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ABSTRACT: The quantitative determination of key adherent
cell culture characteristics such as confluency, morphology,
and cell density is necessary for the evaluation of
experimental outcomes and to provide a suitable basis for
the establishment of robust cell culture protocols. Automated
processing of images acquired using phase contrast micros-
copy (PCM), an imaging modality widely used for the visual
inspection of adherent cell cultures, could enable the non-
invasive determination of these characteristics. We present an
image-processing approach that accurately detects cellular
objects in PCM images through a combination of local
contrast thresholding and post hoc correction of halo artifacts.
The method was thoroughly validated using a variety of cell
lines, microscope models and imaging conditions, demon-
strating consistently high segmentation performance in all
cases and very short processing times (<1 s per 1,208� 960
pixels image). Based on the high segmentation performance,
it was possible to precisely determine culture confluency, cell
density, and the morphology of cellular objects, demonstrat-
ing the wide applicability of our algorithm for typical
microscopy image processing pipelines. Furthermore, PCM
image segmentation was used to facilitate the interpretation
and analysis of fluorescence microscopy data, enabling the
determination of temporal and spatial expression patterns of
a fluorescent reporter. We created a software toolbox
(PHANTAST) that bundles all the algorithms and provides

an easy to use graphical user interface. Source-code for
MATLAB and ImageJ is freely available under a permissive
open-source license.

Biotechnol. Bioeng. 2014;111: 504–517.

� 2013 The Authors. Biotechnology and Bioengineering

Published by Wiley Periodicals, Inc.

KEYWORDS: confluency; morphology; cell density; adherent
cells; phase contrast microscopy; image-processing; on-line
monitoring

Introduction

Development of robust cell culture protocols relies on the
ability to accurately assess characteristics of adherent cell
populations such as cell number and phenotype. This
information is required both to ensure consistency during
routine maintenance, and to assess the outcome of
experimental investigations. Typical assays, such as cell
enumeration using a counting chamber or flow cytometry,
require detachment of the cells and are thus disruptive to key
characteristics of the cell populations, such as spatial
distribution or morphology, preventing collection of this
potentially valuable information. Furthermore, as a conse-
quence of their disruptive nature they preclude the collection
of time-course data from a single adherent cell population,
which in turn constrains the detection of short-term transient
or dynamic cellular responses. A non-invasive, analytical
method for rapid and precise determination as well as
continual monitoring of adherent cultures characteristics
would thus clearly benefit areas such as stem cell
bioprocessing (Giri and Bader, 2013) and drug discovery
(Kepp et al., 2011).
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The standard method to assess the visible properties of
adherent cultures is inspection by light microscopy. A typical
outcome of these inspections is an estimate of confluency, a
measure of the fraction of the growth area covered by cells. As
a metric, confluency is particularly useful when detachment
is not possible, for example to determine when to passage
cells (Kato et al., 2010) or when to induce a perturbation
(Stewart and Rotwein, 1996; Van den Eijnde et al., 2001).
Confluency also informs on the spatial crowding of the cells, a
property relatable to in vivo cellular tissues, which was shown
to have an impact on gene expression (Ruutu et al., 2004),
formation of cell–cell junctions (Lampugnani et al., 1997)
and the development potential of embryonic stem cells into
viable embryos (Gao et al., 2003). Cell morphology is an
equally important characteristic of adherent cell cultures.
Indeed, it is an early marker of phenotypic changes in
response to flow-induced shear (Sakamoto et al., 2010),
thermal shock (Sugimoto et al., 2012) or addition of small
molecules to the culture medium (Dong et al., 1998; Jeong
et al., 2005; Stroka et al., 2012). Changes in phenotype that
are not associated with morphological attributes, such as
those observed during early neuronal differentiation (Ve-
raitch et al., 2008), can be visualized using fluorescent
reporter molecules. However, the gold standard for cell
culture characterization remains cell density as it enables the
calculation of key proliferation and metabolic rates (Abaci
et al., 2010; Cochran et al., 2006), though its determination is
often limited to end-point destructive assays.
Quantification of these visual attributes requires either

time-consuming and error-prone analysis of digital micros-
copy images by a human operator, or the use of automated
image processing approaches. Software packages such as Cell
Profiler (Carpenter et al., 2006) and ImageJ (Schneider
et al., 2012) facilitate the establishment of automated image
analysis workflows, which typically include a segmentation
step that consists in classifying each pixel of an image as either
cell or background, enabling the measurement of cellular
object features such as size or shape (informing on
confluency and morphology, respectively). Segmentation
can be facilitated by the use of whole-cell (Machacek and
Danuser, 2006; Yu et al., 2010) or nuclei fluorescent markers
(Thurnherr et al., 2010). However, the segmentation of
images acquired using phase contrast microscopy (PCM), a
light microscopy method widely used for the observation of
adherent cells in laboratories, poses challenges due to low
contrast between cell cytoplasm and cell-free background,
and the presence of bright halo artifacts around cellular
objects (Otaki, 2000). Themisclassification of halo artifacts as
cells could artificially inflate cell area measurements and
would obfuscate actual cell contours, preventing shape
analysis. Segmentation of PCM images thus require special-
ized algorithms designed to tackle these issues in order to
maximize the quality of subsequent measurement of cell
characteristics.
To address the low contrast between cytoplasm and

background, methods based on the detection of local pixel
intensity homogeneity were developed that distinguish cell

regions (low homogeneity) from background (high homo-
geneity) (Theriault et al., 2011; Topman et al., 2011). These
approaches are computationally efficient and have high recall
(cell pixels tend to be correctly labeled) but also classify halo
artifacts as cells, thus lowering the precision of the
segmentation. Not discriminating between cellular objects
and halo artifacts could result in the overestimation of
confluency and the loss of intricate cellular object morpho-
logical attributes. This can be remedied by a post hoc
refinement of the segmentation to correct for halo artifacts
using a pattern matching approach. Although segmentation
performance was not reported, this approach led to
significant improvements for the classification of cell types
on PCM images (Bradhurst et al., 2008). Likewise, an
approach based on multiple level-set iterations achieved
highly accurate detection of cell contours but at the expense
of throughput, with a processing time >8min per image
(Ambühl et al., 2012). Alternatively, a method was devised to
correct these artifacts prior to segmentation based on models
of PCM image formation mechanisms (Yin et al., 2010).
However a subsequent study applying this method reported
low segmentation performance (Ker et al., 2011). These
different approaches have significantly advanced PCM image
segmentation but there is still no single method that
addresses these challenges in a convenient, reliable and
expedient way that is suitable for routine use in the
laboratory. Moreover, sampling error due to acquisition of
a small number of images or generalization to other cell types,
microscope models or imaging conditions continue to be
critical issues that require thorough investigation.
Based on the advances in PCM image segmentation made

by other groups, we hypothesized that an algorithm based on
local contrast thresholding (for a first coarse detection of
cellular regions) followed by a rigorous post hoc halo
correction would enable highly accurate and rapid segmen-
tation of PCM images. Using MATLAB and Cþþ, we then
implemented such an algorithm and evaluated its perfor-
mance. We assessed the algorithm with PCM images of
mouse and human embryonic stem cells (mESC and hESC),
chinese hamster ovary cells, human neuroblastoma (NB)
cells and yeast cells. We also evaluated the impact of varying
image acquisition conditions and setups including: micro-
scope manufacturer, camera type (color or black and white),
illumination intensity, illumination homogeneity and focus-
ing accuracy. Using the segmentation algorithm, we then
analyzed the precision with which the confluency of an entire
cell culture can be determined. For this, the precision of
confluency determination was compared to that of human
estimation and the impact of sampling error on culture
confluency measurements was investigated. Confluency
determination was then applied to the monitoring of cell
responses in various relevant scenarios, such as proliferation,
growth arrest, cell death and transient morphological
changes. To estimate cell density directly from segmented
PCM images, we corrected for the “packing density” of cell
colonies by employing basic image features (BIF) for texture
analysis (Crosier and Griffin, 2010), and we compared our
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cell density estimates with results from end-point cell
enumeration. Finally, a morphometric analysis and the
combination of PCM image segmentation with fluorescence
images were applied to themonitoring of early and long-term
differentiation events, respectively.

A software toolbox (PHANTAST) containing all algo-
rithms described in the manuscript is made freely available
under a permissive open-source license for MATLAB and
ImageJ and can be downloaded fromhttp://code.google.com/
p/phantast.

Materials and Methods

Routine Maintenance of Cells

Mouse ES cells (E14Tg2a, Oct4-GiP, passage number <70,
kindly donated by Stem Cell Sciences, Cambridge, UK) were
maintained as previously reported (Veraitch et al., 2008).

Chinese hamster ovary cells (CHO-K1, ATCC CCL-61)
and human NB cells (SK-N-SH, ATCC CRL-2266) were
cultured in T-25 flasks (Fischer Scientific, Loughborough,
UK) in Eagle’s essential medium (Invitrogen, Paisley, UK)
supplemented with 5% fetal bovine serum (Invitrogen).

Cell Culture Experiments for Confluency Monitoring

Undifferentiated mESC were dissociated and inoculated onto
0.1% (w/v) gelatin-coated tissue culture 6-well plates (Fischer
Scientific) at a density of 5� 104 cells cm�2 in 2mL of
medium. Images of ES cell cultures were taken using a
motorized, inverted microscope (Nikon Ti-E, Nikon UK
Ltd., Kingston Upon Thames, UK). Unless specified
differently, 20 random PCM images were acquired per
well, at 10� magnification, with a resolution of 1,280� 960
pixels (Fi-1 color CCD camera, Nikon UK Ltd.). Each image
corresponded to a field of view of 1.27mm� 0.95mm or
�1.20mm2.

For the chemical stress experiments, tunicamycin (TM)
(Invitrogen) dissolved in DMSO (Invitrogen) was added to
the culture medium for a final concentration of 1mgmL�1.
Ten random locations per culture were chosen at the
beginning of each experiment. Subsequent images during the
course of the experiment were taken at the same locations
using a motorized microscope stage (Nikon Ltd.).

Environmental stress was induced by removing the 6-well
plates from the incubator, and leaving them for 3 h at room
temperature (measured to be 20� 1�C for all experiments), in
a non-controlled gaseous atmosphere andprotected from light.

For all other experiments, image acquisition was complet-
ed within 10min (total time of the 6-well plates being outside
the incubator).

End-Point Cell Enumeration

Cell density was determined after each cell culture experi-
ment using an automated cell counter (Vi-Cell, Beckman
Coulter, High Wycombe, UK).

Phase Contrast Image Segmentation

Image processing algorithms were implemented using the
MATLAB Image Processing Toolbox (MathWorks, Cam-
bridge, UK) and Cþþ. The algorithms were essentially
grouped in two categories: (1) an algorithm to detect the image
regions that contain the cells, followed by (2) an algorithm to
correct the halo artifacts typical of PCM images. An illustration
of the various steps involved is shown in Figure S1.

AMATLAB/Cþþ implementation of the algorithm as well
as GUI tools are freely available under a permissive BSD
license (http://code.google.com/p/phantast). A Fiji/ImageJ
plugin is also available at the same address.

If necessary, color PCM images were first converted to
grayscale images (I) by computing a weighted average of the
three image channels (weighted 0.30, 0.59, and 0.11 for red,
green and blue components respectively, default values for the
im2bw function in MATLAB). Local contrast was computed
to detect regions of high pixel intensity variations (i.e., regions
of the image likely to contain cells). Local contrast (C) was
defined as the standard deviation of the image (I) within a
window (w), divided by the mean within the same window.
For the window we used a soft-edge Gaussian kernel of
standard deviation s. Computation was implemented using
the convolution operator (�) according the formula:

C ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
w�I2 � ðw�IÞ2

q
ðw�IÞ

A global local-contrast threshold e was applied to C to
create a binary image G as follows:

Gðx; yÞ ¼ 1 if Cðx; yÞ > e

0 if Cðx; yÞ � e

(

Pixels with a value of 1 represented the cell containing
regions. Small holes in G (area< Fmax) were filled and small
objects (area< Rmax) were removed.

PCM images exhibit a bright halo (usually between 10 and
30 pixels wide) around cells (Otaki, 2000). Thresholded local
contrast tended to classify the entire halo as cell pixels and
therefore included the unwanted outer “flank” of the intensity
profile. We detected and removed this “flank” using an
iterative algorithm that, starting from the borders determined
by local contrast thresholding, tracked towards brighter
intensities until it reached the interface between the bright
halo and the cell edge. This interface was characterized by an
abrupt change in gradient direction (Bradhurst et al., 2008).

As a pre-processing step, the direction of the gradient at
each location of the image (I) was determined using eight
Kirsch filters (Fig. S2A). These were tuned to the four cardinal
and four inter-cardinal directions. The convolution of each of
the Kirsch operators with the image (I) was computed. The
kernel operation yielding the maximum response for a given
pixel determined the gradient direction. These directions
were stored for use in the iterative tracking stage of the
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algorithm. A list of halo locations was initialized with the
locations of boundary pixels. In the iterative stage, each halo
location was considered until the list was empty. The three
pixels arrived at by moving from the current location in the
direction of the gradient, and in the two adjacent directions,
were considered as candidate halo locations (Fig. S2B). If at
least one of these three was a cell pixel, the current location
was changed from cell to background. In this case, all
candidate halo locations classified as cell pixels were added to
the list of halo locations, before removing the current
location. If however none of these three pixels were a cell
pixel, the current locationwas confirmed as a cell pixel. In this
case, the current location was removed from the list of halo
locations and no further pixels were added. During the
iterative stage the reduction in object area was tracked and no
object was allowed to reduce its area by more than a fraction
Aratio defined by the user.

Morphometric Analysis

Morphology of cellular objects was determined based on the
binary image resulting from the segmentation process
described above. First, objects that were in contact with
the border of the image are discarded. A connected-
component analysis was then used to identify individual
objects. For each object was computed the total area, the
solidity (the ratio of the area of the object to the area of its
convex hull) as well as the form factor (or shape factor) as
follows (Soltys et al., 2005):

FF ¼ 4 	 p 	 Area
Perimeter2

Cell Density Estimation Using Packing-Corrected
Confluency (PCC)

The basic image features (BIFs) of PCM images were
computed from the responses of derivative of Gaussian filters
as previously described (Crosier and Griffin, 2010; Reichen
et al., 2012) using a filter scale (s) of 4 and a flatness threshold
(e) of 0. The centroids of the objects corresponding to bright
blob features were determined. The centroids that were
located outside cell regions (as determined using the
segmentation algorithm described above) were discarded.
The mean distance between the remaining centroids was
computed as the mean value of the Euclidean transform of
the binary centroid image. Packing-corrected confluency
(PCC) was computed by dividing the image confluency by
this distance.

Augmented Fluorescence Images for GFP Reporter
Expression Monitoring

Oct4-GiP mES cells were seeded in 6-well plates at a density
of 10,000 cells cm�2 and cultured for over 14 days in three
distinct culture media: expansion medium (as described
in method for cell maintenance above), a spontaneous

differentiation medium (expansion medium with 10% FBS
and without Leukemia inhibitory factor, LIF), and directed
differentiation medium (RHB-A, StemCells Inc., Cambridge,
UK). During imaging, nine fields of view across three
independent wells were considered per condition. For each
field of view, a PCM image and a fluorescence image (FITC/
GFP) were acquired using a Nikon Ti-E microscope (Nikon,
UK). A CoolLED pE-2 (CoolLED, Andover, UK) was used as
excitation source for the fluorescence, enabling the compari-
son of intensity levels between images (Sato and
Murthy, 2012). After segmentation of the PCM images using
the method described in “Phase contrast image segmenta-
tion,” the cell pixel intensities on the corresponding
fluorescence image were used as a basis for the generation
of a new image, termed augmented fluorescence image (AFI).
Pixels were color-coded as background, cells with no
detectable GFP expression, cells with low GFP expression
and cells with high GFP expression. The threshold for GFP-
positive pixels was set to 0.094 (or 24 for uint8 images), as
determined empirically by examining background intensities.
Similarly, the threshold to distinguish between low and high
expressing cell regions was set to 0.24 (or 60 for uint8 images).

Generation of Ground Truth Data

Fifty representative images (250� 250 pixels) were manually
processed by a human expert using the Paint.NET software
(dotPDN LLC, Kirkland, USA). Each pixel was classified as
either cell or background.

Definition of Segmentation Performance Metrics

Comparison between the algorithm output and the human
expert results was done using receiver operator characteristics
(ROC) metrics where TP/TN is the number of true positives/
negatives and FP/FN is the number of false positives/negatives
(with positive referring to cell pixels and negative to
background):

Accuracy¼ (TPþ TN)/((TPþ FN)þ (FPþ TN)): the fraction
of pixels correctly labeled.

Precision¼ TP/(TPþ FP): the fraction of pixels labelled as
cells which are cell pixels.

Recall¼ TP/(TPþ FN): the fraction of cell pixels correctly
labeled.

Fscore¼ 2� TP/(FPþ TP)/((TPþ FN): a measure of the
agreement between the algorithm output and the human
expert that takes into account both the precision and
recall. Values of 0 and 1 signify no and complete overlap,
respectively.

MCC ¼ ðTP�TN�FP�FNÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðTPþFPÞ�ðTPþFNÞ�ðTNþFPÞ�ðTNþFNÞ

p : Matthews corre-

lation coefficient is another metric for the assessment of
binary classification problems that is more suitable in case of
unbalanced classes. A value of �1 indicates total disagree-
ment between the algorithm and the human expert, 0 that
the algorithm is no better than random pixel labelling and
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1 represents total agreement between the algorithm and the
expert (Powers, 2011).

Evaluation of Image Segmentation Performance and
Parameter Tuning

Parameter optimization was performed by varying each
parameter individually; essentially screening an extensive
range of parameter sets (over 2 million combinations were
explored). The segmentation error was computed as Ds¼ 1
�MCC. Leave-one-out cross validation (LOOCV) was
employed to assess generalization to unseen images. (See
Table S1).

Confluency Estimation

Image confluency was defined as the fraction of pixels labeled
as cell. Culture confluency was estimated by averaging the
image confluency computed for at least 20 images taken at
random locations.

Let x̂i be the confluency as estimated by the algorithm and
xi the confluency determined from the ground truth human
annotations, where i varies from 1 to n, the number of images
analyzed. The root mean square error (RMSE) of the

algorithm is b ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1

P ðx̂i � xiÞ2
q

. The mean signed

difference (bias) is r ¼ n�1
P

iðx̂i � xiÞ. The bias informed
on the systematic difference between the mean of repeated
measures and the true value. The precision of the algorithmic

estimation of confluency is then given by p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b2 � r2

p
. The

precision informs on the expected variability associated with
the estimation of confluency.

Confluency Survey

A total of m¼ 7 sets of six images were given to n¼ 14
experienced researchers (>1 year of cell culture experience and
used to routine confluency assessment). The jth person’s estimate
of the ith image set is ei,j. Themean estimate for the ith image is�ei.
The combined (intra plus inter) variability of the estimated

confluency is givenbyV ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m�1

P
i ðn� 1Þ�1 P

j ðei;j ��eiÞ2
q

.

The intra-variabilitywas assessed using the two sets comprising of
identical image but with images re-arranged, flipped and rotated.
Given n pairs of repeated estimates ra,1 and ra,2 by the
same expert on the same set of image, the intra-variability is

defined as V intra ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n�1

P
að1=2Þðra;1 � ra;2Þ2

q
. Inter-vari-

ability is then estimated as V inter ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
V2 � V2

intra

p
.

Statistical Analysis

Statistical analysis was carried out using MATLAB. All cell
culture experiments were performed in triplicate. Unless
otherwise specified, results are presented as mean� SD and
Student’s independent (unpaired) t-test was used to compare
means. Means were considered significantly different if the
resulting P-value was inferior to 0.05. All data was assumed to
be normally distributed.

Results

Phase Contrast Image Segmentation

Our method for the automated determination of cell culture
characteristics employed a novel image-processing algorithm
to accurately and consistently identify cells in phase contrast
microscopy (PCM) images (Fig. 1A). The similarity in pixel
intensities between the background and the interior of the
cells on PCM images (Fig. 1A.i) was overcome by the use of
local contrast thresholding to identify neighborhoods of
pixels presenting large variations in intensity. These regions
corresponded to both cells and the halo artifacts (Fig. 1A.ii).
A post hoc correction step used the direction of the intensity
gradient to exclude halo artifacts and accurately detect cell
contours (Fig. 1A.iii). A detailed description of the
segmentation approach is presented in Figure S1. Using a
conventional desktop computer (Intel Core I5, 8GB of RAM),
our method (PHANTAST) processed images (1,280� 960
pixels) in less than a second.

A systematic evaluation of the segmentation performance
was carried out using cross-validation with 50 mouse
embryonic stem cell (mESC) PCM images representative
of all stages of a culture (from seeding to full confluence).
Average values for all performance metrics considered were
high when comparing the outputs of our algorithm with
manually annotated ground truths images and were generally
higher and less variable than those obtained for a recently
described PCM segmentation algorithm (Topman
et al., 2011) (Table I). These results were further confirmed
by comparison of the segmentation outcomes with live cell
membrane fluorescence marker images, which showed a
good agreement (Fig. S3). A decrease in segmentation
performance was measured for low confluency images that
corresponded to the early stage of a culture, due to small
intricate structures (Fig. 1B).

Using the same parameters than those determined during
cross-validation with mESC images, we assessed the
segmentation performance for two other mammalian cell
lines, namely Chinese hamster ovary (CHO) cells, which are
widely used in production of therapeutic recombinant
proteins (Chu and Robinson, 2001), and human neuroblas-
toma (NB) cells, frequently employed as a model for in vitro
study of neurotoxicity and neurodegeneration (Cheung
et al., 2009). PHANTAST successfully detected structures
that are not commonly attributed to mESC, such as dendritic
projections and flat cell bodies, resulting in mean F-scores of
0.95� 0.03 and 0.90� 0.07 for CHO and NB cells,
respectively (Fig. 1C). These high segmentation scores
indicated that the optimal parameters determined for
mESC constitute a reasonable starting point for other cell
types. Since the determination of optimal segmentation
parameters for a particular cell line or imaging setup can be
tedious and time consuming, we devised simple protocols
and a graphical user interface to facilitate this process
(Fig. S5). In addition, encouraging preliminary results with a
wide variety of other cell types, including human embryonic

508 Biotechnology and Bioengineering, Vol. 111, No. 3, March, 2014



stem cells, NIH/3T3 and yeasts showcased the broad
applicability of the proposed segmentation algorithm (Fig. S4).
The tolerance of the algorithm to variations in imaging

conditions was assessed. Variations in illumination intensity

did not impact segmentation performance for intensities
within the range of values typically used for routine
observation (Fig. 2A). Similarly, illumination patterns,
such as those caused by liquid menisci in small-scale devices,
did not noticeably affect the quality of the segmentation
(Fig. 2B). In contrast, any deviation from ideal focusing was
found to have an impact on the segmentation performance
(Fig. 2C). The formation of a condensation layer is another
issue frequently encountered during imaging of live cells due
to the temperature difference between the incubator and the
imaging environment. Condensation impacts image quality
by decreasing the overall contrast of an image. This had
varying effects on the segmentation outcome, depending on
the severity of the decrease in image quality (Fig. 1B). We also
investigated how variations in the imaging setup affected the
segmentation quality by imaging the same culture of Oct4-
GiP mESC with three different microscopes and cameras,
including color and b/w cameras (Fig. 3). A one-way ANOVA
showed that the choice of the imaging setup did not have a
statistically significant effect on the segmentation perfor-
mance as assessed using the F-score (df¼ 2, F¼ 2.75, P-
value¼ 0.14).

Figure 1. Method for the segmentation of phase contrast microscopy (PCM) images. (A) (i) Cropped region of amouse embryonic stemcell PCM image shortly after seeding. Insert

shows a zoomed-in regionwith description of the key features of a typical PCM image including a halo artifact surrounding the cell and the lack of contrast between the background and

the interior of the cell (ii) Cell contour detected (black line) after local contrast thresholding. A large portion of the pixels corresponding to the halo artifact are incorrectly classified as

cell pixels. (iii) Cell contour detected (black line) after post-segmentation halo correction. It conforms to the actual contour of the cell. Scale bars are 10mm. (B) F-score as a function of

the ground truth image confluency. Closed symbols represent images with degraded quality due to condensation. (C) Examples of segmentation outcomes for mouse embryonic stem

cells (mESC), Chinese hamster ovary cells (CHO) and neuroblastoma cells. For each example, the raw PCM image overlaid with the detected border is compared with the ground truth

image (to the right of the raw image). True positives are yellow, false positives green, true negatives black, and false negatives red. Scale bars are 50mm.

Table I. Evaluation of segmentation performance.

Metric Mean SD 95% CI

Our method F-score 0.94 0.05 [0.93, 0.96]
Precision 0.96 0.04 [0.94, 0.97]
Recall/sensitivity 0.94 0.07 [0.92, 0.96]
Accuracy 0.97 0.03 [0.96, 0.98]
MCC 0.88 0.14 [0.84, 0.92]

Topman et al. (2011) F-score 0.84 0.11 [0.61, 1.06]
Precision 0.75 0.16 [0.44, 1.06]
Recall/sensitivity 0.97 0.03 [0.91, 1.04]
Accuracy 0.90 0.04 [0.81, 0.99]
MCC 0.70 0.13 [0.44, 0.97]

Results obtained using a leave-one out cross validation (LOOCV) on 50
images for the F-score, precision, recall, accuracy and Matthews correlation
coefficient (MCC). For comparison purposes, the same approachwas applied
to a previously described PCM image segmentation algorithm (Topman
et al., 2011). The results are shown as the mean across the 50 images, the
standard deviation and the 95% confidence interval.
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Estimation of Culture Confluency

Confluency determination through visual inspection is
subjective and prone to high inter-individual variability
(Topman et al., 2011). This was further confirmed by a survey
we conducted showing that the inter- and intra-researcher
variability from 14 experienced cell culture researchers

amounted to 9.5% and 6.8%, respectively, yielding a
combined variability (i.e., the precision of the researchers’
estimations) of 11.7% (Fig. S6).

When using PHANTAST, the confluency of a single image
was determined directly from the segmentation outcome by
computing the fraction of an image that was labelled as cell
pixels. The precision for image confluency determinationwas

Figure 2. Tolerance of the segmentation algorithm to variations in imaging conditions. (A) Effect of the illumination intensity on the segmentation quality (as assessed using the

F-score). Lamp intensities from 0 to 7 V were tested. (B) Example of PHANTAST segmentation outcome for a PCM image with inhomogeneous illumination patterns as caused by the

presence of a liquid meniscus in the light path. Scale bar is 100mm. (C) Effect of the distance from the in-focus plane on the segmentation quality (as assessed using the F-score). The

in-focus was determined visually by an experienced microscope user. The focus was changed in steps of 5mm using a Piezo Z-stage.

Figure 3. Comparison of segmentation performance for images of a single Oct4-GiP mESC culture acquired using different phase contrast microscopes, cameras and imaging

protocols. The microscopes used were a Nikon Ti-E microscope (Fi-1 color camera), a Olympus IX71 (Hamamatsu ORCA-ER C4742-80-12AG monochrome camera) and a Zeiss

Axiovert 135 (Hamamatsu ORCA-R2 C10600-10B-H monochrome camera). Each row is a different microscope. Three fields of view per microscope were considered. The raw phase

contrast microscopy image is shown with the segmentation result overlaid in white. Next to it is the comparison with the manually annotated ground truth image. All processing

parameters were kept constant. Scale bars are 100mm.
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found to be 2.7% and the quality of that estimation was
consistent for the entire range of confluencies (Fig. S7A).
When the post hoc halo correction step was omitted, the
precision of the estimation more than doubled to 7.1%,
which highlighted the importance of this step (Fig. S7B).
When estimating the confluency of a whole culture, it is

necessary to account for the uncertainty introduced by
random sampling of a non-uniformly distributed cell
population (Dehlinger et al., 2013; Usaj et al., 2011), as it is
not practical to acquire the large number of images necessary
to cover the entire culture area of vessels commonly used for
adherent cell culture (Table S2). For the area of a well of a 6-
well plate (
9.6 cm2), we acquired 20 images (at 10�
magnification) at random locations, resulting in a sampling
error of 1.74% (Fig. S8).When combinedwith the precision of
the confluency estimation based on a single image (2.7%), we
obtained an overall precision of 3.2%. Although obtained from
a larger set of images, this precision represents a 
3.5-fold
improvement over the variability estimated from our survey.
Additionally, with the measurement time being comparable to
that of visual inspection (the algorithm took less than aminute
to process the 20 images), this further highlights the value of
automated image processing routines, and underscores the
high performance of our segmentation algorithm.

Mouse Embryonic Stem Cell Culture Monitoring

The application of confluency determination to non-invasive
monitoring of adherent cell cultures was demonstrated by
investigating various experimental scenarios. These scenarios
were chosen to include a variety of measureable cell
responses, including rate of proliferation, growth arrest,
cell death and morphological changes (Fig. 4).
Confluency ofmESC cultures under three differentmedium

exchange schedules was monitored: no exchanges, one
exchange (48 h), and two exchanges (48 and 70 h; Fig. 4A.i).
The resulting confluency profiles confirmed the intuition that
medium exchanges would promote cell proliferation. Indeed,
end point analysis showed that the number of medium
exchanges had a significant effect on confluency (One-way
ANOVA, P-value¼ 3.01� 10�6). This result was further
confirmed by end-point cell density determination (One-
way ANOVA, P-value¼ 3.21� 10�5). The gradual decline in
confluency measured for the cultures with no medium
exchange starting at
60 h into the cultures suggested a loss of
cell viability potentially due to nutrient deprivation or toxic
metabolites accumulation. This was in agreement with the
presence of apoptotic bodies in the culture medium (Fig. 4A.
ii). These results indicated that continual confluency
monitoring could be used to non-destructively assess cell

Figure 4. Monitoring of mESC cultures. (A) (i) Time course study of the effect of medium exchange on confluency. Twenty random PCM images per well (of a 6-well plate), at

10�magnification, were used for confluency determination using PHANTAST. Confluency is determined with high precision in<5min. Data shown as mean� SD (across 3 wells).

(ii) Representative PCM images of the cultures after 90 h. Scale bars are 100mm. (B) (i) Time course study of the effect of a chemical stressor (TM, 1mgmL�1) on mESC growth. 10

locations were used per well (of a 6-well plate), at 10� magnification, for confluency determination using PHANTAST. These locations were imaged for 50 h. Data shown as

mean� SD (across 3 wells). (ii) PCM images of treated cultures and controls at different time points. Scale bars are 100mm. (C) (i) PCM images illustrating morphological changes in

response to environmental stress. Annotations indicate the time since the beginning of the perturbation. Scale bars are 100mm. (ii) Monitoring of mESC response to environmental

stress. 20 random PCM images per well (of a 6-well plate), at 10� magnification, were used for confluency determination using PHANTAST. Data shown as mean� SD (across 3

wells). (iii) Effect of the perturbation on the mean cellular object area (includes both single cells and colonies). Data shown as mean� SD (across 3 wells).
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growth and also serve as an early warning system based on the
detection of unexpected growth patterns.

Confluency monitoring was also employed to determine cell
response to the addition of tunicamycin (TM) to the culture
medium. TM is amixture of antibiotics commonly employed to
study the unfolded protein response (Tabas andRon, 2011), and
is also thought to play a role in ES cells self-renewal and
differentiation (Blanco-Gelaz et al., 2010; Cho et al., 2009). Cells
were imaged over a period of 48h after addition of TM to the
culture medium (Fig. 4B.i). The confluency of the treated
cultures hit a plateau after 6 h and remained constant until a
decrease was measured after 48h, which was accompanied by a
large number of apoptotic bodies in suspension (Fig. 4B.ii). This
response of cells to TM, growth arrest followed by cell death, was
consistent with the current understanding of the mechanisms
underlying endoplasmic reticulum stress (Yoshida, 2007),
demonstrating the ability of confluency monitoring to unravel
multi-stage cell response to toxic compounds.

Confluency also informs on changes in morphology when
those are accompanied with variations in cell area. Thermal
shock was investigated by leaving the cells at room
temperature and without CO2 control, inducing morpho-
logical changes that could be reversed by restoring normal
growth conditions (37�C, 5% CO2), as shown by time-lapse
imaging (Fig. 4C.i). Culture confluency monitoring showed
that a significant effect was detected for the duration of the
perturbation (Fig. 4C.ii). Moreover, the perturbation
induced a statistically significant decrease in cellular objects
area when compared to control cultures. No difference was
detectable prior to the perturbation and after restoring
normal growth conditions (Fig. 4C.iii).

Cell Density Estimation

For mESC, and colony-forming cell lines in general, cell
density as determined using sacrificial counting methods is
not linearly proportional to culture confluency (Fig. 5A).

Indeed, high variations in the area of individual cells were
measured during the course of a culture (Fig. 5B), consistent
with typical pluripotent stem cells growth behavior (Harb
et al., 2008). In general, confluency is therefore a poor
predictor of cell density.

We hypothesized that confluency could be corrected in
order to account for these changes in cell area by using the
mean distance between cell nuclei, whichwas found to linearly
decrease as the culture progressed (Fig. 5B insert). However,
this distance can only be directly determined by using nuclei
fluorescent markers. Alternatively, texture analysis of unla-
beled PCM images enabled the use of blob-like features as
surrogates for the estimation of the distance between cells. The
packing-corrected confluency (PCC) was then computed by
dividing the image confluency by the distance between blob-
like objects. PCC was found to increase linearly with cell
density, as shown by an adjusted r2 of 0.983 (Fig. 5C).

In order to determine cell density of a culture using this
method, it is necessary to first perform a calibration step by
relating PCC with cell density measurements in order to
determine regression coefficients. Generalization of this
approach was assessed with three mESC cultures in 6-well
plates spanning the whole range of possible confluencies,
where one culture was used for calibration and the remaining
two for performance evaluation. This process was repeated
three times, so that all cultures were used for calibration once.
The normalized root mean square error (NRMSE) of the cell
density estimation decreased from 21.5% when using
confluency to 10.2% for PCC (Table S3). PCC was thus
found to be a good predictor of mESC cell density.

Monitoring Phenotypic Changes During Differentiation

Automated image processing using PHANTAST was used to
monitor the phenotypic changes that occurred when mESC
were cultured in three different culturemedium formulations:
expansion medium that supports the maintenance of

Figure 5. Cell density estimation of mESC cultures based on PCM images. (A) Relationship (adjusted r2¼ 0.89) between cell density (as measured after detachment) and culture

confluency (determined using PHANTAST). (B) Changes in mean cell area during a typical mESC culture. Cells were counted using a live nuclear stain (Hoechst 33342). The insert

shows the change in distance between nuclei during the same culture. (C) The relationship between cell density (as determined after detachment) and packing-corrected

confluency (PCC), computed from the confluency and the distance to nearest nucleus-like feature using PHANTAST.
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pluripotency, spontaneous differentiation medium, and
medium for directed differentiation toward neuronal lineages.
First, early morphological changes (<70 h after seeding) were
monitored using solidity (a measure of convexity) and the
shape (or form) factor, a metric used to characterize the shape
of objects (Belletti et al., 2008) (Fig. 6). During expansion, the
median solidity and shape factor decreased overtime and
plateaued after 60 h. Similar profiles weremeasured for cells in
spontaneous differentiation medium, albeit with slightly
higher initial levels and a stabilization already occurring after
only 40 h. For both these conditions, time was found to have a
significant effect on the two morphological attributes. In
contrast, the solidity and shape factor of cells in directed
differentiation medium were approximately constant for the
whole duration of the experiment.
The morphometric analysis was limited to early differen-

tiation events due to the formation of large colonies that
would fill a large portion of the field of view, preventing the
detection of their contours and thus the determination of
morphological attributes at later stages of the process. In
order to investigate changes in phenotype during differenti-
ation, PCM image segmentation was used in combination
with fluorescence microscopy to monitor the changes in
expression patterns of the Oct4 pluripotency marker for
14 days. The reporter mESC line Oct4-GiP expressed GFP
under the direction of regulatory elements of the mouse Oct4
gene, allowing to relate GFP expression levels to cell
pluripotency (Ying et al., 2003).
Augmented fluorescence images (AFIs) were generated by

combining the information related to cell position as given by
PCM segmentation with intensity values from a fluorescence

image of the same field of view. AFIs are abstracted
representation of fluorescence patterns where regions are
classified as background, negative cells, low GFP expressing
cells and high GFP expressing cells (Fig. S9a.A). In addition to
the confluency determined from the PCM segmentation
(Fig. 7A.iii), this approach enabled the quantification of the
fraction of GFP-positive cell pixels (Fig. 7A.i) and that of the
mean fluorescence intensity of cell pixels (Fig. 7A.ii), yielding
results that were consistent with end-point FACS analysis
(Fig. S9B).
For all three conditions tested, the fraction of fluorescent

cell pixels was about 50% 18 h after seeding and increased as
the culture progressed. This trend indicated that GFP content
of some cells was too low to be detected as positive until
sufficient accumulation had occurred. This is consistent with
the results of a previous study where a large fraction of cells
were classified as low GFP producers shortly after seeding
(Veraitch et al., 2008).
Beyond 50 h of culture, the fraction of GFP-positive cell

pixels in expansion medium consistently remained between
80% and 100% as the cells formed large, high expressing
colonies (Fig. 7B.i). After 7 days of culture, GFP-negative cells
had started colonizing available space between these colonies,
accompanied by both a decrease in mean fluorescence
intensity (Fig. 7A.ii) and a surge in image confluency (Fig. 7A.
iii), indicating a loss of pluripotency most likely caused by
overgrowth. Indeed, GFP-negative regions corresponded to
flat cells, a morphology typical of somatic cells (Fig. S10A).
Cells in spontaneous differentiation medium grew mostly in
low-expressing colonies with a significant fraction of negative
cells observed as early as 5 days after seeding (Fig. 7B.ii). The

Figure 6. Morphometric analysis of early differentiation events. Cells were cultured in three medium formulations promoting pluripotency maintenance and expansion,

spontaneous differentiation or directed differentiation. The solidity (a measure of the convexity) and shape factor of cellular objects were computed after initial segmentation using

PHANTAST. Objects in contact with the border of the image were omitted. Each data point shows the distribution of object statistics computed using 9 images, across 3 wells of a 6-

well plate. For each box, the central red mark is the median, the edges are the 25th and 75th percentiles and the whiskers extend to the most extreme data points (not including

outliers). Theþ markers represent outliers, values outside of the range [75th quartile� 1.5� (75th quartile� 25th quartile); 75th quartileþ 1.5� (75th quartile� 25th quartile)].The

P-values are computed using one-way ANOVA with the morphological attribute as the dependant variable and time as the independent variable.
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fraction of GFP-positive cell pixels stabilized at around 70%
and the mean fluorescence intensity of cell pixels also reached
a plateau at about a third of the maximum intensity achieved
in expansion medium. Again, GFP-negative regions corre-
sponded to cells with a somatic morphology (Fig. S10B).
When using directed differentiation medium, the cells did

not form colonies and remained either low-expressing or
negative until 7 days into the culture where rapid expansion
of negative colonies was observed (Fig. 7B.iii), as indicated by
an increase in confluency. The fraction of GFP positive cell
pixels started to decline after 4 days into the culture and
reached 0% shortly after 6 days. The fluorescence intensity of

Figure 7. Long-term non-invasive monitoring of GFP expression patterns. (A) Time course measurements of the fraction of fluorescent cell pixels (i), mean fluorescence

intensity of cell pixels (ii) and mean image confluency (iii). Oct4-GiP mES cells were cultured in 6-well plates in three different media formulation (expansion in blue, spontaneous

differentiation in black and directed differentiation in red). Each data point is the mean of three field of views per well, across three wells. Error bars are the standard deviation. (B)

Augmented Fluorescence Images (AFI) of Oct4-GiP mES cells in 6-well plates cultured in different media formulations: (i) expansion, (ii) spontaneous differentiation and (iii) directed

differentiation. Green represents fluorescent cell pixels (dark green is high expression, light green is low expression), red indicates non-expressing cell pixels and black is

background (non-cell) pixels. The time corresponding to each image is shown in the insert at the top.
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cell pixels decreased toward levels close to that of the
background in the same time frame. Morphology of the cells
strongly suggested differentiation towards neuronal lineages,
which was consistent with the absence of GFP signal
(Fig. S10C).

Discussion

We set out to develop an imaging-based method for the
determination of adherent cell culture characteristics that is
convenient, quick and very precise (Fig. 8). Based solely on
unlabelled PCM images, it can be used to determine culture
confluency, estimate cell density and measure morphological
attributes. Moreover, it can be used as a tool to facilitate the
interpretation of fluorescence microscopy data.
At its heart is the segmentation algorithm that enables the

creation of automated image analysis workflows in MATLAB
or ImageJ despite the challenges usually associated with PCM
image processing. High segmentation performance was
reported for three mammalian cell lines with vastly different
visual features. Moreover, this level of performance was
consistent for all stages of a culture and regardless of the
model ofmicroscope or type of camera used, the illumination
intensity and the presence of illumination patterns. These
results suggest that our algorithm accommodates non-ideal
imaging conditions and that it produces results that can be
compared across trials and laboratories.
The quality of the segmentation directly impacted the

ability to produce reliable culture characteristics measure-
ments, as highlighted by a 2.5-fold improvement in the

precision of image confluency determination when using a
post hoc halo correction. The determination of the confluency
of a whole culture as opposed to that of a single image
involves sampling multiple locations of the growth area, thus
introducing an additional source of variability. Whereas
previous studies employed three images or less for a culture
area of 9.6 cm2 (Ker et al., 2011; Topman et al., 2011), we
determined that 20 random images were necessary to strike a
reasonable and practical balance between throughput
(imaging time) and quality of the measurement. When
comparing with our survey, this meant a 3.6-fold increase in
precision over human estimation. The number of images to
use will depend onmany factors, including the field of view of
the camera, the cell line used and the homogeneity of the
seeding. Nevertheless, the sampling error using 20 images was
negligible in comparison to the confluency estimation error
per image and thus constitutes a reasonable starting point for
other conditions.
The robustness of the culture confluency measurements

was further demonstrated by the high reproducibility across
trials achieved when monitoring mESC culture during
expansion, after the addition of a toxic compound to the
culture medium and in response to an environmental shock,
three scenarios that are highly relevant to stem cell
applications: optimization of expansion protocols for the
generation of large quantities of therapeutic-grade cells
(Csaszar et al., 2012), drug discovery and cell-based toxicity
assays (Scott et al., 2013). In all three cases, the data generated
using PHANTAST helped to gain insight into the dynamics of
the studied process solely based on unlabeled PCM images.

Figure 8. Summary of the proposed method PCM images were first segmented using local contrast thresholding and post hoc halo correction. Confluency could be determined

directly from the outcome of the segmentation. Morphological analysis of cellular objects was carried out using convexity and shape factor as metrics. Cell density could be

estimated using packing-corrected confluency, a metric based both on confluency and the mean distance between blob-like texture features. Finally, PCM segmentation was

combined with fluorescence imaging data to enable the determination of temporal and spatial fluorescence patterns.
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Significant progress toward the establishment of a method
for cell density estimation based on light microscopy images
was made by combining confluency measurements with
texture analysis. Indeed, we introduced a novelmetric termed
packing-corrected confluency (PCC), which was shown to be
linearly correlated with cell density as determined after
detachment, despite large variations in cell area due to the
formation of colonies in the case of mESC cultures. PCC
effectively minimized the effects of area variability, resulting
in NRMSE values comparable to previously reported figure
for confluency-based estimation of cell count for cell lines
which undergo only small variations in size during culture
growth (9% and 10% for C2C12 and 3T3-L1, respectively)
(Topman et al., 2011). Unlike confluency determination,
however, this method requires calibration data. Further
investigation are required to determine how applicable a
calibration remains when cell culture conditions change.

We also demonstrated how PCM image segmentation
could be leveraged for the monitoring of mESC differentia-
tion through both morphometric analysis and in combina-
tion with fluorescence microscopy. The measured profiles for
the solidity and shape factor were different depending on the
culture medium formulation, indicating that our algorithm
might be applicable to studies on the relationship between
morphology and cell fate (Matsuoka et al., 2013). The early
differentiation stage analysis was supplemented with long-
term monitoring by combining PCM segmentation and
fluorescence microscopy images of a GFP pluripotency
reporter. The PCM segmentation step was used to determine
cell locations and thus provided a context for the interpreta-
tion and quantification of the fluorescence data. It essentially
replaced the use of a whole-cell fluorescent marker (Ng
et al., 2010; Pasquier et al., 2012), consequently reducing
unnecessary culture handling and freeing a fluorescent
channel, allowing for the imaging of additional fluorophores.
The generation of augmented fluorescence images (AFIs)
enabled the analysis of temporal expression profiles in
addition to simplifying the interpretation of spatial patterns
by abstracting the fluorescence data.

In summary, we designed an algorithm that segmented
PCM images with high performance in a wide range of
conditions and for different cell types. Combined with other
imaging routines, it produced high quality measurements of
key adherent cell culture characteristics with very short
processing times. All the algorithms were bundled in a
software toolbox (PHANTAST). Though we provide im-
plementations with graphical user interfaces in MATLAB,
ImageJ and as a standalone tool, the open-source license used
is permissive and allows for integration in other image
processing packages as well as commercial solutions.
Since empirical parameter tweaking is tedious, and thus a
significant barrier to adoption for image processing
algorithms (Pretorius et al., 2011), we also developed a
tool that facilitates the determination of optimal segmenta-
tion parameters. PHANTAST is therefore a very robust and
convenient tool to generate quantitative data from cell culture
experiments without the need to detach cells. In addition, it

can serve as the first critical step in advanced image
processing workflows, such as pattern recognition. Its
precision and low-processing time also make it suitable for
the integration with automated cell handling systems that are
currently being developed for themanufacturing of stem cell-
derived therapeutic cells (Thomas et al., 2008). Preliminary
steps were taken in this direction with the integration of
PHANTAST in a LabVIEWroutine for the automated, online
monitoring of culture confluency in a microfabricated
bioreactor (Fig. S11).
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