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Summary

B-1 and B-2 B cell subsets carry out a diverse array of functions that range
broadly from responding to innate stimuli, antigen presentation, cytokine
secretion and antibody production. In this review, we first cover the func-
tional roles of the major murine B cell subsets. We then highlight emerging
evidence, primarily in preclinical rodent studies, to show that select B cell
subsets are a therapeutic target in obesity and its associated co-morbidities.
High fat diets promote accumulation of select murine B cell phenotypes in
visceral adipose tissue. As a consequence, B cells exacerbate inflammation
and thereby insulin sensitivity through the production of autoantibodies
and via cross-talk with select adipose resident macrophages, CD4+ and CD8+

T cells. In contrast, interleukin (IL)-10-secreting regulatory B cells counter-
act the proinflammatory profile and improve glucose sensitivity. We subse-
quently review data from rodent studies that show pharmacological
supplementation of obesogenic diets with long chain n-3 polyunsaturated
fatty acids or specialized pro-resolving lipid mediators synthesized from
endogenous n-3 polyunsaturated fatty acids boost B cell activation and anti-
body production. This may have potential benefits for improving inflamma-
tion in addition to combating the increased risk of viral infection that is an
associated complication of obesity and type II diabetes. Finally, we propose
potential underlying mechanisms throughout the review by which B cell
activity could be differentially regulated in response to high fat diets.
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Introduction

B cells are emerging players in innate and adaptive immune
responses associated with metabolic diseases, including
obesity, type II diabetes and cardiovascular disease. The
objective of this review is to highlight recent studies that
demonstrate differential effects of varying obesogenic diets
on B cell activation, antigen presentation and antibody pro-
duction. We first provide a basic review of B cell develop-
ment and formation of distinct B cell subsets. We then cover
data demonstrating that some murine B cell subsets can
have a pathological role, while others are anti-inflammatory
and have insulin-sensitizing effects in obesity. A central
theme that emerges from these studies is that the composi-
tion of the high fat diets and downstream lipid mediators
derived from specific polyunsaturated fatty acids may be
key in regulating B cell activity. Finally, we highlight

potential mechanisms by which B cell function is impacted
in response to differing dietary fatty acids.

Overview of B cell development and
B cell phenotypes

B cells have functional responsibilities in innate and adap-
tive immunity. The canonical role of B cells is in antibody
production, but they also serve as antigen-presenting cells
and respond to innate and adaptive stimuli to produce
cytokines [1,2]. The major murine B cell subsets, described
below, and their primary surface markers and functions are
presented in Table 1 in order to familiarize the reader with
the current knowledge on murine B cell subsets. We then
present in subsequent subsections what is known about the
effects of obesity and its complications on the differing B
cell subsets.
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The development of B cells occurs in the bone marrow
from haematopoietic stem cells [7]. Cells destined to
become B cells progress to the pro–pre-B cell stage [17].
During the pro-phase of B cell development, B cells must
produce a μ heavy chain through the variable (V), diversity
(D) and joining (J) gene segment rearrangement [17]. The
successfully rearranged μ heavy chain then combines with a
non-polymorphic surrogate light chain to form a pre-B cell
receptor (BCR) on the B cell surface [18]. Pre-BCR surface
expression arrests the heavy chain rearrangement process
and proliferation of the pro-B cell is initiated, a process
driven by interleukin (IL)-7 [5,18,19]. Inefficiency in rear-
ranging the μ heavy chain would result in elimination of the
B cell [17]. The large population of newly generated pre-B
cells begins rearranging the light chain through a similar
process, only involving the V and J gene segments [17].
Once successful light chain rearrangement has occurred, the
immunoglobulin (Ig)M BCR is assembled and expressed on
the surface, therefore qualifying the B cell as a naive imma-
ture B cell [17]. Antigen-dependent negative selection pres-
sures ensure that conventional immature B cells expressing
autoreactive BCRs are silenced appropriately through either
receptor editing via additional rearrangements, deletion or
anergy [20].

Subsequent to exiting the bone marrow, immature B cells
home to the secondary lymphoid tissues for further devel-
opment. B cells are in the transitional type 1 (T1) B cell
phase, characterized by low surface IgD [7]. Type 1 (T1) B
cells are present in the spleen and bone marrow and do not
possess the ability to recirculate [7]. Up-regulation of IgD
surface expression designates the B cell as a transitional T2
B cell that can recirculate [21]. T2 B cells mature into either
marginal zone or follicular B cells, a cell fate decision that
depends upon BCR signalling strength [7].

Naive follicular B cells are characterized phenotypically
by high IgD and low IgM surface expression and are the
largest population of B cells [7,9]. Follicular B cells are stra-
tegically localized adjacent to the T cell zones in the spleen,
ensuring optimal conditions for B and T cell interaction
[7]. Follicular B cells are the B cell subset most likely to
respond to T-dependent protein antigens [7]. Upon
encountering antigen, follicular B cells present antigen to T
cells and receive additional activation signals that promote
antibody production by short-lived plasmablasts as well as
formation of germinal centres. Within these specialized
structures, germinal centre B cells undergo rapid expansion,
affinity maturation through somatic hypermutation of
immunoglobulin variable regions and isotype switching via
exchange of immunoglobulin constant regions. Ultimately,
this results in the production of high-affinity antibody by
long-lived plasma cells and the establishment of a long-lived
memory B cell pool poised to rapidly produce high-affinity
antibody upon secondary antigen encounter [16].

Marginal zone B cells possess innate-like properties. Mar-
ginal zone B cells express high levels of Toll-like receptors

(TLR) capable of recognizing microbial ligands, in addition
to expressing polyreactive BCRs [22–25]. Marginal zone B
cells are at the interface between the circulation and the
white pulp of the spleen, allowing them to survey the blood
for the presence of blood-borne antigens and shuttle anti-
gens to follicular dendritic cells upon engagement [7,18,26].
One clear distinction between marginal zone B cells and
follicular B cells is their self-renewing capability. Marginal
zone B cells have an unlimited lifespan compared to the
lifespan of follicular B cells, which is as little as a few weeks
[27]. Marginal zone B cells typically respond to blood-
borne pathogens in a T cell-independent manner, and may
do so through engagement of both TLR and BCR [25]. This
results in rapid differentiation of marginal zone B cells into
antibody-producing plasmablasts, although this process is
not effective at inducing conventional memory cells [28].

B-1 cells are innate-like cells enriched in the peritoneal
and pleural cavities relative to other B cell populations,
although similar numbers (but lower frequencies) are found
in the spleen. Additional lymphoid tissues also harbour low
frequencies of B-1 cells [9]. B-1 cells derive from a distinct
progenitor than B-2 cells and are divided further into B-1a
(CD5+) and B-1b (CD5−) cells based on their expression of
CD5 and other developmental, functional and phenotypical
characteristics [9]. B-1 B cells, similar to marginal zone B
cells, primarily express germline-encoded antigen receptors
specific for microbial and self-antigens, exhibiting limited
diversity [9]. In contrast to the continuous development of
B-2 cells de novo, B-1 cells undergo limited proliferation to
replace dying cells [9]. Antibody production from B-1a cells
comprises the natural antibody repertoire, which is gener-
ated in the absence of known antigenic exposure [9,29–31].
The natural antibody repertoire may exhibit low affinity
and broad cross-reactivity; however, these antibodies
directly neutralize and inhibit early pathogen replication
[9,32–35]. In contrast, B-1b cells seem to have a more spe-
cialized role in rapidly producing antibodies in direct
response to T cell-independent antigens, including antigens
that lack TLR stimuli. B-1 cells are capable of undergoing
class-switch recombination to all isotypes, but prefer
switching to IgA in response to signals that are distinct from
those that induce IgA switching in B-2 cells [9,36–38].

IL-10-secreting regulatory B cells encompass several
relatively newly described IL-10-producing B cell subpo-
pulations, some of which display phenotypical characteris-
tics shared by ‘innate-like’ B-1 cell and marginal zone B cell
populations [1,2,9,11,39]. IL-10-producing B cells are a
type of regulatory B cell that suppresses the inflammatory
response [1,2,11,40]. The frequency of IL-10-producing B
cells is heightened at the climax of inflammation and inhib-
its progression of T helper type 2 (Th2)-driven diseases,
making them critical cells for restraining autoimmunity
[1,2,11]. IL-10-producing B cells inhibit Th1/Th17 cells
during acute inflammation and induce T regulatory cells
[1,2,41]. IL-10-producing B cells also work in parallel to the
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newly discovered IL-35-producing B cells [10]. Similar to
IL-10-producing B cells, IL-35-producing B cells are nega-
tive regulators of immunity, decreasing susceptibility to the
development of autoimmune diseases [10].

Obesity entails infiltration of T cells into the
adipose tissue

Obesity is associated with a wide range of complications
that exact a high economic burden [42–44]. The most com-
monly studied complications of obesity include type II dia-
betes, hypertension, cancer, stroke and cardiovascular
disease [43,45,46]. Obesity is characterized by chronic
inflammation and lipid overload. Macrophages are well
known to infiltrate adipose tissue and undergo a
phenotypical switch from an anti-inflammatory M2 to a
proinflammatory M1 phenotype that promotes insulin
resistance [47]. Recently, the involvement of T lymphocytes
in regulating adipose tissue inflammation has emerged pri-
marily from rodent experiments. Nishimura et al. demon-
strated that CD8+ T cells infiltrated adipose tissue of mice
consuming high fat diets prior to accumulation of M1
macrophages. Depletion of CD8+ T cells with antibody
improved the inflammatory profile and insulin/glucose sen-
sitivity, suggesting that cytotoxic T cells are potential thera-
peutic targets in obesity and insulin resistance [48].

CD4+ T cells also have a role in the pathogenesis of
inflammation and insulin resistance in mouse models. Gen-
erally, helper CD4+ T and regulatory forkhead box protein 3
(FoxP3)+ T cells (Tregs) are less abundant in the adipose
tissue. Classically defined Th1 cells appear to support
a proinflammatory environment in contrast to Th2
cytokines, which have a beneficial role in improving inflam-
mation and whole-body metabolism [49,50]. Tregs are criti-
cal for maintaining adipose tissue inflammation, whereas
proinflammatory Th17 cells have also been identified in the
adipose tissue of obese mice, which may be under the regu-
lation of dendritic cells [51–53]. For example, Bertola et al.
demonstrated that mouse CD11c+F4/80low and human
CD11c+CD1c+ dendritic cells accumulated in obese adipose
tissue, which correlated with an increase in the frequency or
differentiation of Th17 cells [54]. Overall, a variety of T cell
subsets, in addition to other cell types such as invariant
natural killer T cells and eosinophils, infiltrate the adipose
tissue to regulate insulin and glucose sensitivity in obesity
[55–57].

Select B cells can promote chronic inflammation
through contact with T cells

Generally, there is no clear consensus on how obesity
impacts B cell development in the bone marrow. For
instance, Adler et al. showed that high fat diets suppress B
cell lymphopoiesis [58]. This was in contrast to a previous
study by Trottier et al., which demonstrated that a high fat

diet increased the frequency of B cells in addition to other
cell types in the bone marrow [59]. Therefore, more work is
clearly needed in this area to resolve some of the discrepant
literature.

More recently, the involvement of B cells in adipose tissue
inflammation associated with obesity has emerged. Winer
et al. demonstrated that obesogenic diets promoted the
infiltration of class-switched mature B cells into visceral
adipose tissue. This was accompanied by an increase in
serum and adipose-specific IgG2c, which is proinflam-
matory. Experiments with several mouse strains provided
convincing evidence for the role of B cells in exacerbating
chronic inflammation. For instance, Bnull mice, which have a
μ heavy chain knock-out, had improved insulin sensitivity
despite consumption of a high fat diet. To further demon-
strate cause and effect, B cells were transferred into Bnull

mice, which led to increased fasting insulin levels and
diminished glucose clearance [60]. In contrast, B cell deple-
tion with a monoclonal anti-CD20 antibody improved
glucose tolerance and fasting insulin accompanied a reduc-
tion in the adipose inflammatory profile. Thus, the data
suggested that depletion of B cells might be a potential
therapeutic target in obesity. However, it is important to
note that complete depletion of B cells and T cells, as dem-
onstrated with severe combined immunodeficiency (SCID)
mice consuming high fat diets, diminished glucose homeo-
stasis compared to controls [61].

Mechanistically, ex-vivo measurements by Winer et al.
showed that by suppressing B cell infiltration into adipose
tissue, M1 macrophage activation, M1 polarization and
expression of CD8+ T activation markers were lowered. Fur-
thermore, studies using major histocompatibility complex
(MHC) Inull and MHC IInull mice revealed, respectively, that
the activation of CD8+ and CD4+ T cells in the adipose
tissue was probably driven by B cell antigen presentation to
T cells. A recent report confirmed the role of MHC II in
activating T cells in adipose tissue in response to leptin,
and thereby accelerating the conversion of M2 to M1
macrophages [62]. In this study, adipocytes effectively pre-
sented ovalbumin to CD4+ T cells, establishing adipose
tissue-specific MHC II antigen presentation as one mecha-
nism by which CD4+ T cells are activated. Moreover, sup-
porting microarray analysis revealed that obese women
have increased MHC II expression in subcutaneous fat [62].
Nevertheless, the underlying antigen(s) presented by MHC
class I and II molecules are unknown. This is a major
obstacle to uncover in order to target B cells or B cell spe-
cific MHC I or II molecules to diminish adipose tissue
inflammation.

The Nikolajcyk laboratory has also established that B cells
have an inflammatory role in obesity and type II diabetes,
which was mediated by T cells [63]. The authors reported
that obesity enhanced proinflammatory cytokine secretion
from B cells and verified the notion that Bnull mice have
improved glucose/insulin sensitivity, adipose tissue
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inflammation, diminished adipose tissue hypertrophy and
no effect on circulating adiponectin. Furthermore, Bnull mice
were found to have a higher proportion of Tregs and lower
expression of Th17 cells. The results from the murine
studies were then confirmed with human B cells. Co-culture
experiments revealed that human B cells from type II dia-
betic patients had enhanced Th17 function driven specifi-
cally by B cells and not other cell types. A more recent study
showed that murine periodontitis, a secondary inflamma-
tion associated with obesity and type II diabetes, was B cell-
dependent [64]. These results open the door to the
possibility that secondary inflammation in response to
obesity may be B cell-driven and, again, B cells are potential
therapeutic targets for improving aspects of diet-induced
obesity.

The results from the aforementioned murine experi-
ments provide strong support of observations made in
human studies to show that type II diabetes, a common
complication of obesity, results in increased proinflam-
matory cytokine secretion from B cells [65]. In particular,
diabetic patients have elevated secretion of IL-8 accompa-
nied by a lack of secretion of IL-10 in response to TLR
agonists. IL-10 is noteworthy, given its anti-inflammatory
role in insulin sensitivity [66,67].

IL-10-secreting regulatory B cells (Bregs) have an
anti-inflammatory role in murine obesity

A potential beneficial role for B cells has also emerged
in obesity. Nishimura et al. recently identified a distinct set
of IL-10 secreting Bregs, which had a positive influence on
adipose inflammation [68]. IL-10-secreting B cells from sub-
cutaneous and epididymal adipose tissue were pheno-
typed via flow cytometry as CD1dlowCD5−/lowCD11blowCD21/
CD35lowCD23−/lowCD25+CD69+CD72highCD185−CD196+IgM+

IgD+. This population of B cells was phenotypically distinct
from other IL-10-secreting B cells such as splenic B-10 cells,
which are CD1dhighCD5+. Several lines of evidence were
provided to demonstrate that IL-10-secreting B cells in
adipose tissue had a regulatory role. First, IL-10 selectively
deleted from B cells increased the infiltration of CD8+ T
and M1 macrophages in adipose tissue of obese mice.
Furthermore, lean mice that had deleted Bregs showed
insulin resistance and limited fasting glucose clearance. Sec-
ondly, transplantation of Bregs, but not splenic B cells, from
lean mice into obese B cell knock-out mice lowered
interferon (IFN)-γ secretion from CD8+ T cells and
diminished tumour necrosis factor (TNF)-α secretion from
macrophages. Similar results were also observed when B cells
from lean mice were transferred adoptively into obese
animals. The results from the murine study were correlated
with human adipose tissue markers. Supporting gene
expression profiles from isolated stromal vascular fractions
from humans revealed that phenotypical markers for B
cells and IL-10 had an inverse correlation with body

mass index. One potential underlying mechanism may
be that IL-10 secretion from B cells is regulated by
IL-35 [69].

An intriguing aspect of the research by Nishimura et al.
was the identification of several adipose-specific environ-
mental factors that could support Breg activity. In vitro treat-
ment of adipose Bregs with the saturated fatty acid palmitate
(C16:0) increased survival of the Breg population. The
rationale for studying palmitate was to model fatty acids
that are released from adipose tissue in response to lipolysis
and can serve as ligands for TLR-4 [70]. This was consistent
with previous work to show that saturated and polyunsatu-
rated fatty acids have differential effects on B cell and
macrophage activation through TLRs [70–72]. However, it
was not clear how saturated fatty acids would provide
support for enhanced survival of the Breg population.

Previous studies show that palmitate induces
lipoapoptosis in several metabolic tissues, which has led to
the hypothesis that saturated fatty acids can lead to
lipotoxicity in several cell types, including macrophages
[73–75]. For instance, Wen et al. demonstrated that palmi-
tate treatment of bone marrow-derived macrophages selec-
tively activated the NLRP3-ASC inflammasome, which is
responsible for the activation of caspase-1 and secretion of
IL-1β and IL-18 [76]. IL-1β, in turn, dysregulated insulin
signalling in vitro, suggesting a potential mechanism by
which palmitate in high fat diets may diminish insulin sig-
nalling in vivo [76]. This line of evidence is supported by
data showing that obese individuals have higher levels of
circulating saturated fatty acids [77]. Thus, future mecha-
nistic studies need to resolve how palmitate would enhance
IL-10 secretion from B cells in the context of the fatty acid
exerting lipotoxic effects. Perhaps there are differences in
the metabolic response to palmitate between select B cell
subsets and macrophages. While one study showed that pal-
mitate treatment induced lipoapoptosis of murine B220+

splenic B cells, more studies are needed in this area [71].
The studies with palmitate also raise the question of what

role each dietary fatty acid has on B cell activity. The diets
used in many of the studies on B cells described above rely
on high fat diets (60% of total kcal) that are predominately
enriched in saturated and monounsaturated fatty acids. It is
entirely possible that select fatty acids are promoting B cell
dysfunction through the accumulation of select lipids as
triglycerides, which can promote lipotoxicity. This notion is
supported by a study showing that dendritic cells accumu-
late triglycerides in mouse models and in human cancer
tissue samples [78]. Perhaps B cells can also accumulate
triglycerides, which leads to changes in B cell activity.

The role of B cells in co-morbidities associated
with obesity

Obesity is associated with a wide range of co-morbidities.
Many of these have a B cell component that contributes
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towards the pathology. For example, obesity can
increase the risk for coronary atherosclerosis [79]. As
reviewed elsewhere, atherosclerotic lesions in humans
and mice contain B cells and B-1a cells are
atheroprotective through the production of natural IgM
antibodies [80–82]. Depletion of murine B cells with anti-
CD20 antibody also leads to an improvement in athero-
sclerosis [83]. These results, similar to the studies
described above for B cells in adipose tissue, reveal a
delicate balance of B cells subsets that exert positive and
negative effects.

One complication that is poorly studied is the impact of
positive energy balance on host defence, and particularly
humoral immunity [84]. Epidemiological studies have
established that obese individuals are more likely to
develop post-surgical infections [85,86]. Studies in rodents
and humans also show that an increase in body mass
index is correlated with increased susceptibility to bacterial
and viral infections such as Staphyloccocus pneumonia,
Mycobacterium tuberclosis, H. pylori, Candida albicans,
encephalomyocarditis and influenza virus [84]. Further-
more, increased body mass index, although very poorly
studied, is correlated with a poor vaccination response. For
instance, Weber et al. showed that body mass index was a
strong predictor of the inability to develop antibody to
hepatitis B vaccine [87].

Targeting B cells in obesity may have potential benefits
for improving adipose tissue-specific inflammation;
however, this could compromise the immune response
to infection. Very few laboratories have addressed how B
cell activity is influenced by obesity. Milner et al.
recently demonstrated that obese mice, relative to lean
controls, delayed the primary antibody response to a
sublethal challenge with influenza PR8 infection [88].
Obese mice displayed a lower rate of production of
haemagglutination inhibition (HAI) antibodies, and
HAI antibodies were undetectable in obese mice by 35
days postinfection. Furthermore, during a secondary
heterologous challenge with H1N1, there was a nearly
50% reduction in the frequency of obese mice that had
detectable H1N1 HAI antibodies in serum. In addition,
only 5% of obese mice had HAI antibodies to PR8
upon the secondary infection with H1N1 relative to 75%
of the lean controls with detectable HAI antibodies to
PR8 [88]. These findings were consistent with human
studies to show that obese individuals have a steep decline
in antibody production to influenza vaccination
compared to lean controls [89]. While the mechanisms by
which obesity suppresses antibody production are
pleiotropic, the cellular mechanisms at the level of the B
cell are unknown. For instance, it is unclear if obesity is
suppressing the frequency of antibody-producing cells that
respond to infection and/or if the decrease in antibody
production is driven by dysregulation at the molecular
level.

Chronic inflammation and humoral immunity are
influenced by long chain polyunsaturated fatty
acids and specialized pro-resolving lipid mediators

The composition of dietary fat influences the immune
response, but is not well studied in relation to B cells [90].
The studies described above relied on high fat diets that are
not highly enriched in n-3 polyunsaturated fatty acids
(PUFAs). A few emerging studies show diets containing n-3
PUFAs, derived from marine oils, can also impact B cell
activation and antibody production. Generally, n-3 PUFAs
have beneficial effects for treating elevated triglycerides, a
common symptom associated with obesity and type II dia-
betes [91]. Furthermore, during the past decade studies
have revealed that n-3 PUFAs suppress chronic inflamma-
tion associated with obesity in preclinical models [92,93].

n-3 PUFAs may boost murine humoral responses from
B-1 and B-2 cells, depending on the model system. Teague
et al. demonstrated that administration of n-3 PUFAs from
fish oil, modelling human pharmacological intake, to
C57BL/6 mice modestly enhanced IgM levels in lean mice
and rescued the decrement in antibody production in
obesity in response to in vivo stimulation with a hapten-
conjugated lipopolysaccharide (LPS) [94]. The enhance-
ment in antibody production correlated with an increase in
the frequency of select B cell subsets. Similarly, n-3 PUFAs
as ethyl esters modestly increased natural IgM and fecal IgA
in diet-induced obesity, again correlating with an increased
frequency of B-2 cell subsets [95]. These findings were con-
sistent with work to show that n-3 PUFAs enhanced LPS-
driven cytokine secretion from B220+ splenic B cells in lean
and obese C57BL/6 and colitis-prone SMAD3−/− mice
[71,96,97]. In addition, a recent murine study demonstrated
that n-3 PUFAs enhanced the frequency of B-1 cells and
increased antigen-specific IgM levels in a mouse model of
peritonitis but had no influence on the B-2 response
[71,96–98]. Altogether, dietary n-3 PUFAs may have the
potential to enhance B cell-mediated immunity in diet-
induced obesity. However, it remains unclear if this would
ultimately have a beneficial effect, notably on B cells in the
adipose tissue that are regulating insulin and glucose sensi-
tivity. As described above, the role of dietary fat composi-
tion may be an important variable in regulating B cell
activity at a mechanistic level.

Specialized pro-resolving lipid mediators (SPM) also
have a role in suppressing adipose tissue inflammation and
potentially boosting humoral immunity. SPMs are synthe-
sized endogenously from n-3 and n-6 PUFAs and aid in the
resolution phase of inflammation [99–101]. SPMs are
broadly categorized as resolvins, protectins, lipoxins and
maresins that target G-protein-coupled receptors in a
stereospecific manner to limit inflammatory responses
[101]. Recent reports suggest that SPMs aid in resolving
adipose tissue inflammation. For instance, adipose tissue
samples collected from obese humans reveal a reduction in
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select SPMs [102]. Supporting animal studies show that
administration of select SPMs can improve adipose tissue
inflammation and insulin sensitivity [103,104]. SPMs also
have potential benefits for boosting the immune response to
infection. Protectin D1, which is produced from the oxy-
genation of the n-3 PUFA docosahexaenoic acid, suppressed
influenza replication and improved survival in response to
severe influenza infection [105]. This efficacy of protectin
D1 was of significance, given that many pharmacological
interventions fail in severe influenza infection. This raises
the possibility of developing SPMs for clinical intervention,
particularly in the obese population, which has compro-
mised immunity.

Far less is known about the role of SPMs on B cell activ-
ity. The SPMs resolvin D1 (RvD1) and 17(R)-hydroxy
docosahexaenoic acid (17-HDHA), derived from
docosahexaenoic acid and found in the murine spleen,
increased antigen-specific IgM production from human
CD19+ B cells when stimulated with cytosine–phosphate–
guanosine (CpG) oligonucleotide (ODN) 2395 and anti-
IgM in cell culture [106]. 17-HDHA also increased IgM and
IgG levels after 7 days of incubation in culture in a dose-
dependent manner [106]. B cell proliferation assays
revealed that 17-HDHA did not influence the number of B
cells; however, it increased the number of B cells secreting
IgM and IgG [106]. In another study, LXA4, a lipoxin
derived from arachidonic acid with known anti-
inflammatory properties, was shown to suppress IgM and
IgG production of primary human CD19+ CD27+ memory
B cells in response to stimulation with CpG ODN 2395
[107]. Furthermore, in vivo studies with mice showed that
ovalbumin-specific IgM and IgG production was also sup-
pressed in response to LXA4. Taken together, these studies
reveal SPMs can have immunomodulatory effects on B
cells, and consistent with studies on inflammation, not all
SPMs are equal. Clearly more studies are needed in this area
at the functional and mechanistic levels, particularly in the
context of obesity.

Summary

The role of B cells in regulating inflammatory and humoral
immune responses in the context of obesity is in its infancy.
Some B cell subsets can exacerbate adipose tissue inflamma-
tion through interactions with other adipose resident
immune cells, particularly CD4+ T cells. Other B cell subsets
such as IL-10 secreting Bregs have anti-inflammatory and
insulin-sensitizing effects in obesity. Furthermore, manipu-
lating the composition of high fat diets with select long
chain polyunsaturated fatty acids or their derived lipid
mediators could improve tissue inflammation and B cell
activity. More studies are clearly needed in this area, given
the potential to target B cells through dietary and pharma-
cological intervention for improving the obese phenotype
and treating its associated co-morbidities.
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