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Instructive influences of phagocytic clearance of dying cells on
neutrophil extracellular trap generation
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Summary

Coordinated programmes of resolution are thought to initiate early after an
inflammatory response begins, actively terminating leucocyte recruitment,
allowing their demise via apoptosis and their clearance by phagocytosis. In
this review we describe an event that could be implicated in the resolution of
inflammation, i.e. the establishment of a refractory state in human
neutrophils that had phagocytosed apoptotic cells. Adherent neutrophils
challenged with apoptotic cells generate neutrophil extracellular traps
(NETs), filaments of decondensed chromatin decorated with bioactive mol-
ecules that are involved in the capture of various microbes and in persistent
sterile inflammation. In contrast, neutrophils that had previously
phagocytosed apoptotic cells lose their capacity to up-regulate β2 integrins
and to respond to activating stimuli that induce NET generation, such as
interleukin (IL)-8. A defective regulation of NET generation might contrib-
ute to the persistent inflammation and tissue injury in diseases in which the
clearance of apoptotic cells is jeopardized, including systemic lupus
erythematosus and anti-neutrophil cytoplasmic antibody (ANCA)-
associated vasculitis.
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Introduction

Neutrophils are the most abundant circulating phagocytes
and represent an inborn circulating system for the clearance

of particulate substrates, such as microbes. A ‘tether and
tickle’ mechanism controls the clearance of other particu-
late substrates, apoptotic cells and activated platelets: bridg-
ing receptors function by tethering the substrate to the
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phagocyte, whereas the recognition of phosphatidylserine
recruits signals that initiate the uptake [1]. Inefficient clear-
ance results in the accumulation of cell remnants and is
involved in the initiation of systemic autoimmunity and
autoinflammation [2–5].

Neutrophil effector functions comprise the release of
neutrophil extracellular traps (NETs) [6]. NETs are
decondensed chromatin filaments decorated with histones
and neutrophil anti-microbial proteins such as elastase,
myeloperoxidase and defensins [6,7]. Deregulated NET
formation/degradation represents a source of intracellular
antigens that can be presented in inflammatory contexts
that favour their immunogenicity. Indeed, deregulated NET
generation and processing have been associated with several
autoimmune diseases [8–14]. Here, we report evidence that
supports the existence of a finely tuned regulatory loop by
which neutrophils that had successfully phagocytosed
apoptotic cells lose their ability to respond to inflammatory
stimuli and in particular to generate NETs.

Materials and methods

Neutrophils activation and phagocytosis of
apoptotic cells

Human lymphoblastoid cell lines (LCL) were kindly pro-
vided by Dr Heltai (Milan) and submitted to apoptosis by
ultraviolet (UV) irradiation (apoptotic LCL, a-LCL) [15].
Apoptosis was verified by flow cytometry and confocal
microscopy [15]. Human neutrophils from healthy donors
were purified as described [16–19] and resuspended
in HEPES–Tyrode buffer containing CaCl2 (1 mM).
Neutrophils (5 × 106/ml) were incubated with a-LCL for
10 min at a 1:1 ratio at 37 or 4°C. When indicated, a-LCL
had been treated previously with recombinant chicken
annexin A5 (10 μg/ml final concentration), produced and
characterized as described [20]. When indicated, a-LCL
were loaded with the fluorescent dye carboxyfluorescein
succinimidyl ester (CFSE) (equivalent to Alexa 488, green).
Cells were permeabilized using the Fix & Perm kit (Caltag,
Buckingham, UK). Phagocytosis was assessed by flow
cytometry and verified by confocal microscopy [17,21].
CD18 expression was assessed by flow cytometry after stain-
ing neutrophils with the specific monoclonal antibody
(mAb) (clone 7E4; Instrumentation Laboratory, Milan,
Italy), as described previously [19].

In-vitro NET formation

Neutrophils (5 × 106) that had phagocytosed or not
apoptotic LCL were placed on poly-l-lysine-coated slides
for 20 min at 37°C. Adherent neutrophils were then stimu-
lated with recombinant interleukin (IL)-8 (100 ng/ml),
challenged with apoptotic cells or left untreated. Plates were
centrifuged and fixed with Thrombofix (Beckman Coulter,

Milan, Italy). Supernatants were further cleared by centrifu-
gation and frozen until determination of DNA amounts by
the Quantification Kit Fluorescence assay (Sigma, Milan,
Italy) [17,21].

Confocal microscopy

Confocal microscopy imaging was carried out as described
previously [17,21]. Briefly, slides were incubated overnight
at 4°C with mAbs against cathepsin G (Alexa Fluor 541,
red) and DNA was counterstained with Hoechst 33342
without any permeabilization step. Confocal images were
collected with a Leica TCS SP2 laser scanning confocal
microscope with multi-line laser excitation: 405 nm,
488 nm, 543 nm and 633 nm. Dyes were selected based on
distinct absorption peaks, each corresponding closely to
available laser lines. We acquired channels sequentially to
prevent artefacts due to cross-talk events.

Statistical analysis

Data are presented as the mean ± standard error of the
mean. All statistics were calculated using GraphPad Prism
(version 5·0; GraphPad, San Diego, CA, USA), using analy-
sis of variance (anova) followed by multiple pairwise com-
parison tests, with differences being considered significant
for P < 0·05.

Results and discussion

Apoptotic cells are readily ingested by resting neutrophils
upon incubation at 37°C at a 1 : 1 phagocyte : apoptotic
substrate ratio (Fig. 1a–g): >80% of neutrophils had
phagocytosed at least one apoptotic cell at the end of the
assay. Phagocytosis abates at 4°C, i.e. in conditions in which
the actin-based filament network does not rearrange, or
when apoptotic cells have been treated previously with
annexin A5 (Fig. 1g). Under the latter conditions, the rate
of phagocytosis drops from 84·4 ± 11 to 9·9 ± 3·2%
(P < 0·0001). Annexin A5 binds to exposed phosphati-
dylserine, forming a three-dimensional crystalline lattice,
thus inhibiting events downstream of phosphatidylserine
recognition [20,22]. This hindrance abolishes internaliza-
tion, but does not interfere with adhesive interactions that
actually appear paradoxically increased, because tethered
apoptotic substrates are not removed (after a 10-min inter-
action at 37°C 67·1 ± 11·2% neutrophils have tethered
annexin A5-treated apoptotic cells versus 13·0 ± 5·3%
neutrophils with adherent untreated apoptotic cells). The
role of phosphatidylserine in selectively triggering internali-
zation of particulate substrates by mononuclear and
polymorphonuclear phagocytes without directly interfering
with their recognition has been demonstrated in other
model systems (e.g. see [20,21,23]).
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The presence of β2 integrins on the membrane surface of
neutrophils that had internalized apoptotic cells does not
increase upon stimulation with interleukin (IL)-8 (Fig. 1h),
indicating that they are at least partially unresponsive to
selected stimuli. Indeed, the responsiveness of neutrophils
to IL-8 is maintained when phagocytosis abates by treat-
ment with annexin A5 or by challenging neutrophils with
apoptotic cells at 4°C. The results indicate that actual inter-
nalization of the apoptotic cell is required to convert
neutrophils in an unresponsive state, while the activation of
tethering receptors is apparently dispensable.

NET generation is gaining increasing attention as a
means by which neutrophils exert their effector functions.
We failed to observe NET generation when neutrophil and
apoptotic cell interactions occur in suspension (Fig. 2g). In
contrast, when neutrophils are allowed to adhere before the
challenge with apoptotic cells, phagocytosis is minimal (not
shown) while NET generation is prominent (Fig. 2g). Using
immunofluorescence, the presence of NETs was monitored
assessing the neutrophil granule enzyme, cathepsin G
decorating extracellular DNA filaments (Fig. 2a–f) and
quantified by the determination of DNA in the culture
supernatant (Fig. 2g). Adherent neutrophils challenged with

apoptotic cells generate NETs, with an efficiency sevenfold
greater compared to those stimulated with IL-8 (6·5 ± 0·4
versus 0·9 ± 0·2 μg DNA/ml, P < 0·001; Fig. 2), possibly
because of a frustrated attempt at phagocytosing the sub-
strate [24–26]. In partial support of this claim, confocal
analysis confirms that neutrophils with intracellular apop-
totic cells are not involved in NET generation (Fig. 2d). To
address this issue more directly, we retrieved neutrophils
that had phagocytosed apoptotic cells, allowed them to
adhere, and challenged them with IL-8. In these conditions,
neutrophils fail to generate NETs which are, in contrast,
produced by neutrophils challenged previously with
annexin A5-decorated apoptotic cells (Fig. 2g).

Taken together, our data indicate that neutrophils that
have phagocytosed apoptotic cells appear unresponsive to
further stimulation. Disposal of an apoptotic cargo implies
a substantial reorganization of the phagocyte intracellular
architecture and is linked to a complex metabolic reorgani-
zation, the molecular bases of which have been identified
[27]. Phagocytosis of apoptotic cells instructs the resolution
of acute inflammatory processes [28]. It is tempting to
speculate that the reduced ability to generate NETs after the
clearance of phagocytic cargos might play a role in the ter-
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Fig. 1. Neutrophil clearance of apoptotic cells.

(a–f) Representative flow cytometry plots

(a,b,d,e) and confocal microphotographs (c,f)

of neutrophils phagocytosing apoptotic cells

[apoptotic lymphoblastoid cell lines (a-LCL)].

Internalization of fluorescent apoptotic cells

[carboxyfluorescein succinimidyl ester

(CFSE)-a-LCL] was quantified by flow

cytometry (Gallios, Beckman Coulter) and

confirmed by confocal microscopy. (g)

CFSE-a-LCL were incubated with neutrophils

(1 : 1 ratio) for 10 min at 37°C (a-LCL 37°C).

Phagocytosis was aborted by the treatment of

a-LCL with recombinant annexin A5 (a-LCL

AA5 37°C) or by incubation at 4°C (a-LCL

4°C). (h) The CD18 expression in the absence

(filled bars) or in the presence of interleukin

(IL)-8 on the neutrophil cell surface was

assessed by flow cytometry, as described in the

Methods. Results are expressed as

mean ± standard error of the mean of five

independent experiments performed with

different healthy subjects.
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mination of potentially noxious ongoing inflammatory
events in physiological conditions, restricting neutrophil
sensitivity to inflammatory stimuli. Conversely, disruption
of this regulatory loop might contribute to the persistent
inflammation and tissue damage that are hallmarks of dis-
eases characterized by defective apoptotic cell clearance and

excessive NET generation, including systemic lupus
erythematosus (SLE) and anti-neutrophil cytoplasmic anti-
body (ANCA)-associated small vessel vasculitis [5,11,29]. In
SLE, neutrophils are primed to generate NETs in response
to cytokines, immune complexes and autoantibodies [30].
The mechanisms underlying the accelerated and enhanced
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Fig. 2. Reciprocal regulation of phagocytosis of apoptotic cells and neutrophil extracellular trap (NET) formation. NET formation was monitored

by confocal microscopy (a–f) and extracellular DNA amounts determined in cell free-supernatants (g). The red colour refers to cathepsin G (Alexa

Fluor 546), the green colour to apoptotic cells [apoptotic lymphoblastoid cell lines (a-LCL)]. DNA was counterstained with Hoechst 33342 without

any permeabilization step. (a–f) Representative images of: unstimulated adherent neutrophils (a); adherent neutrophils stimulated with interleukin
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NET generation have not been elucidated fully. Further
studies are warranted to verify whether the failure of
neutrophils to phagocytose apoptotic cells and, as a conse-
quence, their failure to enter an unresponsive state might be
involved in the natural history of the disease.
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