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Abstract

The categorization of intraductal proliferative lesions of the breast based on routine

light microscopic examination of histopathologic sections is in many cases

challenging, even for experienced pathologists. The development of computational

tools to aid pathologists in the characterization of these lesions would have great

diagnostic and clinical value. As a first step to address this issue, we evaluated the

ability of computational image analysis to accurately classify DCIS and UDH and to

stratify nuclear grade within DCIS. Using 116 breast biopsies diagnosed as DCIS or

UDH from the Massachusetts General Hospital (MGH), we developed a

computational method to extract 392 features corresponding to the mean and

standard deviation in nuclear size and shape, intensity, and texture across 8 color

channels. We used L1-regularized logistic regression to build classification models

to discriminate DCIS from UDH. The top-performing model contained 22 active

features and achieved an AUC of 0.95 in cross-validation on the MGH data-set. We

applied this model to an external validation set of 51 breast biopsies diagnosed as

DCIS or UDH from the Beth Israel Deaconess Medical Center, and the model

achieved an AUC of 0.86. The top-performing model contained active features from

all color-spaces and from the three classes of features (morphology, intensity, and

texture), suggesting the value of each for prediction. We built models to stratify

grade within DCIS and obtained strong performance for stratifying low nuclear

grade vs. high nuclear grade DCIS (AUC50.98 in cross-validation) with only

moderate performance for discriminating low nuclear grade vs. intermediate
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nuclear grade and intermediate nuclear grade vs. high nuclear grade DCIS

(AUC50.83 and 0.69, respectively). These data show that computational pathology

models can robustly discriminate benign from malignant intraductal proliferative

lesions of the breast and may aid pathologists in the diagnosis and classification of

these lesions.

Introduction

The pathological classification of ductal carcinoma in situ (DCIS) versus usual

ductal hyperplasia (UDH) on core biopsy of has major implications for patient

management. UDH is considered a benign proliferation, and patients with UDH

carry only a small increased risk of developing subsequent breast cancer compared

with patients without proliferative breast disease [1]. No treatment is necessary,

and clinical management includes the continuation of routine breast cancer

screening. In contrast, DCIS is a preinvasive malignant proliferation, and

approximately 25% of patients diagnosed with DCIS on core biopsy are found to

have invasive carcinoma upon surgical excision [2]. Primary treatment

recommendations for DCIS include lumpectomy with or without whole breast

radiation therapy and/or postoperative tamoxifen or total mastectomy with or

without sentinel lymph node biopsy [3]. Thus, DCIS patients receive aggressive

treatment, while UDH patients receive no treatment.

The pathological distinction of DCIS and UDH is based on multiple

architectural and cytologic features, with nuclear atypia being particularly

important in distinguishing the benign (UDH) from the malignant (DCIS)

lesions. Although the defining features of DCIS and UDH are well established, the

accurate and reproducible categorization of intraductal proliferative breast lesions

into these categories remains a challenge in many cases, even for experienced

pathologists [4–10]. The lack of reproducible and objective methods for

classifying intraductal proliferative lesions of the breast has clear negative

consequences, potentially resulting in both over- and under-treatment in clinical

practice and complicating the use of pathological diagnoses to guide research in

this area.

Given the importance of accurate and reproducible pathological diagnosis for

guiding clinical care and translational research, there would be value to the

development of computational tools to aid in the morphological characterization

of intraductal proliferative lesions. Descriptive morphological features of nuclear

atypia may be modeled with digitization of H and E-stained sections followed by

image processing and analysis. The process involves image capture via digital

photography or whole slide scanning [11], image segmentation via manual or

automated methods [12], the measurement of extracted features, and the

application of statistical methods to determine the association of features and

feature-based predictive models with pathological diagnosis or clinical outcome
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[13, 14]. Quantitative nuclear features have been demonstrated to correlate with

pathological findings in prior studies of mitotic activity [15, 16] and epithelial

proliferations of the breast [17–21]. In particular, the measurement of nuclear

area has been demonstrated to have diagnostic and prognostic value in malignant

and premalignant lesions [22–27].

Although the current literature demonstrates correlations between quantitative

features and proliferative breast lesions, this methodology has not yet been widely

adopted within the pathology community. One reason is due to the inconvenience

of applying previously published quantitative methods, which historically have

required significant manual intervention (e.g. for nuclear tracing) prior to the

measurement and extraction of one-to-several quantitative features of cellular

morphology. A second reason is few prior studies have used external validation

datasets, limiting our knowledge of the generalizability and robustness of the

findings. A third major challenge has been that few pathology laboratories have

possessed the requisite hardware and software for implementing computational

pathology algorithms, and thus, it has been challenging to translate research

advances to clinical practice. However, increasing numbers of laboratories are

acquiring whole slide imaging (WSI) platforms and digital pathology tools, which

should significantly facilitate the dissemination and ultimate clinical translation of

computational pathology algorithms [11, 14, 28, 29].

To build on the strengths and to address some of the limitations of prior work

in this area, we designed and implemented a computational pathology method for

the identification of nuclei and the quantification of nuclear features from

histological images of intraductal proliferative lesions of the breast. In this study,

we demonstrate the ability of this method to build classification models to

discriminate DCIS from UDH and to discriminate low grade from high grade

DCIS. These investigational tools provide new biological insights into the key

cellular phenotypic differences that differentiate UDH and DCIS and ultimately,

with further development, may provide real-time decision support to aid

pathologists in the interpretation of proliferative lesions of the breast. All image

processing code, images, and statistical code are provided at the accompanying

website: earlybreast.becklab.org.

Materials and Methods

Patient samples

Massachusetts General Hospital (MGH) Dataset

The study was approved by the Partners Human Research Committee (Partners

IRB), and the Partners IRB waived the need for consent. Cases were identified via

a search of breast biopsies with a diagnosis of DCIS or UDH at MGH. 80 cases of

DCIS and 36 cases of UDH from MGH were included in the study.

Core biopsy tissue was processed according to standardized laboratory

protocol. Formalin fixed and paraffin embedded (FFPE) tissue was cut into 5 mm

sections and stained with hematoxylin and eosin. The pathological grading of
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DCIS cases were obtained from the diagnostic pathology reports, and cases of

DCIS were graded as low, intermediate or high based on the degree of nuclear

atypia. If a case was reported to be intermediate between two grades, for the

purposes of this analysis we classified the case as the lower of the grades.

Beth Israel Deaconess Medical Center (BIDMC) Dataset

The study was approved by the Beth Israel Deaconess Medical Center IRB, and the

IRB waived the need for consent. Cases were identified via a search of breast

biopsies with a diagnosis of DCIS or UDH at BIDMC. 20 cases of DCIS and 31

cases of UDH from BIDMC were included in the study. Similar to the MGH data-

set, FFPE tissue was cut into 5 mm sections and stained with hematoxylin and

eosin. The pathological grading of DCIS cases were obtained from the diagnostic

pathology reports, and cases of DCIS were graded as low, intermediate or high

based on the degree of nuclear atypia. If a case was reported to be intermediate

between two grades, for the purposes of this analysis we classified the case as the

lower of the grades.

Image acquisition

One representative diagnostic hematoxylin and eosin stained slide per case was

digitized using Philips Ultra Fast Scanner 1.6 (Philips Digital Pathology; Best,

Netherlands) at 406 magnification with a resolution of 0.25 mm per pixel. Whole

slide images were reviewed, and diagnostic ROIs (1 to 4 per case) were manually

selected for image analysis. For cases with greater than 4 diagnostic foci, up to 4

regions with the highest cellularity were selected. The MGH cases were scanned

using a Philips Scanner at the MGH facility, while the BIDMC cases were scanned

using a Philips Scanner at BIDMC.

Image processing and feature extraction

The proposed image processing and analysis framework consists of three main

steps: nuclei segmentation, nuclei feature computation and statistical analysis and

machine learning on computed features.

Nuclei segmentation

Nuclei segmentation was performed using Fiji (ImageJ, National Institutes of

Health) [30]. For each image, the segmentation algorithm was applied for nuclei

segmentation. Initially, the RGB color image was converted into HSV color space,

in which image intensity (luma) is separated from color information (chroma),

which makes the HSV more closely match human perception. Color thresholding

was performed to obtain nuclear regions which were later processed with

morphological operations to fill holes and merge scattered nuclear regions.

Touching and overlapping nuclei were separated by watershed transformation.

Following nuclear segmentation, a size filter of 200–4000 pixels was applied to

exclude extracted objects of extremely small or large size to improve the specificity
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of nuclear detection. Identified objects were then analyzed from the original image

Fig. 1. Image processing of UDH (A), low grade DCIS (B), and high grade DCIS (C) includes conversion of hematoxylin and eosin-stained images
to binary images via automated threshold and watershed segmentation (D-F). Elliptical approximations of identified nuclear objects are shown (G-I).
Quantitative measurements (perimeter and circularity in this example) of nuclear distributions, where each data point represents one nuclear object, are
shown as scatterplots and contour plots of two-dimensional kernel density estimations for each case (J-L).

doi:10.1371/journal.pone.0114885.g001
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to measure quantitative features of morphology and color of each nucleus (Fig. 1).

Nuclei feature computation

After nuclei segmentation, we computed morphological and statistical features

from the selected nuclear regions. The computed morphological features include

shape and geometric features, which are: area, perimeter, equivalent spherical

perimeter, bounding rectangle (width and height), fit ellipse (major and minor

axis), shape descriptors (circularity, aspect ratio, roundness and solidity) and

Feret’s diameter.

The statistical features are intensity based (first order) and texture based

(second order). We also explored the statistical features in different color models.

In order to study the specific information carried by the hematoxylin stain, which

highlights different cellular structures in the tissue, we separated hematoxylin and

eosin stains using color deconvolution [31]. Color deconvolution reduced the

problem of color variations in tissue appearance due to variation in tissue

preparation, stain reactivity from different batches, protocol and scanners. In

addition, different color models are proposed to separate a color into more useful

components that may bring new information to the system. In this framework,

our goal is to investigate the various color channels of different color models and

select those channels that produce the top-performing classification models. We

convert RGB images into two other color models, namely HSV (more intuitive for

human perception) and Lab and Luv (uniform color separation).

In H&E stained images, nuclear and cytoplasmic regions appear as hues of blue

and purple while extracellular material have hues of pink. In order to reduce the

influence of extracellular region intensity, the RGB images are transformed into a

new image called Blue-Ratio (BR) image to accentuate the nuclear dye [32] as:

BR~
100|B

1zRzG
|

256
1zRzGzB

where R, G and B are red, green and blue channels of RGB, respectively. In a BR

image, a pixel with a high blue intensity relatively to its red and green components

is given a high value, whereas, a pixel with a low blue intensity as compared to its

red and green components is given a low value. As we are interested in nuclei,

which appear as blue-purple areas, Blue ratio intensity indicates spatial

distribution of nuclear content in the image. For statistical feature computations,

we selected eight color channels; red, green and blue from RGB color model,

lightness (Value) from HSV color model, lightness from Lab and Luv color model,

BR grey scale image and Hematoxylin channel from H&E color deconvolution.

The first order statistical features determine the distribution of grey level values

within the nuclei regions. Using grey level information of the selected color

channels, we computed mean, median, standard deviation, skewness and kurtosis.

These five features were computed for each nucleus in selected eight color

channels, resulting in a total of 40 first order statistical features.

We computed two types of second order statistical features using grey level

Haralick co-occurrence [33] and run-length matrices [34]. The co-occurrence
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matrix GLCM (i,j; d,q) is square with dimension Ng where Ng is the total number

of grey levels in the image. The value at ith and jth column in the matrix is

produced by counting the total occasions a pixel with value i is adjacent to a pixel

with value j at a distance d and angle q. Then the whole matrix is divided by the

total number of such comparisons that have been made. Alternatively we can say

that each element of GLCM matrix is considered as the probability that a pixel

with grey level i is to be found with pixel with grey level j at a distance d and angle

q. We defined adjacency in four directions (vertical, horizontal, left and right

diagonals) with one displacement vector, which produced four GLCMs matrices.

In our case, texture information is rotationally invariant. So, we take the average

in all four directions and produce one GLCM matrix. Later, we compute 8

features proposed by Haralick from the GLCM in order to identify texture more

compactly. These eight features are correlation, cluster shade, cluster prominence,

energy, entropy, hara-correlation, homogeneity and inertia. These eight features

were computed for each nucleus in the selected eight color channels, resulting in a

total of 64 co-occurrence features.

The set of consecutive pixels, with the same grey level, collinear in a given

direction, constitute a grey level run length matrix GLRLM (i,j; q). The dimension

of GLRLM is Ng6R, where Ng is the number of grey levels and R is the maximum

run length. Similar to the GLCM, we compute GLRLMs for four directions and

later average them. The 10 run-length features, derived from GLRLM, are short

run emphasis (SRE), long run emphasis (LRE), grey-level non-uniformity (GLN),

run length non-uniformity (RLN), low grey level runs emphasis (LGLRE), high

grey level runs emphasis (HGLRE), short run low grey level emphasis (SRLGLE),

short run high grey level emphasis (SRHGLE), long run low grey level emphasis

(LRLGLE) and long run high grey level emphasis (LRHGLE). These features were

computed for each nucleus in the selected eight color channels, resulting in a total

of 80 run-length features. In total, we computed 196 texture features for each

nucleus.

Prior to statistical and machine learning-based analyses, feature measurements

were summarized at the patient level by computing the mean and standard

deviation of each feature per patient, producing a total of 392 summary features

per patient.

Statistical analysis and machine learning: We performed logistic regression with

Lasso regularization[35] to build multivariate image feature-based models to

classify DCIS versus UDH and low grade versus high grade DCIS. The analyses

were implemented in R (http://www.r-project.org/), using the glmnet[36] package.

Lasso regularization was used to create simpler models, less prone to overfitting,

than those that would be obtained from standard logistic regression. The Lasso

procedure consists of performing logistic regression with an L1 regularization

penalty, which has the effect of shrinking the regression weights of the least

predictive features to 0 [35]. The amount of the penalty (and the number of non-

zero features in the model) is determined by the regularization parameter l. This

method has been shown to perform well in the setting of colinearity[37] and has

been widely used to build predictive models from high-dimensional data in
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translational cancer research [38–40]. Features were standardized separately in the

MGH and BIDMC data-sets prior to model construction, using the default setting

in glmnet. We evaluated model performance within the MGH data-set by 9-fold

cross-validation. For external validation on the BIDMC cases, we selected the

value of l that achieved the maximum AUC in cross-validation on the MGH

data-set and applied this fixed model to the BIDMC cases. Model performance

was assessed by computing the AUC.

Accompanying website

All images, image processing code, statistical code, and results are provided at the

accompanying website: http://earlybreast.becklab.org and data are deposited at the

Dryad database (http://dx.doi.org/10.5061/dryad.pv85m).

Results

Construction and evaluation of a computational pathology model

to discriminate DCIS from UDH

DCIS and UDH Analyses in the Massachusetts General Hospital Dataset

We performed L1-regularized logistic regression to construct classification models

to discriminate DCIS (n580) from UDH (n536). The top-performing model

contained 22 active features (Table 1) and achieved an AUC of 0.95 in cross-

validation (Fig. 2).

External Validation of the DCIS/UDH Classification Model

The most important test of a predictive model is its ability to generalize to new,

unseen data from an independent institution. Thus, we collected a set of 51

samples, containing cases of both DCIS (n520) and UDH (n531) as an external

validation dataset. We processed the samples in a similar fashion to that described

for the MGH samples. We trained the predictive model on the full MGH dataset

and applied the fixed model to the BIDMC dataset. On the BIDMC dataset, the

model showed strong classification performance, achieving an AUC50.86 (

Fig. 3). Later, we combined both training and validation datasets and performed

cross validation on all 167 cases, resulting in a model performance of AUC50.93 (

Fig. 4).

We next compared the performance of the DCIS vs UDH classifier on specific

grades of DCIS (Table 2) on the combined MGH and BIDMC datasets. The

resulting dataset contains UDH (n567), low grade DCIS (n529), intermediate

grade DCIS (n547) and high grade DCIS (n524) cases. We obtained strong

performance for building classifiers to discriminate UDH vs. high grade DCIS

(AUC50.97), UDH vs. low grade DCIS (AUC50.95), and UDH vs. intermediate

grade DCIS (AUC50.90). These results show that the DCIS vs. UDH classifier

performs well across all histologic grades of DCIS.
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We next built models to discriminate between histologic grades of DCIS. We

obtained strong performance for low-grade vs. high grade DCIS (AUC50.98), but

only moderate performance for low grade vs. intermediate grade DCIS

(AUC50.83) and for intermediate grade vs. high grade DCIS (AUC50.69). These

results suggest the morphologic overlap between intermediate-and-low grade

DCIS and between intermediate-and-high grade DCIS.

Analysis of Features in the Top-Performing DCIS vs. UDH Model

The top-performing DCIS vs. UDH model contained a total of 22 features,

including intensity, morphology, and texture-based features (Table 1). Further,

features from all color spaces contributed to the top-performing model,

suggesting the added value of each.

Ablation analyses to compare performance of different feature classes and color

spaces

To identify the subset of most informative features, we performed ablation

analyses, in which we only consider a subset of features prior to model building

and evaluation. Of the feature classes, we obtained the strongest performance with

the texture features alone, which achieved an AUC of 0.91, followed by

morphology and intensity features alone (AUC50.89 and 0.85, respectively). Of

Table 1. Features and weights in the DCIS vs. UDH classification model.

Feature Name Summary Function Feature Class Color Space Weight

Mean_Variance_Red Mean Intensity Red (RGB) 0.000875

Mean_Kurtosis_Green Mean Intensity Green (RGB) 23.15038

Mean_Kurtosis_BR Mean Intensity BlueRatio 0.002031

Mean_Skewness_BR Mean Intensity BlueRatio 0.523952

SD_Mean_Red SD Intensity Red (RGB) 20.05881

SD_Variance_Green SD Intensity Green (RGB) 0.000543

Mean_Minor Mean Morphology N/A 20.13152

Mean_Round Mean Morphology N/A 228.1278

Mean_IDM_Blue Mean Texture Blue (RGB) 101.3997

Mean_ClusterShade_HSV Mean Texture V (HSV) 0.000004

Mean_GLN_Lab Mean Texture L (Lab) 20.074964

Mean_LGLRE_Lab Mean Texture L (Lab) 25239.083

Mean_SRLGLE_Lab Mean Texture L (Lab) 0.000001

Mean_LRLGLE_Lab Mean Texture L (Lab) 2329.1062

Mean_GLN_Luv Mean Texture L (Luv) 20.000184

Mean_LGLRE_Luv Mean Texture L (Luv) 20.058987

Mean_SRLGLE_Luv Mean Texture L (Luv) 235.01663

Mean_LRLGLE_Luv Mean Texture L (Luv) 20.563487

Mean_GLN_HE Mean Texture H (HE) 20.592543

SD_Inertia_Red SD Texture Red (RGB) 0.000525

SD_Entropy_Blue SD Texture Blue (RGB) 27.797402

SD_IDM_HSV SD Texture V (HSV) 289.83901

doi:10.1371/journal.pone.0114885.t001
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Fig. 2. Learning a logistic regression model to distinguish DCIS vs. UDH on the MGH Dataset. A. Area under the receiver operating characteristic
curve (AUC) based on predictions made on held-out cases in cross-validation with respect to log of the regularization parameter l (bottom) and the number
of features active in the model (top). Dotted lines indicate l of model with maximum AUC (left) and largest l such that the AUC is within one standard error of
the maximum (right). B. Receiver operating characteristic (ROC) curve based on predictions made in cross-validation for the l value that maximized the
AUC in cross-validation for discriminating DCIS vs UDH on the MGH dataset.

doi:10.1371/journal.pone.0114885.g002

Fig. 3. Validation of DCIS vs. UDH model on the BIDMC Dataset. A. Each point represents a case from the validation dataset. The cases are ranked
based on the probability of UDH, which is indicated on the Y-Axis. The red points represent cases of DCIS and the black points represent cases of UDH. B.
Receiver operating characteristic (ROC) curve based on based on predictions made on the BIDMC validation dataset for discriminating DCIS vs UDH.

doi:10.1371/journal.pone.0114885.g003
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the color channels, the red channel features achieved the highest performance

(AUC50.90), as compared with AUC50.89, 0.88 and 0.88 in the V (HSV), L

(Lab) and L (Luv) channels, respectively. No subset of features achieved as strong

performance as the full feature set (AUC50.93 in cross-validation), suggesting the

added value of each class of feature and color-space.

Discussion

Previous studies have used quantitative image analysis to aid in the histological

diagnosis and grading of breast lesions. Nuclear size and shape have been

associated with pathological findings such as tumor grade and necrosis in

malignant cytological and surgical breast specimens [17–20]. Morphometric

nuclear size measurements, including area, diameter, and short axis, have also

been associated with survival in patients with invasive carcinoma [22, 23]. A

comprehensive machine learning-based analysis of invasive breast carcinoma

morphology has identified both epithelial and stromal features associated with

survival [38]. Two prior studies of male breast carcinoma have associated

morphometric parameters with tumor grade, immunohistochemical staining of

tumor-associated proteins, and clinical outcome [21, 24].

Although relatively less work has focused on the evaluation of breast biopsies

with benign pathological diagnoses, nuclear morphometry in benign proliferative

lesions has been associated with the subsequent development of breast cancer

Fig. 4. Learning a logistic regression model to distinguish DCIS vs. UDH on the MGH and BIDMC Datasets. A. Area under the receiver operating
characteristic curve (AUC) based on predictions made on held-out cases in cross-validation with respect to log of the regularization parameter l (bottom)
and the number of features active in the model (top). B. Receiver operating characteristic (ROC) curve based on based on predictions made in cross-
validation for the l value that maximized the AUC in cross-validation for discriminating DCIS vs UDH on the MGH and BIDMC datasets.

doi:10.1371/journal.pone.0114885.g004
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[25, 26]. These previous studies, with methods ranging from manual measure-

ment to automated computational segmentation of cellular morphology, suggest

the value of developing and applying methods in quantitative image analysis to

link morphologic phenotypes with pathological diagnoses and clinical outcomes.

In contrast to most prior studies, we take a more unbiased data-driven

approach, where we develop automated image processing software to extract a

relatively high dimensional nuclear feature set (392 features) from each image and

then use machine learning-based methods to build models to predict pathological

diagnosis. Dundar et al. developed a morphometric pipeline to measure nuclear

perimeter, aspect ratio and mean gray level intensity across 62 training cases and

33 test cases of UDH, DCIS, and atypical ductal hyperplasia (ADH), and they

demonstrated an overall accuracy of 87.9% in distinguishing clinically actionable

from non-actionable lesions [27]. This prior study and others have largely focused

on the quantitation of existing diagnostic criteria used by surgical pathologists for

disease classification. Our study builds on this approach and identifies novel

morphological features that are important in discriminating pathological

diagnoses of breast disease. Furthermore, our study demonstrates the ability for

Table 2. Classification performance for DCIS and UDH classification models across a range of classification tasks and using varying subsets of features.

Classification Performance, UDH vs. Grades of DCIS

Total Features Selected Features AUC

UDH vs High Grade DCIS 392 26 97

UDH vs Low Grade DCIS 392 29 95

UDH vs Intermediate Grade DCIS 392 46 90

Classification Performance, Between Grades of DCIS

Total Features Selected Features AUC

Low Grade vs High Grade DCIS 392 17 98

Low Grade vs Intermediate Grade DCIS 392 8 83

Intermediate Grade vs High Grade DCIS 392 37 69

Classification Performance, DCIS vs. UDH, with Different Subset of Features

Total Features Selected Features AUC

Textural Features 288 27 91

Morphological Features 24 16 89

Intensity Features 80 24 85

Classification Performance, DCIS vs. UDH, with Different Color Channels

Total Features Selected Features AUC

Red Channel 46 28 90

V (HSV) Channel 46 26 89

L (Luv) Channel 46 23 88

L (Lab) Channel 46 23 88

BlueRatio Image 46 21 85

Green Channel 46 31 84

Blue Channel 46 28 84

H (H&E) 46 37 82

doi:10.1371/journal.pone.0114885.t002
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pathology image analysis to accurately classify proliferative breast lesions across

two institutions using different histological protocols. This finding suggests that

these techniques may be implemented across multiple laboratories.

The image processing method could be further developed in several areas. First,

the current system requires expert selected regions of interest. The nuclear

detection algorithm currently implemented will not perform well on images that

are pure stroma and assumes that the image is selected to enrich for cells involved

in a breast epithelial proliferative lesion. A second area for future technical

development is incorporation of relational nuclear features (e.g. average distance

between nuclei, proportion overlapping nuclei) and spatial nuclear features (e.g.

nuclear streaming). A third area for future development is the inclusion of stromal

features into the predictive model. It is well known that DCIS may develop

reactive-type stroma, and this feature may have value in diagnosis and prognosis.

Lastly, performance may be further improved through the use of additional

machine learning methods, including convolutional neural networks, which have

recently shown strong performance for a range of image classification tasks

[41, 42].

Despite these limitations, the current study represents a first step in applying a

computational pathology approach to the classification of intraductal prolifera-

tions of the breast. Our study demonstrates that models comprised of relatively

small sets of quantitative nuclear features can achieve high accuracy for the

classification of UDH vs. DCIS and low grade vs high grade DCIS. Building on

this work, we plan to extend the method to the analysis of additional challenging

intraductal proliferative lesions, including ADH, which represents a major

challenge in diagnostic pathology[9] and is an area where a computational

algorithm may be particularly useful for clinical practice.

With further development and validation, we envision this approach could be

incorporated into clinical practice in several ways. Today, the standard method

used to differentiate difficult cases on the borderline between low grade DCIS and

UDH is to perform immunohistochemistry (IHC) for estrogen receptor (ER) and

basal cytokeratins (CK5/6), with low grade DCIS tending to show the pattern of

ER positive and CK5/6 negative, while UDH shows a mosaic-staining pattern for

CK5/6 and variable ER positivity [43]. A computational pathology algorithm may

replace the need for IHC altogether in a subset of cases, resulting in increased

turnaround time and decreased cost, or alternatively, the algorithm may

supplement the use of IHC for difficult cases, providing another layer of evidence

to support one diagnosis or the other. In addition, we envision that a

computational pathology algorithm for intraductal proliferative lesions could

serve as a real-time second reader, which could point the pathologist to suspicious

lesions or could trigger the pathologist’s attention when the pathological diagnosis

disagrees with the computational interpretation, and in this way, the algorithm

could be used to identify cases requiring additional diagnostic work up.

The image processing algorithms, full set of images used in the analysis, and the

code for statistical analysis are made publicly available on the accompanying
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website (earlybreast.becklab.org) and data are deposited at the Dryad Database

(http://dx.doi.org/10.5061/dryad.pv85m).

Author Contributions

Conceived and designed the experiments: FD HI MFL AHB. Performed the

experiments: FD MFL EFB NCJ NWK LMK NBJ LKFR DCW SJS AHB. Analyzed

the data: FD HI MFL AHB. Contributed reagents/materials/analysis tools: FD HI

EYO BFJ MFL EFB NCJ DCW AHB. Wrote the paper: FD HI EYO MFL EFB NCJ

NWK LMK NBJ LKFR DCW SJS AHB.

References

1. Dupont WD, Page DL (1985) Risk factors for breast cancer in women with proliferative breast disease.
N Engl J Med 312: 146–151.

2. Brennan ME, Turner RM, Ciatto S, Marinovich ML, French JR, et al. (2011) Ductal carcinoma in situ
at core-needle biopsy: meta-analysis of underestimation and predictors of invasive breast cancer.
Radiology 260: 119–128. doi:10.1148/radiol.11102368.

3. Kane RL, Virnig BA, Shamliyan T, Wang S-Y, Tuttle TM, et al. (2010) The impact of surgery, radiation,
and systemic treatment on outcomes in patients with ductal carcinoma in situ. J Natl Cancer Inst Monogr
2010: 130–133. doi:10.1093/jncimonographs/lgq022.

4. Rosai J (1991) Borderline epithelial lesions of the breast. Am J Surg Pathol 15: 209–221. doi:10.1097/
00000478-199103000-00001.

5. Schnitt SJ, Connolly JL, Tavassoli FA, Fechner RE, Kempson RL, et al. (1992) Interobserver
reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria.
Am J Surg Pathol 16: 1133–1143. doi:10.1097/00000478-199212000-00001.

6. Mommers EC, Poulin N, Sangulin J, Meijer CJ, Baak JP, et al. (2001) Nuclear cytometric changes in
breast carcinogenesis. J Pathol 193: 33–39.

7. Mommers EC, Poulin N, Meijer CJ, Baak JP, van Diest PJ (2000) Malignancy-associated changes in
breast tissue detected by image cytometry. Anal Cell Pathol 20: 187–195.

8. MacGrogan G, Arnould L, de Mascarel I, Vincent-Salomon A, Penault-Llorca F, et al. (2008) Impact
of immunohistochemical markers, CK5/6 and E-cadherin on diagnostic agreement in non-invasive
proliferative breast lesions. Histopathology 52: 689–697. doi:10.1111/j.1365-2559.2008.03016.x.

9. Jain RK, Mehta R, Dimitrov R, Larsson LG, Musto PM, et al. (2011) Atypical ductal hyperplasia:
interobserver and intraobserver variability. Mod Pathol 24: 917–923. doi:10.1038/modpathol.2011.66.

10. Geller BM, Nelson HD, Carney PA, Weaver DL, Onega T, et al. (2014) Second opinion in breast
pathology: policy, practice and perception. J Clin Pathol 67: 955–960. Available: http://www.ncbi.nlm.nih.
gov/pubmed/25053542. Accessed 3 November 2014.

11. Ghaznavi F, Evans A, Madabhushi A, Feldman M (2013) Digital imaging in pathology: whole-slide
imaging and beyond. Annu Rev Pathol 8: 331–359. Available: http://www.ncbi.nlm.nih.gov/pubmed/
23157334. Accessed 14 June 2013.

12. Irshad H, Veillard A, Roux L, Racoceanu D (2014) Methods for nuclei detection, segmentation, and
classification in digital histopathology: a review-current status and future potential. IEEE Rev Biomed
Eng 7: 97–114. Available: http://ieeexplore.ieee.org/articleDetails.jsp?arnumber56690201. Accessed 10
October 2014.

13. Gurcan MN, Boucheron LE, Can A, Madabhushi A, Rajpoot NM, et al. (2009) Histopathological
image analysis: a review. IEEE Rev Biomed Eng 2: 147–171. doi:10.1109/RBME.2009.2034865.

14. Kothari S, Phan JH, Stokes TH, Wang MD (2013) Pathology imaging informatics for quantitative
analysis of whole-slide images. J Am Med Inform Assoc 20: 1099–1108. doi:10.1136/amiajnl-2012-
001540.

Image Analysis of Breast Intraductal Proliferations

PLOS ONE | DOI:10.1371/journal.pone.0114885 December 9, 2014 14 / 16

http://dx.doi.org/10.5061/dryad.pv85m
http://www.ncbi.nlm.nih.gov/pubmed/25053542
http://www.ncbi.nlm.nih.gov/pubmed/25053542
http://www.ncbi.nlm.nih.gov/pubmed/23157334
http://www.ncbi.nlm.nih.gov/pubmed/23157334
http://ieeexplore.ieee.org/articleDetails.jsp?arnumber=6690201


15. Irshad H, Gouaillard A, Roux L, Racoceanu D (2014) Multispectral band selection and spatial
characterization: Application to mitosis detection in breast cancer histopathology. Comput Med Imaging
Graph 38: 390–402. Available: http://www.sciencedirect.com/science/article/pii/S0895611114000433.
Accessed 10 October 2014.

16. Irshad H (2013) Automated mitosis detection in histopathology using morphological and multi-channel
statistics features. J Pathol Inform 4: 10. Available: http://www.pubmedcentral.nih.gov/articlerender.
fcgi?artid53709420&tool5pmcentrez&rendertype5abstract. Accessed 10 October 2014.

17. Van Diest PJ, Risse EK, Schipper NW, Baak JP, Mouriquand J (1989) Comparison of light
microscopic grading and morphometric features in cytological breast cancer specimens. Pathol Res
Pract 185: 612–616. doi:10.1016/S0344-0338(89)80204-3.

18. Pienta KJ, Coffey DS (1991) Correlation of nuclear morphometry with progression of breast cancer.
Cancer 68: 2012–2016.

19. Tan PH, Goh BB, Chiang G, Bay BH (2001) Correlation of nuclear morphometry with pathologic
parameters in ductal carcinoma in situ of the breast. Mod Pathol 14: 937–941. doi:10.1038/
modpathol.3880415.

20. Tahlan A, Nijhawan R, Joshi K (2000) Grading of ductal breast carcinoma by cytomorphology and
image morphometry with histologic correlation. Anal Quant Cytol Histol 22: 193–198.

21. Chiusa L, Margaria E, Pich A (2000) Nuclear morphometry in male breast carcinoma: association with
cell proliferative activity, oncogene expression, DNA content and prognosis. Int J Cancer 89: 494–499.

22. Baak JP, Van Dop H, Kurver PH, Hermans J (1985) The value of morphometry to classic
prognosticators in breast cancer. Cancer 56: 374–382.

23. Kronqvist P, Kuopio T, Collan Y (1998) Morphometric grading of invasive ductal breast cancer. I.
Thresholds for nuclear grade. Br J Cancer 78: 800–805.

24. Veta M, Kornegoor R, Huisman A, Verschuur-Maes AHJ, Viergever MA, et al. (2012) Prognostic
value of automatically extracted nuclear morphometric features in whole slide images of male breast
cancer. Mod Pathol 25: 1559–1565. doi:10.1038/modpathol.2012.126.

25. Mommers EC, Page DL, Dupont WD, Schuyler P, Leonhart AM, et al. (2001) Prognostic value of
morphometry in patients with normal breast tissue or usual ductal hyperplasia of the breast. Int J Cancer
95: 282–285.

26. Cui Y, Koop EA, van Diest PJ, Kandel RA, Rohan TE (2007) Nuclear morphometric features in benign
breast tissue and risk of subsequent breast cancer. Breast Cancer Res Treat 104: 103–107. doi:10.1007/
s10549-006-9396-4.

27. Dundar MM, Badve S, Bilgin G, Raykar V, Jain R, et al. (2011) Computerized classification of
intraductal breast lesions using histopathological images. IEEE Trans Biomed Eng 58: 1977–1984.
doi:10.1109/TBME.2011.2110648.

28. Pantanowitz L, Sinard JH, Henricks WH, Fatheree LA, Carter AB, et al. (2013) Validating whole slide
imaging for diagnostic purposes in pathology: guideline from the College of American Pathologists
Pathology and Laboratory Quality Center. Arch Pathol Lab Med 137: 1710–1722. doi:10.5858/
arpa.2013-0093-CP.

29. Huisman A, Looijen A, van den Brink SM, van Diest PJ (2010) Creation of a fully digital pathology
slide archive by high-volume tissue slide scanning. Hum Pathol 41: 751–757. Available: http://www.ncbi.
nlm.nih.gov/pubmed/20129646. Accessed 3 November 2014.

30. Schindelin J, Arganda-Carreras I, Frise E, Kaynig V, Longair M, et al. (2012) Fiji: an open-source
platform for biological-image analysis. Nat Methods 9: 676–682. Available: http://www.ncbi.nlm.nih.gov/
pubmed/22743772. Accessed 18 October 2013.

31. Ruifrok A, Johnston D (2001) Quantification of Histochemical Staining by Color Deconvolutions. Anal
Quant Cytol Histol 23: 291–299.

32. Chang H, Loss LA, Parvin B (2012) Nuclear segmentation in H and E sections via multi-reference
graph-cut (MRGC). 9th IEEE International Symposium Biomedical Imaging: pp, . 614–617.

33. Haralick RM, Shanmugam K, Dinstein I (1973) Textural Features for Image Classification. IEEE Trans
Syst Man Cybern 3: 610–621. doi:http://dx.doi.org/10.1109/TSMC.1973.4309314.

34. Galloway MM (19675) Texture Analysis using Gray Level Run Lengths. Comput Graph Image Process 4:
172–179.

Image Analysis of Breast Intraductal Proliferations

PLOS ONE | DOI:10.1371/journal.pone.0114885 December 9, 2014 15 / 16

http://www.sciencedirect.com/science/article/pii/S0895611114000433
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3709420&tool=pmcentrez&rendertype=abstract
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3709420&tool=pmcentrez&rendertype=abstract
http://www.ncbi.nlm.nih.gov/pubmed/20129646
http://www.ncbi.nlm.nih.gov/pubmed/20129646
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://www.ncbi.nlm.nih.gov/pubmed/22743772
http://dx.doi.org/10.1109/TSMC.1973.4309314


35. Tibshirani R (1996) Regression shrinkage and selection via the lasso. J R Statis Soc B 58: 267–288.

36. Friedman J, Hastie T, Tibshirani R (2010) Regularization Paths for Generalized Linear Models via
Coordinate Descent. J Stat Softw 33: 1–22. doi:10.1359/JBMR.0301229.

37. Dormann CF, Elith J, Bacher S, Buchmann C, Carl G, et al. (2013) Collinearity: a review of methods to
deal with it and a simulation study evaluating their performance. Ecography (Cop) 36: 27–46.

38. Beck AH, Sangoi AR, Leung S, Marinelli RJ, Nielsen TO, et al. (2011) Systematic analysis of breast
cancer morphology uncovers stromal features associated with survival. Sci Transl Med 3: 108ra113.
Available: http://www.ncbi.nlm.nih.gov/pubmed/22072638. Accessed 3 June 2013.

39. Schultz NA, Werner J, Willenbrock H, Roslind A, Giese N, et al. (2012) MicroRNA expression profiles
associated with pancreatic adenocarcinoma and ampullary adenocarcinoma. Mod Pathol 25: 1609–
1622. doi:10.1038/modpathol.2012.122.

40. Pellagatti A, Benner A, Mills KI, Cazzola M, Giagounidis A, et al. (2013) Identification of gene
expression-based prognostic markers in the hematopoietic stem cells of patients with myelodysplastic
syndromes. J Clin Oncol 31: 3557–3564. doi:10.1200/JCO.2012.45.5626.

41. Razavian AS, Azizpour H, Sullivan J, Carlsson S (2014) CNN Features off-the-shelf: an Astounding
Baseline for Recognition. Available: http://arxiv.org/abs/1403.6382. Accessed 3 November 2014.
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