of PGE2 in the medium was measured by ELISA 

following the manufacturer’s procotols (Cayman Chemical). Concentrations of PGE2 were 

expressed as pg/ml.

2.6. PCR array and qRT-PCR validation

Changes in mRNA expression of 84 target genes by TBBPA treatment of HTR-8/SVneo 

cells were quantified using the Innate and Adaptive Immune Responses PCR Array (Qiagen; 

Valencia, CA). This commercial array includes 84 preselected genes involved in host 

response to bacterial infection and sepsis. We chose this pathway-specific array to assess 

TBBPA-stimulated activation of inflammatory responses, many of which have been 

associated with adverse birth outcomes. Cells were treated with DMSO (solvent control) or 

TBBPA (5 or 10 μM) for 24 h. After 24 h of exposure, cell lysates were collected and 

homogenized using QIA shredder (Qiagen; Valencia, CA). Total RNA was extracted from 

homogenized lysates using RNeasy mini plus kit (Qiagen; Valencia, CA) and cDNA was 

synthesized from 1 μg of total RNA using RT2 First Strand Kit (Qiagen; Valencia, CA) 

following the manufacturer’s protocols. For the array, cDNA from the solvent control and 

TBBPA treatment groups were analyzed using the Applied Biosystems 7900HT Sequence 

Detection System following the Qiagen recommended protocol. Fold changes were 

calculated from ΔCT values (gene of interest CT values − average of all housekeeping gene 

CT values) using the ΔΔCT method. Mean ΔCT values were compared between groups 

using paired t-tests from the Limma package of Bioconductor [45]. With qRT-PCR, we 
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validated the findings of the array for those genes with significant mRNA expression 

changes that were approximately two-fold or more with 10 μM TBBPA treatment: IL-6, 

lipopolysaccharide binding protein (LBP), peptidoglycan recognition protein 1 (PGLYRP1), 

toll-like receptor 1 (TLR1), triggering receptor expressed on myeloid cells 1 (TREM1), IL-1 

family, member 7 zeta (IL1F7), and heme oxygenase 1 (HMOX1). In addition to the latter 7 

genes, mRNA expression of IL8, TGFB1, and prostaglandin-endoperoxide synthase 2 

(PTGS2; encodes for COX-2) were also analyzed. qRT-PCR reactions were prepared with 

Qiagen SYBR Green mastermix and primers, and run on a Bio-Rad CFX96 Real time 

C1000 thermal cycler following the manufacturer’s recommended protocols. The mRNA 

levels of each gene of interest were normalized to β-2-micoglobulin mRNA levels and 

presented as fold change compared to solvent controls.

2.7. Statistical analysis

Statistical analysis was performed with Sigma Plot 11.0 software (Systat Software Inc., San 

Jose, CA, USA). After determining acceptable homogeneity of variance and normality 

(P<0.05), data were analyzed either by one-way analysis of variance (ANOVA) or repeated 

measured two-way ANOVA. When significant effects were detected, the ANOVA was 

followed by Tukey post-hoc comparison of means. A P <0.05 was considered statistically 

different. Data were expressed as means ± SEM. All experiments were performed at least in 

triplicate and repeated three or more times.

3. Results

3.1. Cytotoxicity and cell viability

Treatment with 50 μM TBBPA for 8, 16, and 24 h markedly increased cytotoxicity in 

HTR-8/SVneo cells, as indicated by decreased fluorescence with the Invitrogen CyQuant 

Direct Cell Proliferation Assay (P<0.05, Figure 1A). Concentrations of 5 and 10 μM 

TBBPA did not elicit cytotoxicity at any timepoint, and 20 μM TBBPA was cytotoxic only 

after 24 h of exposure (P<0.05, Figure 1A). Likewise, treatment with 50 μM TBBPA 

decreased intracellular ATP levels by 65%, 90%, and 95% at 8, 16 and 24 h, respectively 

(P<0.05, Figure 1B), and exposure to 20 μM TBBPA for 24 h decreased ATP levels by 30% 

(P<0.05, Figure 1B). Considering these results, 50 μM TBBPA was excluded from 

subsequent experiments.

3.2. TBBPA effects on cytokine production

Because cytokines play critical roles in pregnancy and aberrant production has been 

associated with adverse pregnancy outcomes such as preeclampsia and preterm birth [18–

20], we investigated the effect of TBBPA on IL-6, IL-8 and TGF-β production in HTR-8/

SVneo cells. TBBPA treatment stimulated concentration-dependent and time-dependent 

increases in IL-6 (P<0.05, Figure 2A). Treatment with 20 μM TBBPA stimulated IL-6 

release significantly compared to the solvent control at 4 and 8 h (P<0.05, Figure 2A). 

Treatment with 10 μM and 20 μM TBBPA increased IL-6 release significantly compared to 

the solvent control at 16 and 24 h in a concentration-dependent manner (P<0.05, Figure 2A). 

IL-6 increases were 25.7-fold and 53.2-fold after 24-h exposure to 10 and 20 μM TBBPA, 

respectively, compared to controls at the same time point (Figure 2A). Treatment with 10 
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μM TBBPA at 24 h increased IL-6 release compared to treatment with 10 μM TBBPA at 16 

h, showing a time-dependent response.

Likewise, treatment with 20 μM TBBPA resulted in a time-dependent increase of IL-6 

release at 4, 8, 16, and 24 h (P<0.05, Figure 2A). IL-6 concentrations did not change 

significantly over the 24-h exposure period in non-treated and solvent control cell cultures, 

nor in cultures treated with 5 μM TBBPA. Statistically significant increases in IL-8 

concentrations were observed at 8, 16 and 24 h compared with solvent controls at each time 

point, but only with 20 μM TBBPA treatment (P<0.05, Figure 2B). IL-8 increases were 2.2-

fold, 3-fold, and 2.7-fold after exposure to 20 μM TBBPA at 8, 16, and 24 h, respectively, 

compared to controls at the same time point. Time-dependent increases in IL-8 release were 

observed with 20 μM TBBPA comparing 8 and 16 h (P<0.05, Figure 2B). On the other 

hand, TGF-β declined with 20 μM TBBPA treatment after 4 h compared to the solvent 

control at the same point (P<0.05, Figure 2C). Moreover, 10 μM and 20 μM TBBPA 

reduced TGF-β release after 8, 16 and 24 h compared to the solvent control at the same time 

point and in a concentration-dependent manner (P<0.05, Figure 2C).

3.3. TBBPA effects on prostaglandin production

Treatment with 10 and 20 μM induced significant increases in PGE2 release by 1.7-fold and 

3-fold, respectively, compared to the solvent control from HTR-8/SVneo cells (P<0.05, 

Figure 3A). Cotreatment with indomethacin, a COX inhibitor, or NS-398, a COX-2 specific 

inhibitor, resulted in 40% and 20% reduction in TBBPA-stimulated PGE2 release to the 

levels comparable to the solvent control (P<0.05, Figure 3B), indicating that TBBPA-

induced PGE2 release is dependent on COX activity. Notably, NS-398-mediated PGE2 

decrease was comparable to indomethacin-mediated PGE2 decrease, suggesting that 

TBBPA-stimulated PGE2 production is mainly dependent on COX-2 activity.

3.4. PCR array results and validation

The Innate and Adaptive Immune Responses PCR Array identified four genes with mRNA 

expression significantly increased two-fold or more by 10 μM TBBPA treatment compared 

to solvent control: HMOX1, IL6, LBP, and TREM1. The fold change and P-value for each 

gene is shown in Table 1 (for complete PCR array data, see Supplemental material, Table 1). 

The clustergram provides a graphical representation of fold expression compared to solvent 

control with hierarchical clustering indicating genes with similar expression patterns 

grouped together and connected by dendrograms. Changes in mRNA expression of the 

array-identified genes were then validated by qRT-PCR, shown in Figure 5. Consistent with 

the array results, treatment with 10μM TBBPA for 24 h significantly increased mRNA 

expression of IL6, TREM1, LBP, and HMOX1: the increases detected by qRT-PCR were 

46.6-fold, 7.1-fold, 2.3-fold, and 4.2-fold, respectively (P<0.05, Figure 5). The magnitudes 

of change detected with qRT-PCR differed from those observed with the array, likely a 

result of array conditions optimized for broad detection of multiple genes whereas the qRT-

PCR conditions were optimized for each gene [46]. The mRNA expression of IL8, which 

was not a gene included in the PCR array, increased by 4.0-fold with 10 μM TBBPA 

treatment after 24-h incubation as assessed by qRT-PCR (P<0.05, Figure 5A), conforming to 

increased IL-8 protein levels by 20 μM TBBPA treatment (Figure 2B). The mRNA 
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expression of PTGS2 increased by 7.7-fold as measured by qRT-PCR (P<0.05, Figure 5B), 

although significant change of expression of this gene was not detected in the PCR array. 

Although the PCR array showed significant downregulation by BDE-47 treatment of mRNA 

expression of IL1F7, TLR1 and PGLYRP1 (Supplemental Data, Table 1), these changes 

were not validated by qRT-PCR with either 5μM or 10μM TBBPA treatment (data not 

shown), possibly related to low expression of the genes as indicated by high Ct values (> 30) 

for the qRT-PCR assay [47, 48].

4. Discussion

TBBPA is the most widely used brominated flame retardant in consumer products with a 

global annual demand of about 200000 metric tons [49]. Due to widespread use and 

bioaccumulation of TBBPA, the levels of TBBPA in human serum samples have been 

increasing [50]. Despite its presence in human gestational compartments [8] and the 

importance of proper regulation of inflammatory pathways for successful pregnancy [27, 

28], there are no previous reports of TBBPA-stimulated effects on inflammatory pathways 

in human first trimester placental cells. The objective of the current study was to investigate 

TBBPA-stimulated inflammatory responses in human placental cells. Our findings 

demonstrate that TBBPA treatment increases proinflammatory IL-6 and IL-8 and decreased 

anti-inflammatory TGF-β release. In addition, TBBPA treatment stimulated PGE2 release 

and resulted in stimulated expression of inflammatory genes such as IL6, IL8, PTGS2, 

TREM1, LBP, and HMOX1.

4.1. TBBPA stimulates inflammatory responses in human first trimester trophoblasts

To our knowledge, this is the first study to report TBBPA-stimulated inflammatory 

responses in human placental cells. The present study clearly showed that TBBPA induced 

secretion and mRNA expression of proinflammatory IL-6 and IL-8 in the human first 

trimester trophoblast cell line HTR-8/SVneo, while reducing release of the anti-

inflammatory cytokine TGF-β. Interestingly, mRNA expression of TGF-β did not change 

significantly with TBBPA treatment, suggesting that the decrease in TGF-β secretion may 

be regulated through post-transcriptional mechanisms. TBBPA treatment also resulted in an 

increased release of PGE2 into the culture medium. Suppression of PGE2 release by co-

treatment with COX inhibitors shows that TBBPA-induced PGE2 production is dependent 

on COX activity. Because treatment with NS-398, a COX-2-specific inhibitor, was 

sufficient to suppress TBBPA-stimulated PGE2 release, it is suggested that TBBPA-

mediated PGE2 production is mainly dependent on COX-2 activity. This is consistent with 

our finding that TBBPA stimulated increased mRNA expression of PTGS-2, the gene for 

COX-2.

The current findings are consistent with a previous study showing that in vitro TBBPA 

exposure of murine RAW 264.7 macrophages induced secretion and mRNA expression of 

pro-inflammatory cytokines, such as TNF-α, IL-6 and IL-1β, as well as the release of PGE2 

with increased expression of COX-2 [39]. Moreover, the latter study reported that NF-κB 

mediated the TBBPA-induced effects on proinflammatory cytokine and COX-2 expression 

in murine RAW 264.7 macrophages [39]. Although we did not assess TBBPA-induced NF-

κB activation, we suggest that NF-κB may be involved in TBBPA-stimulated cytokine 
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release and COX-2 induction in HTR-8/SVneo cells, also, as reported previously in RAW 

264.7 macrophages [39].

4.2. Inappropriate activation of inflammatory pathways within the gestational compartment 
has been linked to adverse obstetrical outcomes originated from abnormal placentation

Dysregulation of inflammatory mediators within the gestational compartment has been 

linked to adverse birth outcomes such as intrauterine growth restriction, preeclampsia and 

preterm birth [51–55]. For example, high levels of IL-6, IL-8 and PGE2 in the 

cervicovaginal fluid and amnionic fluid of pregnant women were associated with increased 

risk for preterm birth [33, 56–58]. In addition, Chegini et al. reported that myometrium from 

women who had unsuccessful labor induction expressed higher levels of TGF-β 1 mRNA 

than those with preterm labor or without labor. On the other hand, TGF-β receptor type II 

expression was significantly lower in myometrium from preterm labor compared with those 

from unsuccessful labor induction or without labor. These findings suggest that TGF-β and 

TGF-β receptors may play a role in mechanisms involving normal and preterm labor [59]. 

Moreover, PTGS2 mRNA levels were approximately seven times higher in chorion laeve 

from spontaneous preterm extraembryonic membranes compared to non-laboring tissues of 

equivalent gestational age [60], an increase comparable to the 7.7-fold increase that we 

observed with TBBPA in the present study. Although the etiology of inflammation-related 

adverse birth outcomes is not fully understood, it has been suggested that inflammation 

within the gestational compartment may lead to impaired trophoblast cellular function, 

contributing to the placental dysfunction seen in pregnancy-related disorders [61].

The possible link between placental dysfunction and inflammation have been implicated in 

previous studies showing that women who delivered preterm had higher rates of placental 

ischemia and abnormal placentation than controls [51, 62], with high levels of IL-6 and IL-8 

in cervical fluid, amniotic fluid and maternal serum [34]. Migration and invasion of 

extravillous trophoblast into the spiral arteries are critical events during placentation [63–

65], and dysruption of these processes is associated with abnormal placentation [66, 67]. In 

in vitro studies, LPS reduced invasion of HTR-8/SVneo cells with increased production of 

IL-8 and IL-6 [61]. IL-6 also has been shown to increase migration and invasion in HTR-8/

SVneo cells [68, 69] while inhibition of endogenous IL-6 in JEG-3 choriocarcinoma cells 

inhibited migration and invasion [70]. In addition, In vitro studies showed that TGFβ1 

inhibits cytotrophoblast cell migration and invasiveness potentially by the upregulation of 

the endogenous tissue inhibitors of MMPs (TIMP)-1 and 2 [71, 72]. The roles of PGE2 in 

trophoblast cellular function have been implicated although the findings have been 

controversial. For example, PGE2 promoted migration of HTR-8/SVneo cells [73, 74] with 

suppressed migration by COX-2 inhibition. On the other hand, Biondi et al. [75] showed that 

PGE2 suppressed the proliferation and migration of HTR-8/SVneo cells. Despite some 

inconsistencies, these reports implicate that inflammatory mediators including IL-6, IL-8 

and PGE2 may play a critical role in regulating trophoblast cellular function during 

placentation. The present study showed that exposure to TBBPA stimulated production of 

proinflammatory IL-6, IL-8, and PGE2 with increased COX-2 mRNA expression in HTR-8/

SVneo cells, suggesting that TBBPA could potentially impair normal trophoblast cellular 

function and invasion. Further investigation of the effects of TBBPA on important 
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trophoblast functions such as invasion and migration will be needed to confirm our 

hypothesis on impaired trophoblast cellular functions from TBBPA-mediated inflammation.

4.3. Genes differentially expressed with TBBPA exposure

A screen of innate and adaptive immune response genes was conducted with a commercial 

PCR array to define changes in expression of inflammatory genes by TBBPA treatment of 

human placental cells. The array results were validated and supplemented with qRT-PCR 

assay of targeted genes. Our study clearly showed that exposure to TBBPA activated 

inflammatory pathways in human placental cells. We identified six genes differentially 

expressed compared to the solvent control: IL6, IL8, PTGS2, TREM1, LBP, and HMOX1. 

The increased mRNA expression of IL6, IL8, PTGS2 was in accordance with the stimulated 

secretion of IL-6, IL-8, and PGE2. The present study is the first to show that exposure of 

human placental cells to TBBPA stimulated gene expression of TREM1and LBP. Few 

studies have reported the involvement of TREM1 and LBP in inflammatory responses at 

gestational compartments. TREM1 is normally found in amniotic fluid and its levels are 

elevated with intra-amniotic infection and elevated cytokine production [76]. Its mRNA 

expression increases in myometrial and cervical tissue after term labor [77]. LBP encodes 

for a protein that binds LPS and plays a critical role in activating acute-phase response to 

LPS. LBP was detected in amniotic fluid and fetal cord blood from women at term, and 

elevated amniotic fluid LBP levels were associated with increased amniotic fluid cytokine 

concentrations (TNF-α, IL-6 and IL-8), chorioamnionitis, and labor [78], suggesting that 

LBP may mediate intrauterine inflammatory responses. Furthermore, it is reported that 

TREM1 and LBP amplify and stimulate release of pro-inflammatory chemokines and 

cytokines in monocytes or neutrophils [79–82]. Although the roles of TREM1and LBP in 

placental cells are not clear, we speculate that increased expression of these genes 

synergistically activates inflammatory pathways in HTR-8/SVneo cells exposed to TBBPA, 

inducing production of pro-inflammatory cytokine IL-6 and IL-8. However, further study is 

warranted to investigate how expression of TREM1and LBP is linked to toxicant-mediated 

inflammation in human placental cells.

Notably, the present study found that TBBPA stimulated mRNA expression of HMOX1, the 

gene for heme oxygenase (HO)-1, an antioxidant and anti-inflammatory enzyme [30]. 

Several lines of evidence suggest that HO-1 is a key regulator during pregnancy [31]. For 

example, induction of HO-1 caused a significant attenuation of TNF-α-mediated cellular 

damage in placental villous explants [83]. Moreover, placentas from human pathologic 

pregnancies including preeclampsia, spontaneous abortion, choriocarcinoma, and 

hydatidiform mole express lower levels of HO-1 compared with normal pregnancies [83, 

84]. In contrast, decidual expression and maternal serum levels of preeclamptic women are 

elevated [85]. Despite inconsistencies in previous reports, a role for HO-1 in of adverse 

pregnancy outcomes is suggested. We offer that induction of HMOX1 may counteract 

TBBPA-induced inflammatory responses to protect cells from further damage. Although 

speculative, this proposed role of HO-1 in toxicant-induced inflammatory responses in 

gestational tissues suggests that HO-1 could be a potential therapeutic target for future 

research to prevent adverse birth outcomes.
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Although the present study reports new findings in TBBPA-stimulated inflammatory 

responses in human placental cells, there are limitations to be addressed. First, the responses 

observed in HTR-8/SVneo cells in the present study may not be necessarily applied to 

primary extravillous trophoblast cells. The HTR-8/SVneo cell line is known to have a 

similar phenotype compared to its primary counterparts [41, 69, 75], retaining migratory 

capability and expressing specific placental trophoblast markers [74, 86]. However, it is 

reported that these cells have different gene expression and gene methylation profiles 

compared to primary extravillous trophoblast cells [87, 88]. Moreover, results from an in 

vitro study may not directly translate to the in vivo situation because trophoblast invasion is 

a complex process involving various cytokines, integrins, and adhesion and proteolytic 

molecules [61] other than IL-6, IL-8 and PGE2, which were the focus of in the current 

study. For these reasons, future studies should explore the mechanisms of TBBPA-

stimulated effects using primary cells from the placenta or using extraembryonic 

membranes. Another limitation is that TBBPA concentrations used in this study are higher 

than what is detected in human samples, although they are comparable to the concentrations 

in other in vitro studies [42–44]. Limited studies reported that levels of TBBPA in human 

breast milk (0.06–37.34 ng/g lipid), maternal serum (0.23–93.22 ng/g lipid), and cord blood 

(2.09–649.45 ng/g lipid) are up to a few nM concentrations [8, 89]. However, TBBPA has 

been found to be accumulative in biota [90, 91] and the levels of brominated flame retardant 

are rapidly increasing both in human and environmental samples [13]. Moreover, we are 

continuously exposed to other environmental contaminants with similar chemical and 

toxicological properties such as PCBs and dioxins [13]. Some studies also show that 

environmental contaminants may have an additive or synergistic effects when combined [92, 

93]. Additional studies in our laboratory on the effect of chronic exposure of TBBPA at 

lower concentrations will lead us toward a better understanding of the mechanisms and 

relevant risks associated with TBBPA exposures in gestational compartments.

4.4. Conclusion

In summary, this is the first study to show that TBBPA, a widely used flame retardant 

chemical found in human tissues, activates proinflammatory responses in human first 

trimester trophoblasts. Our results provide evidence of dysregulated production of IL-6, 

IL-8, TGF-β and PGE2, and increased expression of genes involved in inflammatory 

pathways stimulated by TBBPA in human placental cells. Because proper regulation of 

inflammatory mediators in the gestational compartment is necessary for normal placental 

development and successful pregnancy, further investigation on the impact of TBBPA-

stimulated responses on trophoblast function is warranted.
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Highlights

• A brominated flame retardant activated proinflammatory response in placental 

cells.

• TBBPA stimulated cell release of the pro-inflammatory cytokines IL-6 and 

IL-8.

• TBBPA suppressed cell release of the anti-inflammatory cytokine TGF-β.

• TBBPA enhanced cyclooxygenase-2 (COX-2) mRNA expression and PGE2 

production.

• We identified 7 genes differentially expressed with TBBPA exposure.
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Figure 1. TBBPA effects on cytotoxicity and cell viability in HTR-8/SVneo cells
HTR-8/SVneo cells were non-treated control (NT), or were treated with DMSO (0.1% v/v, 

solvent control) or TBBPA for 8, 16, or 24 h, then cytotoxicity and cell viability were 

measured. (A) TBBPA-induced cytotoxicity was measured using a cell-permeant DNA-

binding dye in combination with a background suppression reagent (Invitrogen CyQuant 

Direct Cell Proliferation Assay): the decrease in fluorescence is directly proportional to the 

degree of TBBPA-induced toxicity. (B) Cell viability was quantified using a luminescence-

based assay measuring intracellular ATP: the luminescence is directly proportional to 

intracellular ATP production in cells. Bars represent the means of 3 independent 
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experiments containing 5 replicates each ±SE. *P<0.05, significantly different compared to 

solvent control within same time point. #P<0.05, significantly different from each 

other. &P<0.05, compared to 50 μM TBBPA at 8 or 16 h.
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Figure 2. TBBPA effects on cytokine production in HTR-8/SVneo cells
HTR-8/SVneo cells were non-treated control (NT), or were exposed to DMSO (0.1% v/v, 

solvent control) or TBBPA for 4, 8, 16 or 24 h, and then culture medium concentrations of 

(A) IL-6, (B) IL-8, and (C) TGF-β were quantified by EIA. Bars represent the means ± SE 

of 4 independent experiments containing 3 replicates each. *P<0.05, significantly different 

compared to solvent control within same time point. #P<0.05, significantly different from 

each other. &P<0.05, significantly different compared to 20 μM TBBPA at 4, 8, and16 

h. +P<0.05, significantly different compared to 10 μM TBBPA within same time point.
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Figure 3. TBBPA effects on prostaglandin (PG) E2 production in HTR-8/SVneo cells
HTR-8/SVneo cells were non-treated control (NT), or were treated with solvent control 

(DMSO, 0.1% v/v) or TBBPA for 24 h in the absence or presence of the COX inhibitor 

indomethacin or the COX-2 specific inhibitor NS 398. The levels of PGE2 in the culture 

media were quantified by EIA. A) TBBPA effects on PGE2 production. B) Suppression of 

TBBPA-stimulated PGE2 release by treatment with cyclooxygenase (COX) inhibitors. Bars 

represent the means of 3 independent experiments containing 3 replicates each ±SE. 

*P<0.05, significantly different compared to solvent control. #P<0.05, significantly different 

from each other.
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Figure 4. Hierarchical clustergram summarizing results from the Innate and Adaptive Immune 
Responses PCR array
HTR-8/SVneo cells were treated with DMSO (0.1% v/v, solvent control) or TBBPA (5 or 

10 μM), and then mRNA was isolated for the Innate and Adaptive Immune Responses PCR 

array. Each row represents mRNA expression of a particular gene. Each treatment group 

(DMSO, 5 or 10 μM TBBPA) contains 4 columns, and each column represents an 

independent experiment on a different day. Each experiment was conducted in triplicate, and 

extracted RNA from the triplicates were pooled together for the PCR array analysis. *P < 

0.05, significantly different from the solvent control with 10 μM TBBPA treatment. n.s., Not 

significantly different compared to the solvent control.
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Figure 5. TBBPA effects on HTR-8/SVneo mRNA expression of genes previously identified with 
a PCR array
A) TBBPA effects on mRNA expression of genes for IL-6, IL-8, TGF-β and IL-1F7 after 

24-h exposure. B) TBBPA effects on mRNA expression of genes for TREM1, LBP, 

PGLYRP1, TLR1, HMOX1, and PTGS2 after 24-h exposure. The mRNA expression was 

quantified by qRT-PCR. Bars represent means ± SE (n=3 experiments, each with 3 

replicates). *P<0.05, significant compared to solvent control.
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