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Abstract

The traditional approaches of estimating heterogeneous properties in a soft tissue structure using 

optimization based inverse methods often face difficulties because of the large number of 

unknowns to be simultaneously determined. This article proposes a new method for identifying 

the heterogeneous anisotropic nonlinear elastic properties in cerebral aneurysms. In this method, 

the local properties are determined directly from the pointwise stress-strain data, thus avoiding the 

need for simultaneously optimizing for the property values at all points/regions in the aneurysm. 

The stress distributions needed for a pointwise identification are computed using an inverse 

elastostatic method without invoking the material properties in question. This paradigm is tested 

numerically through simulated inflation tests on an image-based cerebral aneurysm sac. The wall 

tissue is modeled as an eight-ply laminate whose constitutive behavior is described by an 

anisotropic hyperelastic strain-energy function containing four parameters. The parameters are 

assumed to vary continuously in the sac. Deformed configurations generated from forward finite 

element analysis are taken as input to inversely establish the parameter distributions. The 

delineated and the assigned distributions are in excellent agreement. A forward verification is 

conducted by comparing the displacement solutions obtained from the delineated and the assigned 

material parameters at a different pressure. The deviations in nodal displacements are found to be 

within 0.2% in most part of the sac. The study highlights some distinct features of the proposed 

method, and demonstrates the feasibility of organ level identification of the distributive 

anisotropic nonlinear properties in cerebral aneurysms.
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1 Introduction

Cerebral aneurysms are focal dilatations of the intracranial arterial wall that usually develop 

in or near the circle of Willis. Non-complicated cerebral aneurysms are typically thin-
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walled. Their diameters range from a few to a few tens of millimeters while the wall 

thicknesses range from tens to hundreds of micrometers [1, 2]. In the service environment 

these lesions are best described as elastic membranes. Rupture of aneurysms is the leading 

cause of subarachnoid hemorrhage. Traditionally, rupture risk assessment was based 

primarily on size and shape [3, 4, 5, 6, 7, 8, 9, 10], while mechanical factors such as stress 

and strain have also been submitted [11, 12, 13, 14].

Fundamental to the stress analysis is the constitutive behavior of wall tissue. However, 

delineating the constitutive equation of aneurysm tissue, in particular, experimental 

determination of the material parameters, presents some significant challenges. The lesion 

wall typically consists of multiple layers of type I and III collagen fibers with varying 

orientations [15, 16], giving rise to an anisotropic heterogeneous nonlinear behavior at the 

continuum level. Reports on cerebral aneurysm tissue property have been scarce. Earlier 

studies focused mainly on structural property (e.g., pressure-volume relation) [17], or 

uniaxial and biaxial tissue properties exercised strips and sheets [18, 19]. These studies 

revealed the nonlinear nature of the wall tissue but fell short to delineating the anisotropic 

and heterogeneous behavior. Due to the size limitation, it is difficult, if not impossible, to 

characterize the heterogeneous properties using cut specimens; instead, optimization-based 

inverse methods seem to be more suitable. It is worth noting that if a lesion is more or less 

axisymmetric, then the axisymmetric inflation test [20, 21, 22, 23, 24], also an non-invasive 

approach, could also be a viable alternative. Humphrey’s group characterized cerebral 

aneurysms wholly harvested from cadaver [1]. They utilized an inverse finite element 

approach on subdomains [25, 26] assuming the tissue property is homogeneous over each 

subdomain. In this manner, they established the regional best-fit material parameters in a 

Fung-type strain-energy. Their work remains to this date the most complete report on the 

heterogeneous properties in real cerebral aneurysms.

Kroon and Holzapfel [27] reported a numerical study in which an idealized aneurysm were 

inversely characterized as a whole, without subdomain partition. The constitutive equation 

contains four parameters; each varies spatially in a prescribed manner. The domain was 

discretized into 288 elements, and the parameters were assumed constant element-wise, 

giving a total of 865 parameters describing the heterogeneous behavior. Using a hierarchical 

iteration approach, they identified the parameters all together and obtained a good fit. While 

successful, the work was based on the traditional optimization approach which requires all 

unknown parameters to be simultaneously determined. The size of the optimization problem 

depends on the mesh; the robustness and effectiveness of this approach remain unclear if the 

model size or constitutive complexity is further increased.

Recently, the present authors proposed a new pointwise identification method (PWIM) for 

characterizing nonlinear membranes [28, 29]. The method is markedly different from the 

usual optimization approach. In PWIM, the stress and strain distributions are obtained prior 

to identification. Consequently, the regression problem is formulated locally at each 

individual material point, and the material properties are determined point-wisely in parallel. 

The method hinges critically on the membrane inverse elastostatic method [14] for stress 

computation; the inverse method exploits the property of static determinacy in membrane 

structures and solves the membrane stress without invoking the material property in 
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question. Therefore, PWIM is expected to be able to sharply characterize heterogeneous 

properties. In addition, the method avoids the coupled iteration between stress analysis and 

parameters regression and thus significantly reduces the computation cost.

The purpose of this paper is to test the feasibility of PWIM in identifying the heterogeneous 

properties of cerebral aneurysms. In [28, 29], we have verified the method numerically in 

the context of isotropic nonlinear material and validated the method physically using 

inflation tests on balloons which were deemed isotropic and homogeneous at the end. In this 

work, an anisotropic heterogeneous nonlinear aneurysm model is considered. We focus on 

in vitro setting where it is reasonable to expect that the unloaded stress-free configuration 

can be obtained. In vivo application will require one to determine, simultaneously with the 

material parameters, the unknown stress-free configuration. We have proposed an approach 

to this problem and tested the concept in isotropic material; but the applicability to 

complicated anisotropic materials remains to be investigated. Research in this direction is 

underway in the authors’ group. In this work, we utilize finite element method to simulate 

inflation tests, and take the predicted configurations as input to inversely establish the 

material parameters. The geometry of the considered sac is adapted from CT images. The 

wall material tissue is assumed to follow an anisotropic hyperelastic strain energy function 

proposed by Kroon and Holzapfel [30]. To introduce heterogeneity, the stiffness parameters 

and the symmetry axes are assigned to vary spatially over the sac. The aneurysm model, 

although not entirely realistic, incorporates many essential features and some best known 

information about cerebral tissue.

2 Background

2.1 Static determinacy in membrane structures

In general, the stress in a deformable solid depends on the applied load, the boundary 

condition, the geometry, and the material property. There is, nevertheless, a class of 

problems in which the stress depends only on the load, the boundary condition and the 

geometry, but not the material property. Systems as such are called statically determined. 

Static determinacy plays a crucial role in experimental characterization of elastic properties 

because the stress can be obtained independently of material parameters in question. The 

uniform stress field, for example, is a fundamental type of statically determined system and 

this stress state underlines the commonly used specimen test.

The method we pursue exploits another family of statically determined system, namely 

pressurized curved membranes. It is well-known that a pressurized curved membrane is 

statically determined, or at least approximately so in the sense explained later. A prominent 

example is a pressurized spherical membrane, in which the wall tension follows the Laplace 

formula T = pR/2 (T: the wall tension, p: the pressure, R: the current radius) which notably 

does not involve material property. This unique feature stems from the characteristics of 

membrane equilibrium. A membrane is a thin material body of which the thickness is much 

smaller than the other dimensions. Due to thinness, a membrane has negligible resistance to 

bending and transverse shear. Thus, the stress is locally in a plane stress state, having three 

nonzero components. When the surface is curved, the equilibrium equation gives rise to 

three component equations [14], and thus the equilibrium equations are closed. If the 
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membrane is subjected to traction boundary only, the wall stress is completely independent 

of the material properties. The scenario is slightly different at the presence of displacement 

boundary constraints. In this case, the equilibrium equations are no longer closed and 

constitutive equations are required to solve the equilibrium problem. However, if the 

membrane is sufficiently deep (say the height is comparable to the diameter), the material 

influence on the stress field is expected to exist in boundary regions nears the constrained 

edges. This phenomenon has been discussed analytically, among others, by Rossettos [31]. 

He derived the membrane solutions in axisymmetric systems under various boundary 

conditions. For clamped membranes the stress field was shown to exhibit a boundary layer 

phenomenon; outside a thin boundary layer the stress is asymptotic to the material-

independent static solution. Although no analytical results exist for general cases, numerical 

simulations by our group demonstrated this boundary layer phenomenon in sac-like 

structures of general shape [14, 32]. The stress outside a boundary layer is massively 

insensitive to material properties. In this case, the structure can be regarded as 

approximately static-determinate and, for practical purpose, the stress field in regions away 

from displacement boundary can be regarded as material independent.

2.2 Inverse elastostatics for membranes

The present authors have developed inverse finite element formulations for membrane and 

shell structures [14, 33] based on the concept of inverse elastostatic analysis [34, 35, 36, 37]. 

The inverse method formulates the weak form directly on a known deformed configuration. 

The stress in the given deformed state is determined by inversely finding an stress-free 

configuration that can be brought back to the given deformed configuration upon the 

application of the load. For membrane and shell structures, a distinct advantage of the 

inverse method is that it can maximally capitalize on the static determinacy of the system. 

One can use assumed material models to compute the stress and obtain accurate stress 

solutions. In the context of material characterization, this enables the acquisition of stress 

data without invoking the material property in question and thus, separates the stress 

analysis from parameter regression.

The inverse finite element formulation for membrane problems was presented in [14]. 

Briefly, the finite element formulation starts with the standard weak form, the same one for 

forward analysis:

(1)

Here, Ω is the current surface, ∂Ωt is the boundary upon which the traction t̄ is applied, δx is 

any kinematically admissible variation to the current configuration, and b is the applied 

surface force. For a membrane under a transverse pressure p, b = pn where n is the unit 

surface normal. In the inverse setting, the current configuration is prescribed; the weak form 

is solved for the material point position X in the stress-free reference configuration, which 

enters the system through the constitutive equation. Details of the implementation are 

contained in [14]. In the present application, an auxiliary elasticity model is introduced to 

facilitate the inverse stress analysis. Due to static determinacy, the model is expected to have 

a minimal influence on the stress solution.
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2.3 Pointwise identification method

The pointwise identification method (PWIM) [28, 29] works as follows. Suppose that a 

series of deformed configurations of a membrane sac and the corresponding pressures are 

measured. Then, the stress distribution in each configuration is computed individually using 

the inverse elastostatic method, which takes the corresponding geometry and the pressure as 

input. As discussed previously, the method introduces an auxiliary material model, but the 

computed stress in regions sufficiently distanced from boundary constraints is expected to 

be independent of (in practice, insensitive to) the applied model. In implementation, the 

sensitivity to material parameters will be checked numerically and parameter regression will 

be performed only in regions where the stress is deemed insensitive. The membrane strain is 

determined from the measured surface deformation. In this manner, one acquires at every 

point in the mesh a set of stress-strain data which embodies the local property. The stress-

strain data are subsequently fit point-wisely to a proper constitutive model to delineate the 

local property. In [29], we have validated this paradigm experimentally using a hyperelastic 

balloon.

3 Method

A virtual (numerical) test was conducted to demonstrate and evaluate the utility of PWIM in 

cerebral aneurysms. The procedure is illustrated in Figure 1. The aneurysm sac considered in 

this work was constructed from CT images. The finite element model is shown in Figure 2 

including the initial configuration and the deformed configuration at 200 mmHg blood 

pressure. The finite element mesh consists of 885 elements and 916 nodes. Clamped 

boundary condition was applied at the neck of the aneurysm, to mimic in vitro inflation 

tests. The wall tissue was modeled as an anisotropic hyperelastic material described by a 

laminate model, and the material properties were assigned to vary spatially to introduce 

heterogeneity. The assumed distribution of heterogeneous elastic property is referred to as 

the reference distribution. Taking this model, we simulated an inflation motion by 

performing a series of quasistatic finite element analyses. The obtained deformed 

configurations were considered as experimentally observed configurations. Subsequently, 

we used the displacement and pressure data to inversely establish the material parameters. 

The parameter identification was carried out in a subregion where the inverse stress solution 

was deemed free from boundary effect. To assess the identification results, the identified 

distribution was compared to the reference distribution. A forward verification was 

conducted by comparing the nodal displacements obtained from the reference and the 

identified parameters at a pressure not used in the regression.

3.1 Material model

Strain energy function—Cerebral aneurysm wall consists of primarily 7-8 layers of type 

I and III collagen fibers with varying orientations that form two-dimensional networks [15]. 

At the continuum level, the tissue is typically described by a single strain energy function 

that takes into account collectively the properties and microstructure of the constituents. 

Kroon and Holzapfel [30] proposed a structure-motivated model whereby the aneurysm wall 

is described as an eight-ply laminate, in each of which the collagen fibers are uni-

directionally aligned. This description was utilized in the present work. In particular to the 
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current model, the fibers are assumed to be uniformly distributed; the fiber angles øI with 

respect to a local in-plane coordinate axis are assigned according to

(2)

The principal fiber directions, i.e., η1 and η2 in Figure 3, are aligned with the first and fifth 

fibers respectively. These two directions define the local orthotropic material axes. With 

respect to a local coordinate system, G1-G2, the principal fiber directions, η1 and η2, can be 

uniquely defined by an angle θ. See Figure 3.

The elastic behavior of tissue is described by the energy density function

(3)

where kI , I = 1, 2, …, 8, define the fiber stiffness of the eight families of collagen fibers, a is 

a dimensionless material constant, NI is the direction vector of the Ith fiber, C is the in-plane 

right Cauchy-Green deformation tensor, and λI is the stretch of the Ith fiber. The definitions 

of C and λI will follow. The energy function does not contain the usual isotropic term, 

reflecting the fact that aneurysmal tissues are depleted of elastin content. Note that in the 

present work the function (3) is regarded as a surface density (strain energy per unit 

undeformed surface area); this function is related to the underlying 3D energy function W 

via w = HW where H is the undeformed wall thickness. The variables k1 through k8 are 

effective stiffness parameters, which are the product of the corresponding 3D elasticity 

constants and the wall thickness. These parameters carry the dimension of force per unit 

length.

The derivative of w relative to the in-plane Green-Lagrange strain tensor E = (C – I)/2 gives 

the second Piola-Kirchhoff tension tensor

(4)

Note that T is the resultant of the 3D second Piola-Kirchhoff stress over the undeformed 

wall thickness. Taking one more derivative with respect to E, we obtain the material tangent 

modulus

(5)

It is further assumed that the fiber stiffness parameters kI are determined from two elastic 

parameters E1 and E2 which designate the tissue stiffness in the material’s principal 

symmetry directions. The stiffness parameters in the material axes at the ground state (i.e., E 

= 0) are
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(6)

where . The fiber stiffness parameters are assumed to be 

symmetrically distributed relative to the two principal directions. If we let k1 be the fiber 

stiffness in the first principal direction and k5 be the second (transverse) stiffness, the others 

take the value

(7)

Equations (6) and (7) give a linear relation between (E1, E2) and (k1, k5):

(8)

Hence, once E1 and E2 are given, the fiber stiffness parameters are completely determined.

In the present study, one of the symmetry axes, η1, was assumed to be parallel to the basal 

(x-y) plane and tangent to the aneurysm surface at every point. The other axis, η2, was point-

wisely perpendicular to the first one. The stiffness parameters were assumed to decrease 

linearly with respect to the height from the neck, viz.

(9)

Here Z is the “Z” coordinate of any point on the sac, Zfundus and Zneck are the “Z” 

coordinates at the fundus and neck, respectively. Similarly,  and  are 

respectively the elasticity parameters at the fundus and neck, and they take the value of

(10)

The assumed heterogeneity in the stiffness parameters may arise from the spatial variation of 

the 3D elastic constants, the wall thickness, or a combination of both. Recall the parameters 

E1 and E2 are the product of intrinsic material stiffness and wall thickness. The parameter a 

was assumed to be uniformly distributed over the entire aneurysm sac take the value 20. 

Figure 4 shows the reference distribution of E1 and E2.

Kinematics and strain—We represent the strain invariants, such as J and λI , in 

tensorially covariant forms based on convected coordinates. In this representation, the 

surface is parameterized by surface coordinates ξα (α = 1, 2) in which a pair of coordinates 

P = (ξ1, ξ2) is regarded as the same material point during the deformation. We denote by X 

= X(P) and x = x(P) the position vectors of the material point P in the reference 
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configuration I0 ∈ ℝ3 and a deformed configuration I ∈ ℝ3. The tangent vectors of the 

coordinate curves  and  form the basis of the surface tangent space at X(P) 

and x(P), respectively. The contravariant surface basis vectors {Gα, gα, α = 1, 2} are defined 

in the standard manner. The covariant reference and current metric tensors are Gαβ = Gα · Gβ 

and gαβ = gα · gβ , respectively. The contravariant components gαβ the metric tensors are 

such that , and similarly for Gαβ.

The surface deformation gradient, which maps the surface tangent vectors at X(P ) in I0 to 

the tangent vectors at x(P) in I, is

(11)

The Green-Cauchy deformation tensor is

(12)

In this curvilinear setting the aforementioned strain invariants are defined as

(13)

where g and G are respectively the determinants of the matrices [gαβ ] and [Gαβ ]. The fiber 

directions NI are assumed known in the reference configuration, and written as 

where NI are the components relative to the local surface bases. The current fiber directions 

are inferred from the mapping

(14)

In the convected coordinate system, , namely, the components remain the same. 

Thus, the fiber directions in all other configurations are trivially determined if their 

components in a configuration are specified. Note that nI is no longer a unit vector but 

encoded the fiber stretch. The square stretch is , which proves the 

formula (13)2.

Finite element strain computation—From the nodal coordinates in the reference and 

deformed configurations, strain distributions in each deformed configuration can be 

computed with the aid of the finite element interpolation. Here, the surface inside an element 

is parameterized by the finite element natural coordinates, which will be used as convected 

surface coordinates. From the finite element geometry, the base vectors in the deformed 

configuration and reference configuration are computed at each Gauss point by

(15)
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where ΦI are element interpolation functions and N el is the total number of nodes per 

element. The left superscript indicates the load state. The metric tensors in the reference 

configuration and deformed configuration are computed by

(16)

The strain invariants in Equation (13) are computed accordingly.

Cauchy stress—The wall tension t is the resultant of the Cauchy stress σ:

(17)

here h is the current thickness of the membrane. In the convected coordinate system, the 

tension follows the Doyle-Ericksen formula  [38]. Specializing to the energy 

function (3), we find

(18)

Again, the tension is a stress resultant having the dimension of force per unit length. 

Hereafter, the tension is called the wall stress or simply stress, without making the 

distinction.

3.2 Inverse stress analysis

Thirty-one deformed configurations were generated by applying pressures ranging from 50 

to 200 mmHg at an interval of 5 mmHg. To simulate a typical inflation test, we assumed that 

the neck of the sac is clamped. The simulation of the inflation motion was conducted using 

the forward nonlinear membrane finite element in FEAP, a nonlinear finite element program 

originally developed at the University of California, Berkeley [39]. Figure 5 and 6 show the 

distribution of the principal stretches and principal stresses, respectively, at the deformed 

configuration under the highest pressure, p = 200mmHg. The largest principal surface stretch 

was λ1 = 1.085.

Following the inflation simulation of the cerebral aneurysm sac, we took each of the 

obtained deformed configurations as input, and applied the inverse method to compute the 

wall stress distribution. Cauchy stress was obtained at each Gauss point of the finite element 

mesh. A modified neo-Hookean constitutive model along with assumed model parameters 

was used to compute the wall stress. The strain energy function takes the form

(19)

where I1 = tr C = gαβ Gαβ . Similar to the elastic parameters Ei, the parameters ν1 and ν2 

here are also effective elastic parameters which are multiplications of 3D elasticity constants 
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with the wall thickness. ν1 = ν2 = 5.0 N/mm were used in the inverse FE analysis. To 

evaluate the insensitivity of of stress prediction to the assumed model, the stress 

distributions were computed with ν1 and ν2 increased by ten and a hundred times. The 

computed stress distributions were compared to the actual stress distribution computed from 

the forward FE analyses.

3.3 Parameters identification

The stress components are functions of the reference and current metric tensors, the fiber 

directions, and the elastic parameters appearing in the constitutive law. In each deformed 

configuration, we can obtain the stress components tαβ and the current metric tensor gαβ at 

each Gauss point. Here we assume that the stress-free configuration is known and, hence, 

the reference metric tensor components Gαβ are also known. The strain invariants can be 

computed according to Equation (13).

We denote the modeled stress in the i-th configuration by

(20)

Let  be the “experimental” stress components obtained from the inverse analysis. The 

objective function is defined point-wisely, as

(21)

where N is the total number of deformed states. In tensor notation,  If 

the global stress-free configuration is known, Φ is a function of the elastic parameters only.

Alternatively, as long as the modeled and experimental stress are described in the same 

convected coordinate system, one may construct the objective function as

(22)

where wi (i = 1, …, 3) are weights. One can judiciously choose the weights by observing 

different ratios among the stress components. The regression problem is formulated as

(23)

Here, l and u are the lower and upper bounds of the vector of regression variables [E1, E2, a, 

θ]T . The nonlinear regression was performed by a gradient-based, sequential quadratic 

programming (SQP) algorithm, SNOPT [40].
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4 Results

4.1 Static determinacy and boundary layer

The static determinacy of this system can be demonstrated by comparing the stress solutions 

from the forward analysis (by the reference Holzapfel model) and those from the inverse 

analysis (by the auxiliary neo-Hookean model). Note that the two material models differ 

drastically in material symmetry and stiffness parameters. The principal stresses from the 

forward and the inverse solution are denoted by  and  respectively, i = 1, 2. We 

introduce a quantity  to evaluate the difference. Figure 7 shows the 

distribution of ei in the highest pressure state (p = 200 mmHg). As can be seen from the 

figures, e1 and e2 are less than 1% in the most part of the sac. However, near the clamped 

boundary, especially for the second principal stress t2, the difference is relatively large. For 

example, e2 is larger than 10% near the boundary as indicated by red color (Figure 7(b)). 

Over four layers of elements above the boundary, the difference decreases to under 2%, 

indicating that the inverse solution approaches the static asymptote.

In real applications there is no leisure to compare the inverse solution to the “exact stress”, 

and for that reason, the boundary layer should be assessed differently. A practical way is to 

evaluate the sensitivity of stress to the auxiliary model (sensitivity test). The boundary layer 

may be identified as the region where the inverse stress solution changes relatively more 

under the change of material parameters. In essence, we are using material insensitivity to 

gauge static determinacy; the former is a necessary condition for the latter. In this study, the 

material parameters ν1 and ν2 were both increased to ten times and a hundred times, 

respectively, i.e., ν1 = ν2=50 N/mm and ν1 = ν2=500 N/mm. The percentage change in the 

principal stresses relative to that of the baseline neo-Hookean model is shown in Figure 8. In 

overall, the difference is very small, less than 0.05% in most part of the sac. Near the 

boundary, however, the difference is elevated. The maximum difference for t1 and t2 is 0.4% 

and 0.45% respectively, occurring near the boundary. There is approximately ten-fold 

reduction in the stress difference over the four layers of elements. The pattern is consistent 

with the stress difference between the forward and inverse analysis. Based on this 

observation, the four layers of elements were considered as the boundary layer where the 

inverse stress solution was deemed inaccurate. This region was excluded in parameter 

identification.

4.2 Distribution of the identified elastic parameters

Parameter identification was conducted at all the Gauss points in the identification zone (the 

cap region excluding the boundary layer). Initially the objective function Φ in Eq. (21) was 

used for all points. If at a point the residual of Φ is relatively large, we switched to the 

objective function Ψ. The weights wi were chosen according to the ratios among the 

experimental stress components, i.e.  and , so as to fairly consider the 

influence of all the stress components by scaling them to a similar order. After the 

parameters were identified at all Gauss points, they were projected to the nodes by a least-

square algorithm.
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Figure 9 shows the distribution of the identified elastic parameters E1, E2, and a. 

Qualitatively judged from the distribution contour, the linear dependence of the identified E1 

and E2 over the height was recovered. The homogeneous distribution of a was also identified 

successfully. The deviations from the reference value were computed at each node. Take Ei 

for example, the deviation was quantified by the relative error 

. Figure 10 shows the distribution of the relative errors in 

the identification zone. The errors are less than 1%, 2% and 1% for E1, E2 and a, 

respectively, in most part of the cap although there are several scattered spots of relatively 

higher errors.

By examining the distribution of the first principal stretch in Figure 5(a) and the distribution 

of the identification error of a in Figure 9(c), one may find that the identification accuracy 

correlates closely to the strain magnitude. The identification error of a is generally smaller in 

the region where the strain is larger. This is expected, because the nonlinear behavior is 

better exposed at a wider strain range.

The means, minimums and maximums of the identification errors over the identification 

zone are listed in Table 1. Notably, the mean errors for the three parameters are around 1%.

4.3 Predictability of the identified elastic parameters

Although the pointwise deviation in material parameters provides a direct gauge of the 

regression accuracy, this measure could be sometimes misleading because the optimization 

problem could have multiple solutions. In other words, seemingly different parameter sets 

may render equally good fit. Ultimately, it is the predictability of the identified model that 

matters. Based on this consideration, we evaluated the predictability of the identified elastic 

parameters by conducting two forward finite element simulations at a load state (p = 210 

mmHg) which was not used in the regression. As discussed above, the boundary layer was 

excluded in the parameter identification. To facilitate the analysis, the material parameters in 

the boundary layer are assigned to the reference distribution in both analyses. Figure 11(a) 

shows the comparison between the predicted deformed configuration from the reference 

material and that from the identified one. Evidently, the two deformed configurations match 

extremely well. Figure 11(b) shows the node-wise percentage difference, defined as 

 and d stand for, respectively, the nodal displacements 

computed from the reference and the identified material. The deviation is less than 0.2% in 

most part of the aneurysm sac. There are several nodes near the fundus where relatively 

larger deviation occurs, but the value is still low. The maximum difference is 0.6%.

5 Discussion

We have proposed a pointwise approach for identifying the anisotropic heterogeneous 

material properties in cerebral aneurysms and tested the method numerically using simulated 

inflation tests. The tested aneurysm sac was imaged-based, and the material model 

incorporated the essential anisotropic and heterogeneous features. The stiffness parameters 
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and material symmetry axes were assigned to vary continuously. To mimic real applications, 

the reference material was blinded to the inverse stress analysis. The boundary layer was 

identified using the sensitivity test, without invoking the reference material. The material 

parameters were identified and eventually the assigned distributions were successfully 

recovered.

The method possesses some noteworthy attributes:

1. The parameter regression is performed point-wisely at each individual point 

without coupling to others. This enables us to deal with, at least in theory, arbitrary 

property distributions. Remarkably, the size of the optimization problem depends 

only on the number of material parameters in the constitutive model, not the finite 

element mesh.

2. Since the stress-strain data are made available prior to identification, one has the 

opportunity to examine the stress-strain property and select an appropriate 

mathematical function, instead of assuming a constitutive form a priori. This is 

important in practical application, especially when no prior report of material 

behavior exists.

3. The stress analysis is decoupled from the parameter regression. Owing to this 

decoupled structure, it is possible to improve the stress solution or the regression 

algorithm individually without affecting the other. Since the nested iteration 

between stress analysis and optimization is avoided, the computational structure is 

much simpler and the computation cost can be significantly reduced.

4. The method is minimally destructive and has the potential to be extended to in vivo 

studies.

Altogether, the method can pointedly address some issues of the traditional global 

optimization approach for characterizing heterogeneous nonlinear materials.

The method has some limitations. First and foremost, since the method hinges critically on 

the property of static determinacy, it applies only to thin structures, primarily membranes 

and some thin shells. The method will not be appropriate if significant bending moments and 

transverse shear are needed to achieve equilibrium, as would happen to undulated surfaces. 

In this study, we utilized a convex sac. The surface was in fact slightly modified from the 

image geometry and a small concave region near the shoulder was removed. Nevertheless, 

we have recently considered a realistic aneurysm having concave regions [32]. We found 

that, despite the surface features, there are large portions of surface where the membrane 

response dominates (namely, the bending energy is order of magnitude smaller than the 

membrane energy). In such regions, the in-plane stress appears to remain statically 

determined. Based on this finding, we are optimistic that the method is applicable to some 

aneurysms with concave surface features. Of course, the method is not expected to work in 

high curvature regions such as ridges or folds. A possible strategy is to adapt a subdomain 

implementation whereby the smooth convex regions are isolated, and analyzed individually.

Another limitation, which relates critically to the potential in vivo extension, lies in the 

assumption on the stress-free configuration. While the assumption of known stress-free 
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configuration is reasonable for in vitro experiments, it cannot be adapted in the in vivo 

setting because a cerebral aneurysm is eternally pressurized in its service life and, the stress-

free configuration cannot be obtained from in vivo measurements. To characterize the elastic 

properties using in vivo pulsatile data, assuming available, one must identify, at least locally, 

the stress-free configuration. In [28], the present authors showed that the stress-free 

configuration can be represented locally by a metric tensor containing three parameters. In 

theory, the local metric may be identified together with the material parameters. This 

concept was tested numerically in the context of isotropic hyperelastic materials [28], 

including heterogeneous materials. However, the effectiveness in complex anisotropic 

models remains to be investigated. Research in this direction is underway in the authors’ 

group.

To a lesser degree of importance, the simulation embodied a number of constitutive 

assumptions that may not be realistic. First, we assumed that the material principal axis (the 

preferred direction) is everywhere parallel to the basal plane. This was purely an assumption 

and was introduced to facilitate analysis. If the fiber structure is characterized 

experimentally using techniques such as small angle light scattering [41, 42], such 

information can be incorporated into the model. Second, we assumed that the stiffness 

parameters decrease linearly over the height. Although the trend was motivated by an 

experimental report [1], the linear variation was again an assumption. It should be 

emphasized that the methodology does not depend on the assumed pattern of heterogeneity. 

The method, being a pointwise approach, should be readily applicable to other types of 

property distributions.

It is worth emphasizing that the inverse stress result needs user’s discretion. For thin 

structures the inverse method may yield non-unique solutions due to material instability 

and/or structural buckling. The method requires an auxiliary elasticity model; if the material 

model is chosen too soft, the inverse solution may fail to converge. Our experience suggests 

that stiffer models can help convergence and render the solution unique. But excessively 

stiff models will yield extremely small deformation and thus compromise the stress 

accuracy. Often a trial-and-error process is needed.

Finally, the stiffness parameters E1 and E2 contains the wall thickness. To delineate the 

intrinsic 3-D elasticity parameters, the local wall thickness must be measured. So far, there 

is no available technology to measure the aneurysm wall thickness in vivo.

In summary, this study highlighted the distinct features of the pointwise method and 

demonstrated the feasibility of identifying the anisotropic property distributions in cerebral 

aneurysms at the organ level. Undoubtedly, issues are expected to arise in real applications, 

for instance, the influence of surface measurement errors on the identification results. 

Currently, physical tests on biological tissues are being conducted by the authors. Although 

some limitations remain, we believe that the proposed method opens a new pathway for 

characterizing cerebral aneurysms and other thin biological organs. In the long term, the 

method may provide a framework for developing technologies for in vivo characterization of 

aneurysm tissues. Such a capability, once developed, will enable one to trace the property 
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evolution during aneurysm growth. Information as such may shed light on understanding the 

natural history of a lesion.
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Figure 1. 
Schematic of the validation procedure.

Zhao et al. Page 18

Biomech Model Mechanobiol. Author manuscript; available in PMC 2014 December 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Figure 2. 
The reference configuration (solid surface) and a deformed configuration (mesh) at 200 

mmHg of the aneurysm sac.
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Figure 3. 
Schematic representation of collagen fiber orientation in the aneurysm wall, with respect to 

a local in-plane coordinate system, G1 − G2. (Reproduced from [27].)
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Figure 4. 
Reference distribution of the elastic parameters: (a) E1; (b) E2.
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Figure 5. 
Distribution of the principal stretches in a deformed configuration (p=200 mmHg): (a) first 

principal stretch λ1; (b) second principal stretch λ2.
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Figure 6. 
Distribution of the principal resultant stresses in a deformed configuration (p=200 mmHg): 

(a) first principal stress t1; (b) second principal stress t2.
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Figure 7. 
The absolute percentage difference between the principal stresses computed from inverse 

and forward FEA: (a) Error(t1); (b) Error(t2).
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Figure 8. 
The percentage difference between the principal stresses computed from inverse FEA with 

the baseline neo-Hookean model and elevated material parameters. Left column: first 

principal stress; Right column: second principal stress; Top row: increasing the values of the 

elastic parameters by ten times, i.e. ν1 = ν2 = 50 N/mm; Bottom row: increasing the values 

of the elastic parameters by a hundred times, i.e. ν1 = ν2 = 500 N/mm.
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Figure 9. 
Distribution of the identified parameters: (a) E1; (b) E2; (c) a.
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Figure 10. 
Distribution of the identification errors of the elastic parameters: (a) Error(E1); (b) 

Error(E2); (c) Error(a).
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Figure 11. 
Predictability of the identified model: (a) Predicted deformed configurations from the 

reference material (solid surface) and the identified material (mesh) at 210 mmHg; (b) 

Percentage deviation in nodal displacement.
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Table 1

Means, minimums and maximums of the identification errors in the cap region of the aneurysm sac.

Error(E1) Error(E2) Error(α)

Mean (%) 0.84 1.39 0.90

Min (%) 7.88 × 10−4 8.36 × 10−3 6.11 × 10−4

Max (%) 9.81 10.72 10.36
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