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Abstract

The triple-helical structure of collagen has been accurately reproduced in numerous chemical and 

recombinant model systems. Triple-helical peptides and proteins have found application for 

dissecting collagen-stabilizing forces, isolating receptor- and protein-binding sites in collagen, 

mechanistic examination of collagenolytic proteases, and development of novel biomaterials. 

Introduction of native-like sequences into triple-helical constructs can reduce the thermal stability 

of the triple-helix to below that of the physiological environment. In turn, incorporation of 

nonnative amino acids and/or templates can enhance triple-helix stability. We presently describe 

approaches by which triple-helical structure can be modulated for use under physiological or near-

physiological conditions.
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1 Introduction

1.1 Collagen

Collagen is the most abundant protein in animals, and is the major structural protein found 

in the connective tissues such as basement membranes, tendons, ligaments, cartilage, bone, 

and skin. The collagen family consists of at least 28 members [1–5]. The most defining 

feature of collagen is the supersecondary structure, composed of three parallel extended left-

handed polyproline type II alpha chains of primarily repeating Gly-Xxx-Yyy triplets. Three 

left-handed strands intertwine in a right-handed fashion around a common axis to form a 

triple-helix (Fig. 1). The formation of the triple-helix creates a shallow superhelical pocket 

inside it. The collagen triple-helix is essential for the integrity of multiple connective tissues.

Depending on the primary structure of the alpha chains [4], collagens have been classified 

into two main categories, homotrimeric and heterotrimeric. Homotrimeric collagens have 

three identical alpha chain sequences (designated α1). Examples of such type of collagens 

are types II and III. Alternatively, heterotrimeric collagens have either three alpha chains of 

different sequence, designated as α1, α2, and α3 (i.e., type V) or two alpha chains of 

identical sequence (α1) and third alpha chain of different sequence (α2), such as types I and 
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VI [6]. Furthermore, based on their quaternary structure, collagens are grouped into 

subfamilies such as fibrillar, collagen associated with banded fibrils (i.e., fibril-associated 

collagens with interrupted triple-helices—FACITs), network-forming (i.e., basement 

membrane and short chain), transmembranous, and membrane associated with interrupted 

triple helices (MACITs) [6].

1.2 Stability of Collagen-Model Triple-Helical Peptides

For several decades triple-helical peptides (THPs) or “mini-collagens” consisting of 

collagen-model sequences and their three-dimensional folds have been constructed and 

studied to fully investigate the structural and biological roles of collagenous proteins [5, 7–

13]. A model for the collagen triple-helix was first proposed in the 1950s [14, 15] and 

subsequently refined over time [16–20]. To understand the stability of the collagen triple-

helix, it is important to understand its compositional elements. In the collagen Gly-Xxx-Yyy 

triplet, the residue in the Xxx position is often L-proline (Pro) and the residue in the Yyy 

position is often 4(R)-hydroxy-L-proline (Hyp), accounting for 20 % of the total amino acid 

composition in collagen [21]. The other commonly found amino acids are Ala, Lys, Arg, 

Leu, Val, Ser, and Thr [21]. The packing of the triple-helical coiled-coil structure requires 

Gly in every third position. Because of its compact structure, assembly of the triple-helix 

puts this residue at the interior of the helix and the side chain of the Gly, an H atom, is small 

enough to fit into the center of the helix.

Several factors influence the stability of triple-helical peptides. The chains are held together 

by hydrogen bonds that form between the peptide amine of Gly residues and peptide 

carbonyl groups in an adjacent polypeptide chain (Fig. 2) [9, 18]. Interstrand hydrogen 

bonds formed between the GlyN-H and XxxC=O are critical for triple-helix stability, as 

replacement of a central amide bond of (Pro-Pro-Gly)10 with either an ester or an (E)-

alkene, or replacement of the central Pro-Pro with a Pro-trans-Pro isostere, substantially 

destabilizes the THP [22–24].

The role of hydrogen bonding versus inductive effects in triple-helix stabilization is an 

intensive area of THP research [5]. Incorporation of several nonnative amine acids in the 

proper position within the peptide sequence often remarkably enhance triple-helix stability. 

One such example of a stabilizing nonnative amino acid is 4R-fluoroproline (4R-Flp) (Fig. 

3). Incorporation of 4R-fluoroproline has been shown to induce hyperstability in the triple-

helix of (Pro-4RFlp-Gly)10 compared to (Pro-4RHyp-Gly)10 [25, 26]. Alternatively, 4S-Flp 

destabilizes the triple-helix of (Pro-4SFlp-Gly)7 compared to (Pro-4RHyp-Gly)7 [27]. More 

specifically, substitution of all of the 4R-Hyp residues in (Pro-4RHyp-Gly)10 or 

(Pro-4RHyp-Gly)7 by 4R-Flp increased Tm by 22 and 9 °C, respectively [25–27]. 

Conversely, an analogous substitution in (Pro-4RHyp-Gly)7 by 4S-Flp dramatically 

decreased Tm by greater than 26 °C [27]. The relative effects of 4R-Hyp, 4R-Flp, and 4S-Flp 

coincide with their propensity for forming trans-peptide bonds compared to cis-peptide 

bonds [27, 28]. Studies of collagen mimics have indicated that this increased stability arises 

from the inductive effects of an electronegative substituent in the 4R position, as in 4(R)-

fluoroproline [9, 25, 26].
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It has long been noted that the thermal stability of the collagen triple-helix is enhanced by 

Hyp residues. It was hypothesized that this stability is due to Hyp residues involved in the 

hydrogen-bonded network mediated by water molecules, which connect the hydroxyl group 

of Hyp in one strand to the main chain amide carbonyl of another chain [29]. Substituting 

Pro for Hyp in the chain significantly decreased the Tm in collagen-model peptides [29]. 

However, collagen peptides containing the nonnative amino acid 4R-Flp exhibited higher 

stability than peptide with Hyp residues [25, 26] and thus the stabilizing effect arising from 

Hyp might not be due to hydrogen bonding but rather from the electronegative oxygen 

preorganizing the main chain in the proper conformation for triple-helix formation [30]. X-

ray crystallographic analysis indicated that the 4-OH group in Hyp has no effect on the 

hydration pattern and the resulting molecular structures [31]. The O-methylation of 

hydroxyproline in Yyy stabilizes the triple-helix more than Hyp itself, most likely because 

the pyrrolidine ring of 4-methoxyproline adopts a Cγ-exo ring pucker. The conformational 

stability of the triple-helix arising from O-methylation provides strong evidence that the 

hydroxyl group of Hyp acts primarily through stereoelectronic effects [30].

Both the position of the residue containing the electronegative substituent and the 

stereochemistry of that electronegative substituent play a role in triple-helix stability. The 

positional effects of γ-substitution are illustrated by the stabilities, relative to (Pro-Pro-

Gly)10, of (Pro-4RHyp-Gly)10 (increased triple-helix stability) and (4RHyp-Pro-Gly)10 

(decreased stability) [32]. For many years, it was believed that peptides containing 4R-Hyp 

in the Xxx position of Gly-Xxx-Yyy repeats do not form collagen-like triple-helices. 

However, incorporation of 4R-Hyp in the Xxx position and Thr or Val in the Yaa position 

triggers triple-helix formation [33, 34]. For example, acetyl-(Gly-4RHyp-Thr)10-NH2 forms 

a stable triple-helix in water [33]. Both the hydroxyl and methyl groups of Thr with their 

stereochemical configuration appear to induce the triple-helix stability. Molecular modeling 

showed that the Thr methyl group shields the interchain hydrogen bond between the 

carbonyl group of Hyp of the adjacent chain and the amino group of the next Gly residue in 

the same chain.

Other significant factors that influence the stability of collagen triple helix are the trans/cis 

ratio of the Xaai-1-Proi peptide bond and the ring pucker of Proi [35, 36]. The trans/cis ratio 

is crucial as all of the peptide bonds in the triple-helix prefer the trans conformation. Pro in 

solution can adopt either exo or endo ring puckers (Fig. 3). The first Pro in the Pro-Pro-Gly 

triplet prefers an endo ring pucker conformation while the second Pro prefers the exo ring 

pucker conformation [35]. This observation suggested that Pro derivatives preferring the Cγ-

endo ring pucker could pre-organize triple-helix formation when in the Xaa position, 

whereas those that prefer the Cγ-exo ring pucker could preorganize triple-helix formation 

when in the Yaa position [37].

As discussed earlier, incorporation of 4R-Flp (Fig. 3) in the Yyy position of Xxx-Yyy-Gly 

triplets induces hyperstability in the triple-helix.Thisisbecausethe4R-fluorogroupin4R-

fluoroproline stabilizes the Cγ-exo pucker conformation. These stereoelectronic effects 

markedly enhance the conformational stability of a collagen triple-helix [38].

Bhowmick and Fields Page 3

Methods Mol Biol. Author manuscript; available in PMC 2014 December 09.

N
IH

-P
A

 A
uthor M

anuscript
N

IH
-P

A
 A

uthor M
anuscript

N
IH

-P
A

 A
uthor M

anuscript



Similar to 4R-Flp, incorporation of 4R-methylproline (4R-mep) (Fig. 3) within the peptide 

sequence significantly increases triple-helix stability. Raines and colleagues studied the 

effect of 4-methylproline in conformational stability of (Xxx-Yyy-Gly)7. 4S-Methylproline 

(4S-Mep) in the Yyy position enhanced triple-helix stability more so than 4R-mep in the 

Xxx position [38]. A (4R-mep-4S-Mep-Gly)7 triple-helix is more stable than (4R-mep-Pro-

Gly)7 or (Pro-4S-Mep-Gly)7, simply because the steric effects are additive. In contrast, (4S-

flp-4R-Flp-Gly)7 is less stable than (4S-flp-Pro-Gly)7 or (Pro-4R-Flp-Gly)7 where the 

stereoelectronic effects induced by the hetero atom are not additive [38].

The combination of stereoelectronic and steric effects can also induce the preorganization of 

a polypeptide chain. Integration of both effect results in the most stable triple-helix known 

so far. Among four triple-helices formed from the four different polypeptide chains, (Pro-

Pro-Gly)7, (Pro-4R-Hyp-Gly)7, (4S-flp-4S-Mep-Gly)7, and (4R-mep-4R-Flp-Gly)7, only the 

latter two showed hyperstability with Tm values of 51 and 58 °C, respectively [37].

The stability of THPs may also be regulated by pH. To create a triple-helix that was pH 

dependent, Hyp was modified by O-alkylation to a carboxylate group [39]. The 

incorporation of 1 or 3 Hyp(CO2) residues within a Pro-Hyp-Gly template did not result in a 

pH-sensitive triple-helix. However, acetyl-[Pro-Hyp(CO2)-Gly]7-OH formed a triple-helix 

with a Tm = 17 °C at pH 2.7 but had no triple-helical structure at pH 7.2 [39]. pH-dependent 

triple-helical stability was also observed for (Pro-4R-Amp-Gly)6 sequences, where 4R-Amp 

is (2S,4R)-4-aminoproline [40, 41].

Self-association of triple-helical structures has been used to “sandwich” a collagen-model 

sequence between repeats of Gly-Pro-Hyp to obtain THPs of reasonable stability (Fig. 4). 

Self-associated triple-helical peptides were used to study the structural aspects of collagen 

via the “host–guest” approach, using sequences such as (Pro-Hyp-Gly)n-Xxx-Yyy-Gly-(Pro-

Hyp-Gly)n [42–44]. Compared with Gly-Pro-Hyp, none of the 20 natural amino acids 

provides enhanced thermal stability. The most stable residues in the Yyy position were Hyp 

> Arg> Met, while for the Xxx position Pro > charged residues> Ala> Gln [43–45]. Within 

a host–guest THP 4R-Flp in the Yyy position is slightly destabilizing compared with Hyp, in 

contrast to (Pro-4R-Flp-Gly)n and (Pro-Hyp-Gly)n THPs [46]. It has been suggested that 

different mechanisms are in place when Pro-4R-Flp-Gly is inserted within (Pro-Hyp-Gly)n 

compared with (Pro-4R-Flp-Gly)n [46].

Electrostatic effects can also contribute favorably to the stability of THPs, as found in host–

guest studies [45, 47, 48]. Favorable electrostatic interactions were observed for Gly-Lys-

Asp and Gly-Arg-Asp within the acetyl-(Gly-Pro-Hyp)3-Gly-Xxx-Yyy-(Gly-Pro-Hyp)4-

Gly-Gly-NH2 host [49]. Conversely, guests Gly-Arg-Lys, Gly-Lys-Arg, and Gly-Glu-Asp 

exhibit charge repulsion [49]. The sequence Gly-Pro-Lys-Gly-[Asp/Glu]-Hyp is found to be 

as stabilizing as (Gly-Pro-Hyp)2 due to interchain axial ion pair interactions [50, 51]. Arg in 

the Yyy position can offer high stability, possibly based on its ability to form a hydrogen 

bond with C=O in a neighboring strand [45, 52]. Heterotrimeric host–guest peptide 

approaches show a decreased thermal stability for an acetyl-(Gly-Pro-Hyp)3-Gly-Pro-Yyy-

(Gly-Pro-Hyp)4-Gly-Gly-NH2 sequence with an increased number of Arg residues [53]. For 

example, Hyp residues in all Yyy positions results in a THP with a Tm = 47.2 °C compared 
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to 44.5, 40.8, and 37.5 °C, respectively, when all Hyp is replaced by Arg residues in one 

chain, two chains, or three chains [53].

1.3 Synthesis of Fmoc-Pro Derivatives

To efficiently incorporate (2S, 4R)-4-fluoroproline (Flp) and (2S, 4R)-4-methylproline (mep) 

into peptide sequences, convenient synthetic routes for the preparation of derivatized Flp 

and Mep residues such as Fmoc-trans-Flp 6 and Fmoc-trans-Mep 14 are required (Figs. 5 

and 6). Several methods have been reported in the literature for the synthesis of N-

protected-4(R)-Flp from N-protected-4(R)-Hyp derivatives [54–63]. Fields et al. previously 

reported the synthesis of Fmoc-trans-Flp starting from expensive cis-4(S)-hydroxy-L-

proline [64]. The removal of benzyl ester was problematic under standard Pd/C 

hydrogenation, as the Fmoc group started decomposing upon prolonged exposure to Pd/C-

hydrogen [65, 66]. Recently, we developed a more convenient synthetic route for the 

preparation of Fmoc-trans-Flp from readily available (and inexpensive) trans-4(R)-hydroxy-

L-proline (Fig. 5). A one-pot, three-step procedure is deployed involving a bis-deprotection 

of the N- and C-termini under catalytic hydrogenation conditions followed by selective 

capping of the N-terminus with an Fmoc group to yield Fmoc-trans-Flp.

The strategy for the synthesis of the Fmoc-trans-Flp entails initial Cbz-protection of the 

amine nitrogen followed by benzylation of the carboxylic acid group. Cbz protection of 

trans-4(R)-hydroxy-L-proline is performed by using standard protocols to obtain 1 in 85 % 

of yield (Fig. 5) [67]. The conversion of N-Cbz-4(R)-Hyp 1 to N-Cbz-4(R)-Hyp-OBzl 2 is 

achieved in 80 % yield by reaction with CsCO3 and BnBr [68]. Mitsunobu reaction of N-

Cbz-4(R)-Hyp-OBzl 2 followed by hydrolysis results in the N-Cbz-4-Hyp derivative 4 in 42 

% (two-step overall yield) yield with inversion of configuration at C-4 position [69]. The 

next step is the synthesis of diastereomeric fluoroproline by a stereospecific displacement of 

the hydroxyl group of Hyp by fluorine. Fluorination of N-Cbz-4(S)-Hyp-OBzl 4 is 

performed using diethylaminosulfur trifluoride (DAST) as fluorinating agent to yield N-

Cbz-4(R)-Flp-OBzl 5 in 50 % yield [69]. Finally, catalytic hydrogenation of 5 with 5 % 

Pd/C under hydrogen (atm. pressure) in the presence of Fmoc-OSu affords desired N-

Fmoc-4-Flp 6 in good yields (Fig. 5) [70]. This one-pot reaction involved the simultaneous 

removal of the Cbz- and benzyl-protecting groups and re-protection of amine nitrogen with 

Fmoc group. Optimal yield (~75 %) is observed with a reaction time of 2 h, whereas 

prolonged exposure of the reaction mixture to hydrogenation resulted in partial Fmoc 

deprotection.

To synthesize Fmoc-trans-mep 14 (Fig. 6), initially N-Boc-trans-mep 13 is synthesized by 

following a straightforward method reported by Goodman et al. [71]. The reaction starts 

with initial Boc protection of commercially available trans-4(R)-hydroxy-L-proline 

followed by carboxylic acid group reduction to provide Boc-protected alcohol 7. Selective 

protection of the primary alcohol with TBDMSCl gave compound 8, which is then oxidized 

with trichlorocyanuric acid and catalytic TEMPO to afford pyrrolidinone 9 in 78 % yields. 

Reaction of pyrrolidinone 9 with methyltriphenylphosphonium bromide gave olefin 10 in 75 

% yields. Silyl-ether deprotection of 10 was first carried out to unmask the hydroxyl 

directing groups. Treatment of the resulting olefin 11 with 3 mol% of the Crabtree catalyst, 
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under H2 atm, gave excellent selectivity of trans-4-methyl pyrrolidine 12 in 85 % yields. 

Oxidation of the indolylprolinol derivative 12 in the presence of TEMPO, bleach, and 

sodium chlorite provided N-Boc-trans-mep 13. Finally, deprotection of Boc group with 4 N 

HCl followed by Fmoc installation using Fmoc-OSu and aqueous NaHCO3 in dioxane 

provided Fmoc-trans-mep 14 in 85 % yield [38].

1.4 Covalent Modification of Triple-Helical Peptides

Several covalent modification strategies have been employed to induce triple-helix structure 

formation and/or enhance their stability. Substantial stabilization can be achieved by use of a 

self-assembly approach where alignment of amphiphilic compounds at the lipid–solvent 

interface facilitates peptide alignment and structure initiation and propagation. Addition of 

lipophilic molecules at the N-terminus of the peptide, known as the “peptide-amphiphile” 

(PA) approach, often stabilizes self-associated peptides. The term peptide-amphiphile was 

first used in 1984, when an alanine residue was interposed between a charged head group 

and a double-chain pseudo-lipid tail [72]. In this approach pseudo-lipids such as mono- and 

di-alkyl chains are covalently attached to peptides to create peptide-amphiphiles that then 

associate via hydrophobic interactions (Fig. 4) [73–77]. Peptide-amphiphiles are 

advantageous in that they present a multivalent ligand [78] that is chemically well defined, 

avoiding loss of activity that can occur during nonspecific coupling of peptides to lipids 

[79]. The amphiphilic character of peptide-amphiphiles allows for the control of assembled 

structures by manipulating their molecular composition [80]. The thermal stability of triple-

helical peptide-amphiphile head groups can be modulated by the length of the lipophilic 

moiety [73, 74, 76, 81, 82]. The thermal stability of the triple-helical structure in the 

peptide-amphiphile was found to increase as the monoalkyl tail chain length was increased 

over a range of C6–C16 [74]. Conversely, alterations in the pseudo-lipid tail composition 

affect peptide-amphiphile aggregate structures [76, 80]. Desirable peptide head group 

melting temperature values can be achieved for in vivo use, as triple-helical PAs have been 

constructed with Tm values ranging from 30 to 70 °C [64, 73, 74, 76, 81–85].

The stability of associated THPs may also be regulated by photolysis. Modification of the 

sequence (Gly-Pro-Hyp)3-Gly-Cys-Hyp-Gly-Pro-Hyp-Gly-Pro-Cys-(Gly-Pro-Hyp)5-Gly-

Gly-NH2 with an azobenzene bridge between the Cys residues resulted in a THP whose 

stability decreased up irradiation at λ =330 nm at 27 °C [86]. Unfortunately, the poor 

solubility of this peptide prohibited quantitative analysis of its stability [86].

The use of template-assisted approaches is another important strategy to create stable triple-

helical conformation. In recent years much progress has been made in template-assisted 

synthetic methodologies. These include orthogonal protection schemes, chemoselective 

ligation, and the design of novel and increasingly flexible templates. Many templates have 

been used to create stable THPs. The main categories of template strategies involve a 

scaffold to which the peptides are covalently attached or the use of metal ions for non-

covalent association. The covalent templates include (1) multi-Lys branching [87–91], (2) a 

double-disulfide “knot” (cystine knots) [53, 92–96], (3) cis,cis-1,3,5-

trimethylcyclohexane-1,3,5-tricarboxylic acid (Kemp triacid; KTA) [97–101], (4) tris(2-

aminoethyl)amine (TREN) [102], (5) cyclotriveratrylene (CVT) [103], (6) macrocyclic 
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scaffold [104], or (7) carbohydrates (Fig. 7) [105, 106]. Alternatively, the metal ions Ca2+, 

Ru2+, Ni2+, Fe2+, Cd2+, and Hg2+ have been used as templates in conjugation with amino 

acids or N-terminal pyridyl or bipyridyl functionalities to create multistrand linkages [107–

109].

A significant strategy to stabilize THPs is the covalent attachment of three strands via a C-

terminal branch. The C-terminal branch is expected to align and entropically stabilize the C-

terminus of the THP and thus enhance triple-helical thermal stability [90] and to provide a 

model of the disulfide-linked C-terminus of type III collagen [110, 111]. Branching can be 

achieved by selective deprotection of Lys Nα- and Nε-amino groups.

Solid-phase assembly of triple-helical collagen-model peptides using a Lys-Lys C-terminal 

branch requires three different protecting group strategies (Fig. 8): Nα-amino protection (A); 

Lys Nε-amino side-chain protection (B), which must be stable to the Nα-amino group 

removal conditions; and Cα-carboxyl protection (linker), which must be stable to both the 

Nα- and Nε-amino-protecting group removal conditions. Based on the three different 

protecting group strategies, four different branching combinations have been developed [90, 

112]. Branching is achieved by synthesizing A-[Lys(B)]2-Tyr(C)-Gly-linker resin and 

deprotecting the Nα- and Nε-amino groups. Tyr was incorporated prior to branching to 

provide a convenient chromophore for eventual concentration determination. Incorporation 

of Ahx (6-aminohexanoic acid) onto the N-termini of all three strands provided a flexible 

spacer. All solid-phase methods to prepare THPs were based on Fmoc Nα-amino group 

protection. For example, the type (IV) collagen-derived α(IV)1263-1277 branch was 

assembled by a three-dimensional orthogonal strategy, where B was tert-butyloxycarbonyl 

(Boc) and linker was 4-trityloxy-Z-but-2-enyloxyacetic acid [cleaved by (Ph3P)4Pd-

catalyzed nucleophilic transfer] [91]. A (Gly-Pro-Hyp)8 branch has also been assembled by 

using the same orthogonal strategy, where B was allyloxycarbonyl (Aloc) [cleaved by 

(Ph3P)4Pd-catalyzed nucleophilic transfer] and linker was hydroxymethylphenoxy (HMP; 

cleaved by TFA). The third three-dimensional orthogonal strategy was developed using the 

1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)ethyl (Dde) group as B (cleaved by hydrazine/

DMF) and the linker was HMP [90]. Due to the mild conditions the Fmoc/Dde combination 

(with ivDde replacing Dde) is now the most preferred. For example, Farndale, Barnes, and 

colleagues reported the synthesis of THPs, based on the bovine α1(III)CB4 fragment, via 

this C-terminal covalent attachment strategy [113–115].

A double-disulfide “knot” (cystine knots) either at the C-terminal region or at the N-terminal 

region of three peptide strands is another frequently used strategy to stabilize THPs [3, 92, 

94–96]. One representative example of a C-terminal cysteine knot is construction of 

branched heterotrimeric THP 15 (Fig. 9). For this peptide all three individual chains are 

constructed by solid-phase methodology using Fmoc chemistry. The α1 chain contained 

either 3 or 5 Gly-Pro-Hyp repeats on the N-terminus of Gly-Pro-Gln-Gly-Ile-Ala-Gly-Gln-

Arg-Gly-Val-Val-Gly-Cys(Acm)-Gly-Gly-OH, where Acm was acetamidomethyl, the α2 

chain contained 3 or 5 Gly-Pro-Hyp repeats on the N-terminus of Gly-Pro-Gln-Gly-Leu-

Leu-Gly-Ala-Hyp-Gly-Ile-Leu-Gly-Cys(Acm)-Cys(StBu)-Gly-Gly-OH, and the α1’ chain 

contained either 3 or 5 Gly-Pro-Hyp repeats on the N-terminus of Gly-Pro-Gln-Gly-Ile-Ala-

Gly-Gln-Arg-Gly-Val-Val-Gly-Leu-Cys(StBu)-Gly-Gly-OH. The three chains are 
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assembled into the heterotrimer by stepwise regioselective cross-linking. Peptide α1 is 

treated with 3-nitro-2-pyridine-sulfenyl chloride (Npys-Cl) to convert Cys(Acm) to 

Cys(Npys). Peptide α2 is treated with P(C4H9)3 to remove the StBu group. Peptides α1 and 

α2 are reacted at pH 4.5 to form a dimer. The dimer is treated with Npys-Cl to convert the 

α2 chain Cys(Acm) to Cys(Npys). The α1’ chain is treated with P(C4H9)3 to remove the 

StBu group. Peptide α1’ and the dimer are reacted at pH 4.5 to form a trimer.

Another example of an N-terminal cysteine knot is construction of branched THPs 16–19 
(Fig. 10) using the same protocol described for the C-terminally branched cysteine knot 

heterotri-meric THP [53]. Heterologous trimerization is achieved by stepwise disulfide 

bond-forming reactions (Fig. 9). First, the free thiol groups of the biscysteinyl peptides (20a, 

20b) are converted to 2-pyridylthio (PyS) groups by treatment with PySSPy. The purified 

PyS-activated peptides (21a, 21b) are then mixed with monocys-teinyl peptides (22a, 22b) 

to yield corresponding heterodimeric peptides (23a, 23b). Formation of small amounts of 

homodimers is also observed in this reaction. The S-Acm groups in the heterodimers are 

converted to S-3-nitro-2-pyridinesulfenyl (Npys) groups by treating them with NpysCl. 

Even under optimized conditions, this reaction generated some by-products, including 

homodimers. Finally, the Npys-activated dimers (24a, 24b) were mixed with monocysteinyl 

peptides (22a, 22b) to yield desired heterotrimers.

Stabilization of THPs can also be achieved by cross-linking both the C- and N-terminal ends 

of three peptide chains. This strategy required synthesis of three different fragments (Fig. 

11) [88]. The first synthesis was of linear peptides of the sequence Cys-Gly-(Gly-Pro-Hyp)n-

Lys(Ser)-NH2 (n =3–10) 25 using Fmoc chemistry, starting from Fmoc-Lys[Boc-Ser(tBu)]-

OH, which in turn was prepared from reaction of Boc-Ser(tBu)-OSu with Fmoc-Lys-OH. 

The second synthesis was of two different trivalent anchor molecules: tris-bromoacetylated 

Lys-Lys dimer 26 and tris-aminooxyacetylated branch peptide 27 (synthesized from 

Bocaminooxyacetic acid). Chemoselective ligation of 25 and 26 followed by oxidation of 

the Lys(Ser) residue created an aldehyde group for the next ligation site. Final ligation of the 

N-terminus-coupled peptide with the tris-aminooxyacetyl group of anchor molecule 27 in 

aq. buffer produced di-cross-linked peptide 30.

Use of the conformationally constrained organic template cis,cis-1,3,5-trimethylcyclohexane 

1,3,5-tricarboxylic acid (Kemp triacid, KTA, Fig. 7) is another strategy to induce or stabilize 

triple-helical structures [97–101]. This template possesses three carboxyl groups which can 

be coupled to the N-termini of three peptide chains. Attachment of a Gly residue as a spacer 

between each peptide chain and each carboxyl group on KTA is vital to compensate for the 

difference in diameters between the KTA and the collagen triple-helix and to facilitate the 

synthesis [97]. Two synthetic routes have been used to prepare KTA template-assembled 

collagen-based structures. The first method exclusively utilized solid-phase methodology 

[101], whereas in the second method formation of the peptide bond between KTA and 

peptide–peptoid chains was in solution [99]. In the solid-phase method Boc-(Gly-Pro-Hyp)n 

MBHA resin is prepared and then the Boc group is removed. KTA-(Gly-OH)3 is then 

coupled to the N-termini of peptide chains using DIPCDI and HOBt. In the second method 

peptide–peptoid chains are synthesized by solid-phase methods and cleaved from the resin. 
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The free amine peptide–peptoid chains are then coupled with KTA-(Gly-OH)3 in solution 

using EDC and HOBt.

TREN (Fig. 7) is another beneficial scaffold for the synthesis of template THPs [102]. The 

TREN molecule is a flexible tripodal structure with three aminoethyl groups. TREN-(suc-

OH)3 template is prepared by coupling TREN to monobenzylated succinate, and removing 

the benzyl ester groups by hydrogenation. The succinic acid groups extend the flexibility of 

the scaffold and provide terminal carboxylates for attachment of peptide chains. The 

succinic acid spacers release any steric hindrance by extending the reactive sites. TREN-

(suc-OH)3 is acylated to three peptide strands simultaneously on the solid phase using DIC 

and HOBt.

Another synthetic scaffold molecule, which can be attached to both model and native 

collagen sequences, is cone-shaped CVT (Fig. 7) [103]. Attachment to the N-terminus of the 

collagen peptides with CVT is done in solution using BOP as a coupling reagent.

Stable collagen triple-helices are also synthesized by using a macrocyclic scaffold [104]. 

This scaffold belongs to a class of 18-membered cyclic hydropyran oligolides with 

alternating ester and ether linkages. In this scaffold, three ligand attachment sites form an 

equilateral triangle on one face. Macrocyclic template is coupled to the N-terminus of 

collagen-model peptides in solution using PyBOP and DIEA.

The use of carbohydrates as potential templates is another strategy for the de novo design of 

triple-helical peptides (Fig. 7) [105, 106]. Carbohydrates are multifunctional molecules 

having comparative rigidity of ring forms, simplicity in regioselective manipulation of 

functional groups, and access to mono- and di-saccharide stereoisomers. The primary and 

secondary hydroxyl of mono- and di-saccharides provide a more flexible control of the 

directionality and distances among attachment points of the peptide chains. This 

carbopeptide strategy starts with aminooxy-acetyl (Aoa) functionalization of the methyl α-

D-galactopyranose (d-Galp) derivative to obtain template molecules followed by C-terminal 

peptide aldehyde coupling to the template via oxime formation.

The simplified N-terminal di-Glu template Gly-Phe-Gly-Glu-Glu-Gly was assembled by 

solid-phase Fmoc methodology, isolated as Fmoc-Gly-Phe-Gly-Glu-Glu-Gly, and acylated 

to three peptide strands simultaneously on the solid phase using 2-(1H-benzotriazole-1-

yl)-1,1,3,3-tetramethyluronium hexafluorophosphate (HBTU)/1-hydroxybenzotriazole 

(HOBt) [89].

As discussed earlier, heterotrimeric triple-helical peptides have usually been prepared using 

(1) disulfide-mediated cross-linking or (2) electrostatic-assisted self-assembly. More 

recently, “2 + 1 strand click synthesis” has been utilized to synthesize discrete homo- and 

heterotrimeric triple-helical peptides whereby the C-termini of the peptides are chemically 

stapled using the Huisgen Cu(I)-catalyzed azide-alkyne cycloaddition reaction [116]. The “2 

+ 1 strand click synthesis” requires assembly of a two-stranded branched peptide possessing 

a C-terminal 6-azidelysine residue, which has the capacity to “click” to a single-stranded 

peptide bearing a (2S)-propargylglycinamide at the C-terminus.
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Metal chelation also plays an important role in the construction of templated triple-helices 

[107–109]. As an example the addition of a dopamine residue on the N-terminus of (Gly-

Nleu-Pro)6 via a flexible succinic acid linker followed by incubation with Fe3+ converted a 

non-triple-helical peptide to a triple-helical peptide with a Tm value of 28 °C [107]. In 

similar fashion, addition of hydroxamic acid on the C-terminus of Boc-β-Ala-TRIS-[(Gly-

Pro-Nleu)6]3, followed by incubation with Fe3+, resulted in a stabilized triple-helical 

structure (7 °C increase in Tm) [108]. Based on metal ion chelation, Chiemelewski et al. 

reported the self-assembly of THPs to form microflorettes [109]. To obtain collagen-based 

macromolecular assemblies with temporal control, the peptide design consisted of a central 

collagen-based core composed of nine repeating units of the tripeptide Pro-Hyp-Gly and 

distinct metal-binding ligands at each termini (NCoH, Fig. 12). The metal-binding ligands 

were a His2 moiety on the C-terminus and a nitrilotriacetic acid unit on the N-terminus. The 

core triple-helical unit has been used in the formation of collagen-like peptide fibers in 

solution upon the introduction of Zn2+, Cu2+, Ni2+, or Co2+. This assembly process was 

found to be fully reversible using EDTA as a metal ion chelator. The assembly process 

proceeds under mild conditions using neutrally buffered aqueous solution at room 

temperature.

The effect of templates is often to enhance the thermal stability of collagen-like sequences. 

For example, the THP acetyl-Gly-Gly-(Pro-Hyp-Gly)5-NH2 has a Tm value of 9.2 °C, while 

template versions of the same sequence, using either (+)CTV or KTA, have Tm values of 58 

and 62 °C, respectively [103]. Similarly, (Gly-Pro-Hyp)6 has a Tm =25.4 °C, (Pro-Hyp-

Gly)6 with a C-terminal branch has a Tm =39.4 °C, (Gly-Pro-Hyp)6 with an N-terminal 

branch has a Tm = 56.2 °C, and (Gly-Pro-Hyp)6 with both an N- and C-terminal branch has a 

Tm =69.7 °C [88, 117]. An N-terminal macrocyclic template induced triple-helical structure 

of the sequence Gly-(Pro-Pro-Gly)7-NH2 (Tm = 39.9 °C), whereas the non-templated 

sequence was not triple-helical [104]. Triple-helices containing peptoid residues, such as N-

isobutylglycine (Nleu), have been stabilized by templates. Acetyl-(Gly-Nleu-Pro)6-NH2 had 

a Tm =26 °C, while KTA-[Gly-(Gly-Nleu-Pro)6-NH2]3, TREN-[suc-(Gly-Nleu-Pro)6-NH2]3, 

and Boc-β-Ala-TRIS-[(Gly-Nleu-Pro)6-OCH3]3 had Tm values of 36, 46, and 33 °C, 

respectively [100, 102, 118]. The thermal stability of the α2β1 integrin-binding sequence 

(Gly-Pro-Hyp)3-Gly-Phe-Hyp-Gly-Glu-Arg-(Gly-Pro-Hyp)3 was enhanced by an N-terminal 

Gly-Phe-Gly-Glu-Glu-Gly template, resulting in an increase in Tm from 25 to 44 °C [89]. 

Acetyl-(Pro-Hyp-Gly)5-Pro-Cys(StBu)-Cys(StBu)-Gly-Gly-Gly-NH2 had a Tm = 20.3 °C, 

while the double-disulfide-linked [acetyl-(Pro-Hyp-Gly)5-Pro-Cys-Cys-Gly-Gly-Gly-NH2]3 

had a Tm =68.1 °C [119]. Formation of the cysteine knot in (Gly-Pro-Pro)3-Gly-Pro-Arg-

Gly-Glu-Lys-Gly-Glu-Arg-Gly-Pro-Arg-(Gly-Pro-Pro)3-Gly-Pro-Cys-Cys-Gly increased Tm 

from 35 to 43 °C [120].

2 Materials

1. Dimethylformamide (DMF), N-methylpyrrolidone (NMP), N,N-

diisopropylethylamine (DIEA), trifluoroacetic acid (TFA, peptide synthesis grade), 

methyl-tert-butyl ether (MTBE), 1,8-diaza-bicyclo[5.40.]undec-7-ene (DBU), 

dimethyl sulfoxide (DMSO), acetonitrile (peptide synthesis or HPLC grade), 

sodium acetate, ammonium acetate, NH4HCO3, isopropanol (Optima/HPLC 
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grade), β-mercaptoethanol (molecular biology grade), thioanisole, ethanedithiol, 

phenol, Tris–HCl, NaCl, CaCl2, and brij-35 are purchased from Fisher Scientific 

(Atlanta, GA).

2. Piperidine is purchased from AnaSpec (San Jose, CA).

3. Fmoc-amino acids, N-[(1H-benzotriazol-1-yl)(dimethyl-amino)methylene]-N-

methylmethanaminium hexafluoro-phosphate N-oxide (HBTU), 1-H-

benzotriazolium-1-[bis (dimethylamino)methylene]-5-chloro-hexafluorophos-

phate-(1-), 3-oxide (HCTU), 1-hydroxybenzotriazole (HOBt), Fmoc-Gly-Sasrin 

resin, Fmoc-Rink Amide 4-methyl-benzhydrylamine (MBHA) resin, and NovaSyn 

TGR PEG resin (see Note 1) are purchased from EMD Biosciences (San Diego, 

CA).

4. 5,5’-Dithiobis(2-nitrobenzoic acid), α-cyano-4-hydroxycinnamic acid (MS grade), 

and 2-hydroxyethyl disulfide are purchased from Sigma-Aldrich (St. Louis, MO).

5. Alamar Blue is obtained from BioSource International (Camarillo, CA).

6. The monoalkyl chains hexanoic acid [CH3–(CH2)4–CO2H, designated C6], 

octanoic acid [CH3–(CH2)6–CO2H, designated C8], decanoic acid [CH3–(CH2)8–

CO2H, designated C10], dodecanoic acid [CH3–(CH2)10–CO2H, designated C12], 

tetradecanoic acid [CH3–(CH2)12–CO2H, designated C14], palmitic acid [CH3–

(CH2)14–CO2H, designated C16], and stearic acid [CH3–(CH2)16–CO2H, 

designated C18] are purchased from Sigma-Aldrich.

3 Methods

3.1 Synthesis and Characterization of Peptide-Amphiphiles

1. Incorporation of individual amino acids is by Fmoc solid-phase methodology using 

cycles described previously [90, 91].

2. For Fmoc removal, a solution of DBU–piperidine–NMP (1:5:44) is used for 5–10 

and 10–15 min.

3. All couplings are performed with HCTU/HOBt.

4. Acylation of the peptide–resin involves condensing a fourfold molar excess of alkyl 

acid to the Nα-deprotected resin, with a 3.8-fold molar excess each of HBTU and 

HOBt in DMF for 2 h. The reaction is initiated by the addition of an eightfold 

molar excess of DIEA and proceeds for 1 h.

5. Cleavage and side-chain deprotection of the lipidated peptide–resins is 

accomplished by treating the resin for 1–2 h with either H2O–TFA (1:19) or 

ethanedithiol–thioanisole–phenol–H2O–TFA (2.5:5:5:5:82.5) [121, 122].

1By utilizing the array of readily available orthogonally protected Lys derivatives, including, but not limited to, Fmoc-Lys(Dde), Dde-
Lys(Fmoc), Fmoc-Lys(Fmoc), Fmoc-Lys(Mmt), Fmoc-Lys(Mtt), or Fmoc-Lys(ivDde), an array of topological designs can be created. 
The dilute acid utilized for side-chain deprotection of the Mmt and Mtt groups will cleave the template from the Gly-SASRIN resin. 
Thus, a more acid-stable resin such as Rink amide MBHA should be utilized in combination with Fmoc-Lys(Mmt) and Fmoc-
Lys(Mtt).
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6. Resins are filtered and rinsed with TFA, and the combined filtrate and wash 

reduced under vacuum at room temperature to ~0.5 mL and precipitated with 

MTBE.

7. The precipitate is centrifuged and washed three times with MTBE, dissolved in 

acetonitrile–H2O (1:9–1:4), and purified by preparative reversed-phase HPLC.

8. Preparative reversed-phase HPLC is performed on a Rainin AutoPrep System with 

a Vydac 218TP152022 C18 or 214TP152022 C4 column (15–20 μm particle size, 

300 Å pore size, 250 mm × 22 mm) at a flow rate of 10 mL/min with 0.1 % TFA in 

H2O (A) and 0.1 % TFA in acetonitrile (B), and detection at λ = 220 nm. For very 

hydrophobic samples, it is advantageous to use 0.1 % TFA in isopropanol instead 

of acetonitrile [73, 74]. Analytical HPLC is performed on a Hewlett-Packard 1100 

Liquid Chromatograph equipped with an ODS Hypersil C-18 column (5 μm 

particle size, 100 mm × 2.1 mm).

9. PA composition can be determined by MALDI-TOF mass spectrometry (MS) [64, 

73, 84, 85, 123–125]. PA homogeneity can also be evaluated by diphenyl and 

nonporous C18 reversed-phase HPLC [124] and/or hydrophobic interaction HPLC.

10. Triple-helicity is monitored by circular dichroism (CD) spectroscopy in the far UV 

wavelengths [64, 73, 74, 83–85, 90, 91, 125]. Peptides are dissolved in the 

appropriate buffer at concentrations of 2–500 μM. Conditions should reflect final 

relevant assay conditions as much as possible based on limitations imposed by 

sample availability and/or instrumentation. For example, if the peptides are to be 

used in a cell-binding assay at 10 μM in PBS, then the CD spectra should be 

acquired at that peptide concentration in a similar buffer. Since chloride ions 

interfere with the acquisition of data, a phosphate buffer can be substituted for PBS. 

A typical spectrum for a triple-helix shows a positive molar ellipticity at λ ~ 225 

nm and a negative molar ellipticity at λ ~ 205 nm. In addition to the far UV 

wavelength scan of λ ~ 195–250 nm, one can determine the melting temperature by 

monitoring the change in molar ellipticity at λ = 225 nm with a constant change in 

temperature from 5 to 85 °C. For samples exhibiting sigmoidal melting curves, the 

inflection point in the transition region (first derivative) is defined as Tm. 

Alternatively, Tm is evaluated from the midpoint of the transition.

11. NMR spectroscopy can also be used to study the relative thermal stability, 

alignment, and flexibility (backbone mobilities) of triple-helical PAs [73, 74, 126].

3.2 Template-Assembled Synthetic THP Methods

3.2.1 Preparation of [N-tris(Fmoc-Ahx)-Lys-Lys]-Tyr-Gly Branched Template

1. Deprotect 1 g of Fmoc-Gly-Sasrin resin with 20 % piperidine in DMF for 30 min 

followed by a second 5-min treatment.

2. Wash the resin three times with DMF. If the substitution level is higher than 0.5 

mmol/g, add 0.2 mmol benzoic anhydride dissolved in 25 ml DMF and 0.4 mmol 

DIEA, mix for 1 h, and wash the resin three times with DMF.
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3. Dissolve 3 eq of Fmoc-Tyr(tBu) in approximately 10 mL DMF. Add 2.7 eq of 

HBTU and 3 eq of HOBt, and then add the mixture to resin. Add 6 eq of DIEA, 

mix for 30–60 min, and wash the resin with DMF three times.

4. Remove Fmoc as indicated above and wash the resin three times with DMF.

5. Dissolve 3 eq of Fmoc-Lys(Dde) (see Note 1) in approximately 10 mL DMF. Add 

2.7 eq of HBTU and 3 eq of HOBt and then add the mixture to the resin. Add 6 eq 

of DIEA, shake for 30–60 min, and wash with DMF three times.

6. Repeat the Fmoc removal and Fmoc-Lys(Dde) coupling steps such that the resin 

contains two adjacent Lys(Dde) residues (see Note 2).

7. If the desired construct is homotrimeric (see Note 3), the Dde and Fmoc groups can 

be simultaneously removed by treatment with 2 % hydrazine in DMF for 30 min 

followed by three rinses with DMF. An optional spacer of Fmoc-Ahx acid can be 

added to reduce the steric hindrance of the branch.

8. Keeping in mind that the chain is now trimeric, dissolve 3 eq of Fmoc-Ahx in 

approximately 10 mL DMF, add 2.7 eq of HBTU and 3 eq of HOBt, and add the 

mixture to the resin. Add 6 eq of DIEA, mix for 60 min, and wash three times with 

DMF.

9. A small volume of template is cleaved from the resin using H2O–TFA (5:95) for 1 

h and analyzed by MALDI-TOF mass spectrometry to confirm proper branch 

assembly. This scale of template is sufficient for three 0.25 mmol syntheses.

3.2.2 Peptide Synthesis, Side-Chain Deprotection, and Peptide–Resin 
Cleavage

1. Incorporation of individual amino acids is by Fmoc solid-phase methodology [90, 

91].

2. For Fmoc removal, a solution of DBU–piperidine–NMP (1:5:44) is used for 5–10 

and 10–15 min.

3. All couplings are performed with HCTU/HOBt.

2One can create a variety of templates based on the simple Lys-branching method. The template can accommodate 2–8 branches with 
ease and can also create a number of homo- or hetero-multimeric sequences. However, as the number of branching points increases 
care must be taken during N-α-amino or N-ε-amino deprotection and subsequent couplings. The resin becomes increasingly “sticky” 
as the number of free amino groups increases, which can complicate subsequent deprotection and coupling reactions. Ensure that a 
proper solution volume or resin mixing action is taken to avoid deletions during peptide chain assembly.
3One can also utilize the branching strategy to construct heterotrimeric triple-helical peptides [112]. The synthesis of triple-helical 
peptides with one chain of different sequence from the other two requires a four-dimensional orthogonal scheme, where HMP is the 
linker and Dde or 1-(4,4-dimethyl-2,6-dioxocyclohex-1-ylidene)-3-methylbutyl (ivDde) [127, 128] side-chain protection of Fmoc-Lys 
is used. Synthesis by Fmoc strategy of one chain (i.e., the α2 collagen chain sequence) proceeds through the α-amino of Lys; thus, the 
Dde/ivDde and Fmoc groups are not removed simultaneously. The α2 chain sequence is assembled by Fmoc chemistry as described 
above. After incorporation of the α2 chain sequence, the peptide chain is “capped” by using allyloxycarbonyl (Aloc) chloride or Aloc-
Gly, creating an N-terminal Aloc group. The Lys α-amino Dde or ivDde groups are then removed with hydrazine (see above), which 
does not remove Aloc, and synthesis by Fmoc strategy proceeds for the other two chains (i.e., α1 collagen chain sequence). Once all 
three chains are equivalent in terms of number of residues incorporated, the Aloc group is removed by treatment with (Ph3P)4Pd in 
CHCl3–acetic acid–N-methyl morpholine (20:1:0.5) [129] and the Fmoc groups removed as described above. Finally, Fmoc-Gly, -Pro, 
and -Hyp(tBu) are incorporated into all three chains. Cleavage and side-chain deprotection are by TFA as described above.
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4. Peptide–resins are cleaved and side-chain deprotected by treatment with H2O–TFA 

(5:95), H2O–thioanisole–TFA (5:5:90), orethanedithiol–H2O–thioanisole–phenol–

TFA(2.5:5:5:5:82.5) for ≥2 h depending upon the peptide sequence [121, 122].

5. Resins are filtered and rinsed with TFA, and the combined filtrate and wash 

reduced under vacuum at room temperature to ~0.5 mL and precipitated with 

MTBE.

6. The precipitate is centrifuged, washed three times with MTBE, dissolved in 

acetonitrile–H2O (1:9–1:4), and purified by preparative reversed-phase HPLC.

3.2.3 Purification and Characterization of Peptide-Template

1. Preparative reversed-phase HPLC is performed with a Vydac 218TP152022 C18 

column (15–20 μm particle size, 300 Å pore size, 250 mm × 22 mm) at a flow rate 

of 10 mL/min with 0.1 % TFA in H2O (A) and 0.1 % TFA in acetonitrile (B), and 

detection at λ=220 nm.

2. The eluent is lyophilized to a powder and repurified using a semipreparative Vydac 

219TP54 diphenyl column (5 μm particle size, 300 Å pore size, 250 mm × 4.6 mm) 

at a flow rate of 2 mL/min with detection at λ=220 nm.

3. Analytical HPLC is performed with an ODS Hypersil C-18 column (5 μm particle 

size, 100 mm × 2.1 mm).

4. Chain assembly is confirmed by Edman degradation and MALDI-TOF mass 

spectrometry using a specialized matrix mixture containing 2,5-dihydroxybenzoic 

acid/2-hydroxy-5-methoxybenzoic acid (9:1, v/v) [84, 117].
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Fig 1. 
“Ball and stick” computer-generated models of (top) a continuous collagen triple-helix 

(peptide T3-785, 3[(Pro-Hyp-Gly)3-Ile-Thr-Gly-Ala-Arg-Gly-Leu-Ala-Gly-(Pro-Hyp-

Gly)4]) and (bottom) an unwound (heat denatured) version of the same sequence
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Fig 2. 
Segment of a (Pro-Hyp-Gly)n triple-helix. (a) Ball-and-stick representation indicating 4-

hydroxy-L-proline residues and XaaC=O–H–NGly hydrogen bonds. (b) Register of the 

residues in the three strands of panel (a). Atomic coordinates are from Science 1994, 266:75 

(PDB entry 1CAG)
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Fig 3. 
Ring conformations of 4-substituted L -prolines
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Fig 4. 
Modular structures of (top) sandwiched associated triple-helical peptide and (bottom) 

sandwiched associated triple-helical peptide-amphiphile. The associated THP features 

repeats of Gly-Pro-Hyp [(GPO)n] on both the N- and C-termini to induce or stabilize triple-

helical structure, and a diverse collagen-like sequence [(GXY)n] in the middle for structural 

and/or biological studies. The peptide-amphiphile additionally possesses a pseudo-lipid 

attached to the N-terminus to further enhance triple-helical stability via hydrophobic 

interactions
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Fig 5. 
Synthesis of Fmoc-(2S,4R )-4-fluoroproline (Flp)
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Fig 6. 
Synthesis of Fmoc-(2S,4R )-4-methylproline (mep)
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Fig 7. 
Templates used for the chemical synthesis of triple-helical peptides: (a) di-Lys branch after 

coupling to 6-aminohexanoic acid (Ahx); (b) disulfide bridge (cystine knot); (c) 

cis,cis-1,3,5-trimethylcyclohexane-1,3,5-tricarboxylic acid (KTA) after coupling to Gly; (d) 

tris(2-aminoethyl)amine (TREN) after coupling to succinic acid; (e) cyclotriveratrylene 

(CTV) after coupling to a bromoethanoic acid; (f) macrocyclic; and (g) methyl 2,3,4,6-tetra-

O-Aoa-α-D-Galp. The arrows indicate the direction of collagen-like sequence incorporation
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Fig 8. 
General scheme for the synthesis of branched, triple-helical peptides. Ahx is 6-

aminohexanoic acid. Reprinted with permission from Biopolymers, copyright 1993, Wiley 

and Sons
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Fig 9. 
Heterotrimer THP 15 and general scheme for regioselective assembly of the α1, α2, and α1′ 

cysteine peptides into heterotrimers with the α1α2α1′ register
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Fig 10. 
Synthesis of heterotimeric THPs utilizing an N-terminal cystine knot
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Fig 11. 
Structures of the collagen-model peptide 25 and the linker peptides 26 and 27, and the 

synthetic scheme for the assembly of cross-linked THP 30
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Fig 12. 
(a) Schematic representation of the design of the NCoH THP and assembly into higher 

order structures. Following triple-helix formation, the addition of metal ions triggers an 

initial assembly directed by the NTA and His2 moieties. (b) Structures of peptides NCoH, 

CoH, and NCo. Reprinted with permission from J Am Chem Soc, copyright 2009, 

American Chemical Society
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